ОБРОБКА МЕТАЛІВ ТИСКОМ

УДК 621.771

©Яковченко А.В.¹, Пугач А.А.², Ивлева Н.И.³

АНАЛИЗ ТОЧНОСТИ ИЗВЕСТНЫХ МЕТОДОВ РАСЧЕТА НАПРЯЖЕНИЯ ТЕЧЕНИЯ МЕТАЛЛА В ЗАВИСИМОСТИ ОТ ХИМИЧЕСКОГО СОСТАВА СТАЛИ

Разработана компьютерная программа расчета напряжения течения металла на основе сплайн-интерполяции экспериментальной информации. На базе теории планируемого эксперимента создана компьютерная программа для оценки точности известных методов расчета напряжения течения металла. Выполнен анализ точности методов Николаева В.А. и Андреюка Л.В., Тюленева Г.Г., Прицкера В.С.

Ключевые слова: анализ точности методов расчета напряжения течения металла; сплайн-интерполяция экспериментальной информации; компьютерная программа.

Яковченко О.В., Пугач О.А., Івлєва Н.І. Аналіз точності відомих методів розрахунку напруги плину металу залежно від хімічного складу сталі. Розроблено комп'ютерну програму розрахунку напруги плину металу на основі сплайн - інтерполяції експериментальної інформації. На базі теорії планованого експерименту створена комп'ютерна програма для оцінки точності відомих методів розрахунку напруги плину металу. Виконано аналіз точності методів Ніколаєва В.О. і Андреюка Л.В., Тюлєнєва Г.Г., Прицкера В.С.

Ключові слова: аналіз точності методів розрахунку напруги плину металу; сплайнінтерполяція експериментальної інформації; комп'ютерна програма.

O.V. Yakovchenko, O.A. Pugach, N.I. Ivleva. The Analysis of precision of the existing methods of evaluation of metal flow tension, depending on steel chemical composition. The computer program was developed for calculation of tension of metal flow on the basis of on-line -interpolation of experimental information. On the base of theory of the planned experiment the computer program was created for the estimation of precision of the known methods of calculation of tension of flow of metal in relation to experimental information. The analysis of precision the methods, developed by Nikolaev V.A. and Andreyuk l.V., Tyulenev G.G., Pricker V.S. was executed.

Keywords: analysis of precision icexactness of methods of calculation of metal flow tension on-line -interpolation of experimental information; computer program.

Постановка проблемы. Актуальной проблемой является выполнение научно обоснованного анализа точности существующих методов расчета напряжения металла.

Анализ последних исследований и публикаций. Исследования напряжения течения металла от имеют важное значение для теории и практики обработки металлов давлением. Этой теме посвящено значительное количество работ, вместе с тем, вопросы точности созданных методов расчета напряжения течения металла остаются актуальными. Особый интерес представляет анализ точности методов Николаева В.А. [1] и Андреюка Л.В., Тюленева Г.Г., Прицкера В.С. [2], которые позволяют выполнить расчет величины о в зависимости от химического состава стали, в том числе, когда отсутствует соответствующая экспериментальная пластомет-

 2 магистр, $\Gamma BV3$ "Донецкий национальный технический университет", г. Донецк

д-р техн. наук, профессор, ГВУЗ "Донецкий национальный технический университет", г. Донецк

 $^{^{3}}$ программист, ГВУЗ "Донецкий национальный технический университет", г. Донецк

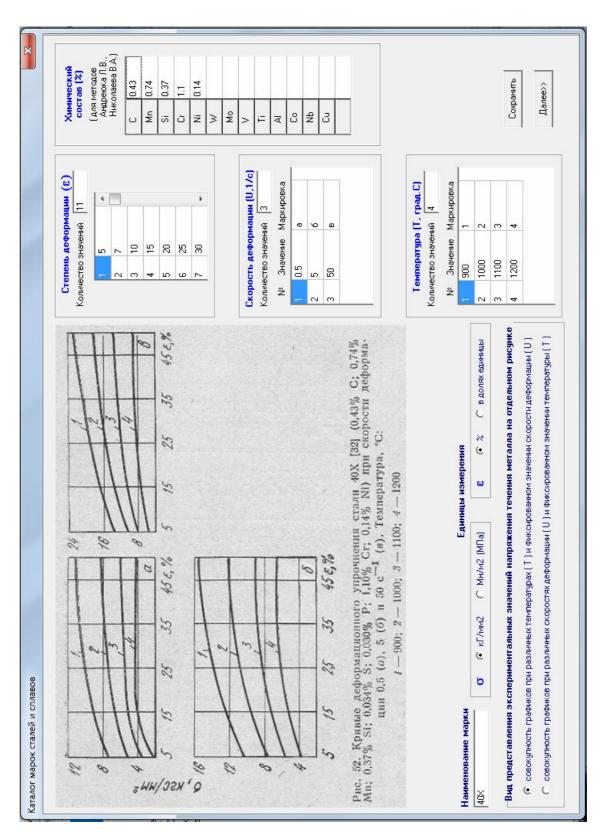
ВІСНИК ПРИАЗОВСЬКОГО ЛЕРЖАВНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ

2011 р. Серія: Технічні науки № 2 (23) ISSN 2225-6733

рическая информация.

Цель работы – выполнить оценку точности методов [1] и [2] для конструкционных, инструментальных и нержавеющих сталей.

Изложение основного материала. Метод определения величины σ в зависимости от произвольных значений степени деформации ε, скорости деформации U и температуры T на основе экспериментальных кривых упрочнения предложен в работе [3]. На его основе разработана компьютерная программа, основные окна которой представлены на рис. 1-4. По своей сути эта программа предназначена для создания компьютерной базы данных о напряжении течении сталей и сплавов. В ней создан каталог, в котором на первом этапе марки сталей разделяют по назначению на три группы: конструкционные, инструментальные и нержавеющие. На следующем этапе конструкционные стали разделяют на подгруппы: конструкционные стали обыкновенного качества, нелегированные качественные, легированные, подшипниковые, а инструментальные - на подгруппы: инструментальные нелегированные углеродистые стали, легированные, быстрорежущие. В дальнейшем можно увеличить количество, как групп, так и подгрупп.


В качестве примера рассмотрим процесс ввода в базу данных информации для стали 40Х. При этом в каталоге открывается вначале группа «Конструкционные стали», а затем подгруппа «Конструкционные легированные стали» и в соответствующую папку заносится отсканированная графическая информация, включающая кривые упрочнения и подрисуночную надпись (см. рис.1). Параллельно указывается литературный источник, в котором опубликована эта информация, номер страницы и номер рисунка. В окне, представленном на рис.1, указываются единицы измерения для σ, ε, U, T, принятые на рисунке, а также вид представления экспериментальной информации. В соответствующих таблицах в правой части окна задаются имеющееся на графиках количество значений для ε, U и T, их величина и маркировка. Задается также химический состав стали, если он указан, например, в подрисуночной надписи. Перечисленная информация является исходной.

На рис.2 показано окно построения координатной сетки. В это окно поочередно подаются рисунки, помеченные буквами а, б, в. Для стали 40X на рис.2 показана кривая упрочнения при U=0.5 с⁻¹, помеченная буквой а. В этом окне для всех узловых точек координатных осей ставятся в соответствие значения σ и ε в единицах, указанных на координатных осях, а также в единицах растрового изображения, которые определяются программно. Сначала вводится количество узловых точек на оси абсцисс. С помощью переключателя выбирается текущее значение ε , затем наводится курсор мыши на вертикальную линию, проходящую через соответствующую узловую точку на оси абсцисс рисунка, и выполняется щелчок левой кнопкой мыши. При этом в результирующую таблицу автоматически заносится значение абсциссы узловой точки в единицах растрового изображения, а на самом рисунке вычерчивается вертикальная линия. Аналогичные действия выполняются и для оси ординат. Графическая визуализация построенных линий необходима для обеспечения максимально точного совпадения построенной сетки, которая выполняется другим цветом, с исходной координатной сеткой. При необходимости указанные значения уточняют.

На основе полученной информации для любой точки, лежащей на графике, можно определить абсциссу и ординату в растровых единицах, а затем рассчитать их в единицах, указанных на координатных осях. Для этого разработано окно программы, показанное на рис.3. В правом верхнем углу окна имеются переключатели для выбора текущих значений ε , U, T. На точку графика, соответствующую выбранным факторам, необходимо навести курсор и щелкнуть левой кнопкой "мыши". Программа вычисляет значение напряжения течения металла $\sigma(\varepsilon, U, T)$, а после нажатия кнопки "Поместить в таблицу" заносит его в соответствующую ячейку таблицы, вид и размеры которой предопределены исходной информацией. В таблице 1 представлена информация о величинах σ для стали марки 40X, полученных на основе вышеизложенного метода.

Далее выполняется сплайн-интерполяция полученной информации и построение сплайн - кривых в окне рис.3. Цвет кривых пользователь выбирает таким образом, чтобы их было хорошо видно на фоне исходных кривых. Если ход исходной кривой упрочнения достаточно сложный, например, имеются перегибы, и сплайн - кривая недостаточно точно ложится на исходную кривую, то можно увеличить число вертикальных координатных линий, соответст -

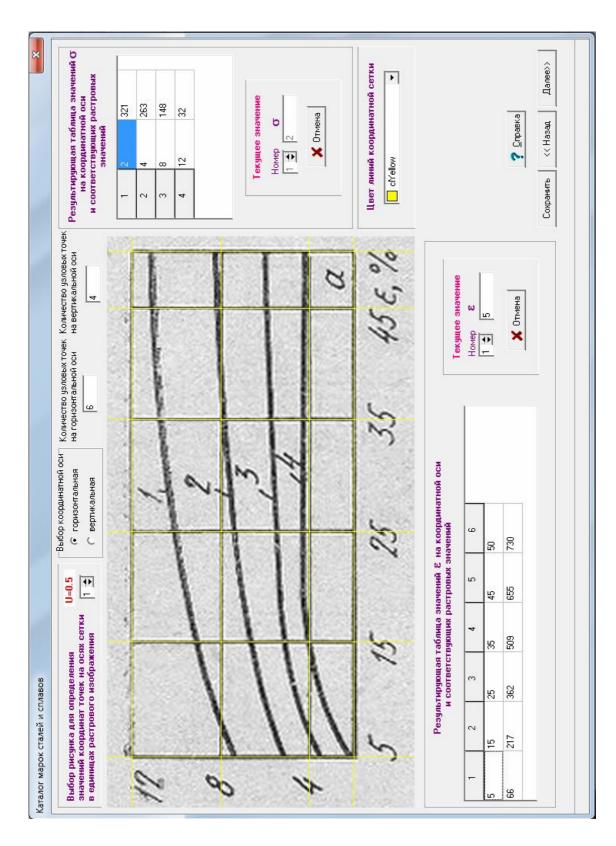


Рис. 2 - Окно построения координатной сетки

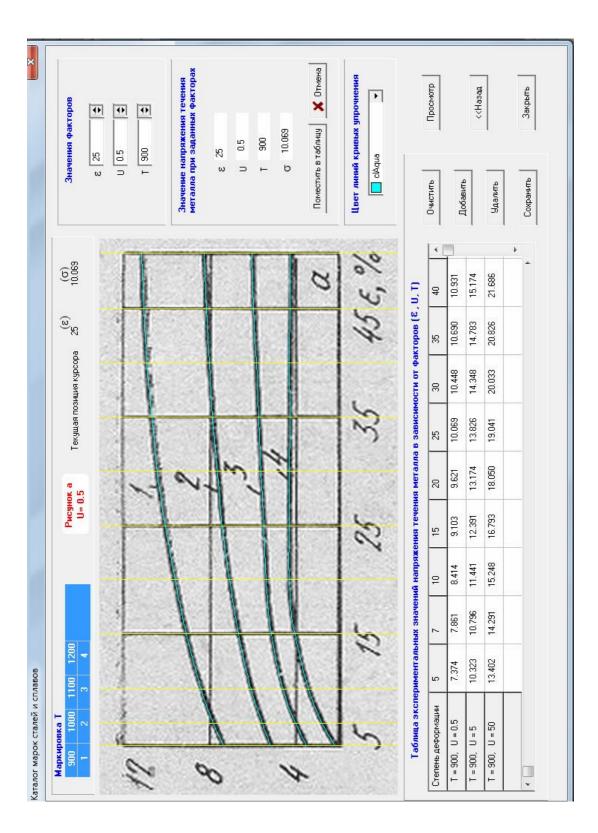
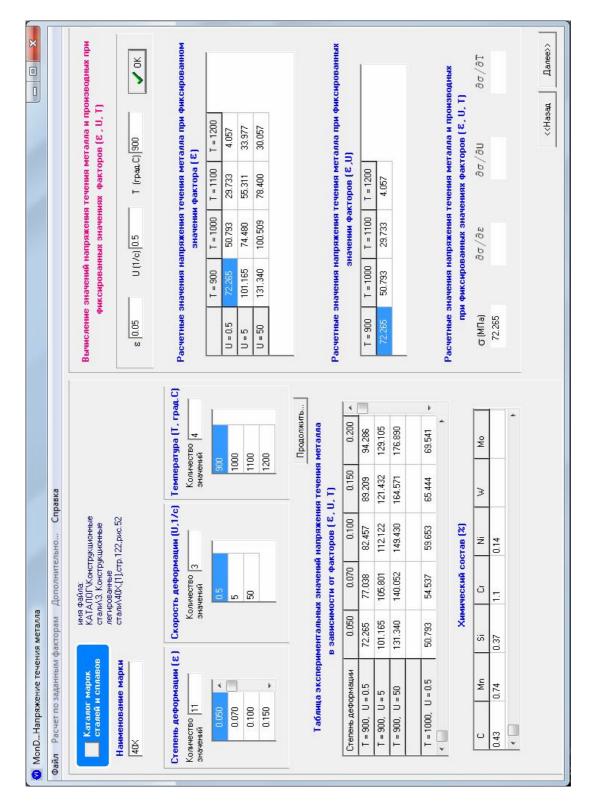



Рис. 3 - Окно снятия экспериментальной информации и контрольного построения сплайн – кривых

Рис. 4 - Окно расчета напряжения течения металла при фиксированных значениях скорости деформации, степени деформации и температуры на основе экспериментальной информации

ISSN 2225-6733

вующих заданным значениям є. Расширив, таким образом, таблицу 1 и уточнив, в случае необходимости, информацию по отдельным точкам, добиваются полного совпадения интерполяционной кривой с исходной.

Рассчитанные в окне (см. рис.3) величины о при текущих значениях є, U, T автоматически передаются в соответствующую таблицу окна на рис. 4. Метод расчета подробно изложен в работе [3].

Таблица 1 Значения величин σ (кгс/мм²) для стали 40X при заданных значениях факторов, полученные в ходе работы программы (информация передана из окна рис.3)

itory remisse a node parotal inforpamina (impopulation inspectation in ordina prices)												
T, °C	U, c-1	ε, %										
		5	7	10	15	20	25	30	35	40	45	50
900	0,5	7,374	7,861	8,414	9,103	9,621	10,069	10,448	10,690	10,931	11,069	11,172
900	5	10,323	10,796	11,441	12,391	13,174	13,826	14,348	14,783	15,174	15,391	15,565
900	50	13,402	14,291	15,248	16,793	18,050	19,041	20,033	20,826	21,686	22,281	23,074
1000	0,5	5,183	5,565	6,087	6,678	7,096	7,443	7,652	7,896	8,034	8,172	8,276
1000	5	7,600	8,086	8,731	9,548	10,237	10,839	11,226	11,613	11,828	12,043	12,130
1000	50	10,256	11,077	12,103	13,470	14,632	15,658	16,331	16,860	17,455	18,050	18,446
1100	0,5	3,034	4,000	4,591	5,148	5,391	5,496	5,635	5,739	5,843	5,983	6,052
1100	5	5,644	5,956	6,533	7,244	7,822	8,301	8,602	8,860	9,032	9,118	9,075
1100	50	8,000	8,547	9,368	10,462	11,214	11,897	12,308	12,855	13,197	13,538	13,812
1200	0,5	0,414	1,586	2,828	4,035	4,313	4,313	4,313	4,278	4,313	4,278	4,278
1200	5	3,467	4,044	4,578	5,244	5,778	6,133	6,444	6,622	6,622	6,711	6,622
1200	50	3,067	4,000	5,067	6,533	7,600	8,342	8,615	8,889	9,026	9,162	9,162

Разработка метода [3] и компьютерных программ, окна которых показаны на рис. 1-4, позволили наиболее точно получить значения о из экспериментальных кривых упрочнения.

Эти значения (см. таблицу 1) далее будем использовать для оценки точности методов расчета напряжения течения металла.

Для выполнения анализа точности методов [1] и [2] потребовалась разработка дополнительных компьютерных программ. Во-первых, были запрограммированы методы Николаева В.А. [1] и Андреюка Л.В. и др [2]. Во-вторых, была разработана программа, которая в автоматизированном режиме формирует план-матрицу планируемого эксперимента для рассматриваемой марки стали. Так как величина о зависит от трех факторов: є, U, T, то применив центральное композиционное ортогональное планирование [4], получили план-матрицу в виде, показанном на рис. 5, 6. Эксперимент спланирован по плану 2-го порядка.

Из базы данных для рассматриваемой марки стали (см. рис. 1-4) в таблицу, расположенную в верхней части окна (см. рис. 5, 6), передаются пределы изменения факторов є, U и Т, имеющиеся в итоговой таблице 1. В этом же окне формируется таблица кодовых и натуральных значений факторов. В соответствии с теорией [4] план-матрица всегда содержит 15 строк для определения величин о при указанных в них значениях факторов є, U и Т. Планируемый эксперимент, включающий 15 расчетов величин о, охватывает всю область изменения факторов є, U и T и определяет наиболее рациональные точки для сопоставления экспериментальных и расчетных значений σ.

На рис 5 и 6 для стали 40X показаны значения напряжения течения металла $\sigma_{\text{эксп}}$, полученные на основе кривых упрочнения, и σ_p , полученные в результате расчета по методам [1] и [2] при одних и тех же значениях факторов є, U и Т. Также найдена относительная погрешность для каждого из 15 расчетов и средняя относительная погрешность по всему планируемому эксперименту для указанной выше стали.

Расчеты, аналогичные тем, что представлены на рис. 5 и 6, выполнены для 27 марок сталей, включая конструкционные, инструментальные и нержавеющие (см. таблицу 2). Установлено, что средняя относительная погрешность метода Николаева В.А. [1] составила 14,5% (мак-

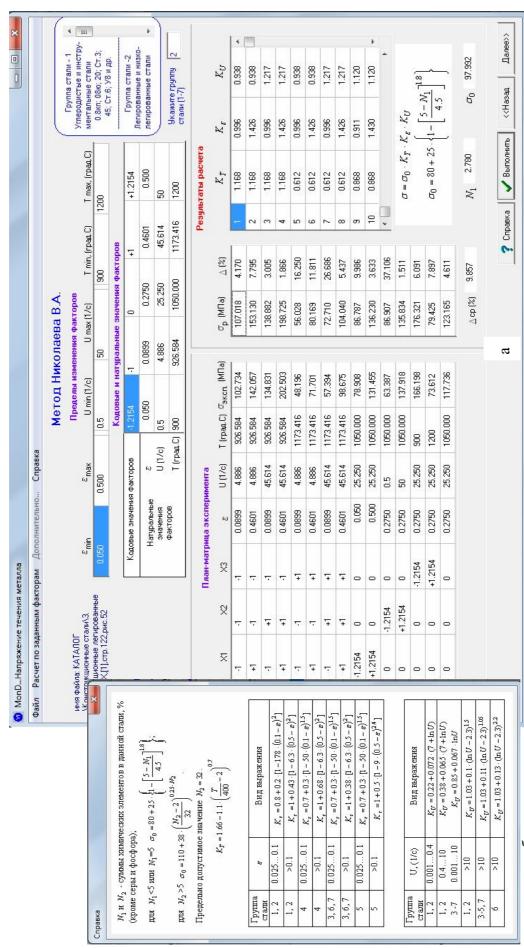


Рис. 5 - Окна программы для выполнения анализа точности метода Николаева В.А: а- план-матрица эксперимента для стали 40X; 6- основные формулы

76

ISSN 2225-6733

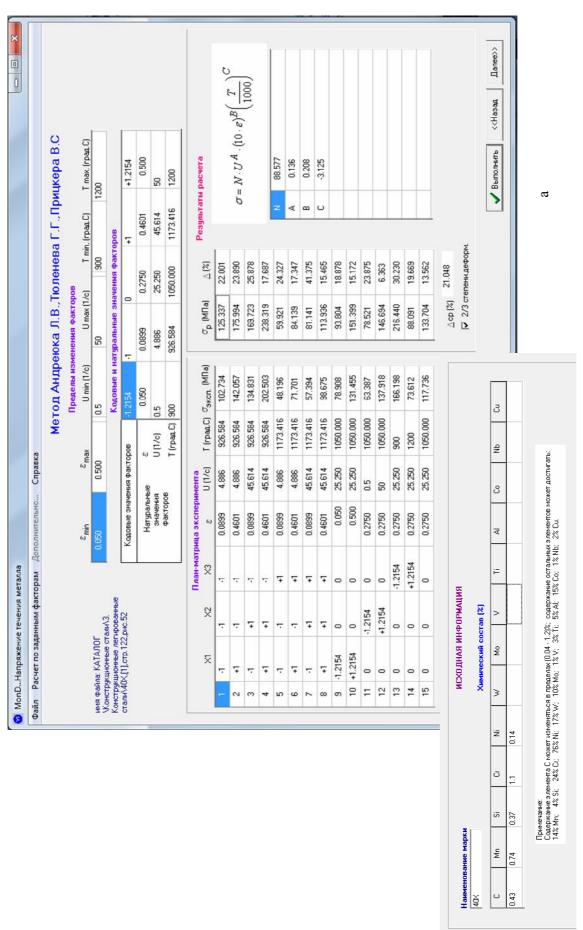


Рис. 6 - Окна программы для выполнения анализа точности метода Андреюка Л. В. и др.: a- план-матрица эксперимента для стали 40Х; 6- фрагмент окна для задания исходной информации

<u>№ 2 (23</u>)

симальная относительная погрешность (для стали P18, см. таблицу 2) равна 32,3%). Средняя относительная погрешность по методу Андреюка Л.В. и др. [2] составила 21,2% (максимальная относительная погрешность (для стали P18, см. таблицу 2) равна 67%). Указанные результаты

Таблица 2 Средняя относительная погрешность при расчете величины σ по методам [1] и [2]

Обозначение марки стали, номер страницы,	Назначение стали		измерения торов	Δcp, %			
номер рисунка в работе [5]		3	U, c ⁻¹	[1]	[2]		
Ст3, стр.101, рис.22	конструкционная обыкновенного качества	0,05-0,5	0,5-50	6,56	4,97		
Сталь 45, стр.105, рис.28	конструкционная нелегированная качественная	0,05-0,5	0,05-150	18,20	18,39		
Сталь 45, стр.105, рис.29	конструкционная нелегированная качественная конструкционная нелеги-	0,05-0,4	0,5-50	5,35	7,83		
Сталь 55, стр.108, рис.37	рованная качественная	0,05-0,5	0,5-50	7,56	4,34		
12ХН3А, стр.146, рис.97	конструкционная легированная	0,05-0,4	0,5-50	12,19	24,95		
14ГН, стр.119, рис.49	конструкционная легированная	0,05-0,5	0,5-50	6,23	13,19		
15СХНД, стр.133, рис.71	конструкционная легированная	0,05-0,5	0,5-50	7,54	10,04		
18ХНВА, стр.137, рис.80	конструкционная легированная	0,05-0,45	0,05-150	14,52	8,90		
40Х, стр.122, рис.52	конструкционная легированная	0,05-0,5	0,5-50	9,86	21,05		
60С2, стр.161, рис.114	конструкционная легированная	0,05-0,5	0,5-50	12,00	12,54		
60С2, стр.161, рис.113	конструкционная легированная	0,05-0,5	0,05-150	9,57	12,45		
ШХ15, стр.163, рис.118	конструкционная подшипниковая	0,05-0,5	0,5-50	7,78	26,87		
У8, стр.156, рис.107	инструментальная нелегированная углеродистая	0,05-0,5	0,5-50	10,05	12,47		
У12А, стр.159, рис.111	инструментальная нелегированная углеродистая	0,05-0,4	0,05-150	11,49	10,94		
Х17Н2, стр.200, рис.164	инструментальная легированная	0,05-0,4	0,5-50	12,52	38,14		
Х12, стр.185, рис.139	инструментальная легированная	0,05-0,4	0,05-150	30,03	21,88		
ХВГ, стр.137, рис.79	инструментальная легированная	0,05-0,5	0,05-150	28,97	22,17		
Р18, стр.168, рис.128	инструментальная быстрорежущая	0,05-0,5	0,05-7,5	32,32	29,89		
Р18, стр.169, рис.130	инструментальная быстрорежущая	0,05-0,5	0,5-50	23,70	66,96		
10Х17Н13М2Т, стр.219, рис.192	нержавеющая	0,05-0,5	0,05-150	13,91	17,70		
10X17H13M2T, crp.221, puc.195	нержавеющая	0,05-0,5	0,5-50	7,96	28,50		
12X13, crp.186, puc.141	нержавеющая	0,05-0,4	0,05-7,5	17,79	22,32		
12X13, стр.187, рис.142 12X18Н9Т, стр.207, рис.177	нержавеющая	0,05-0,5	0,5-50 0,5-50	10,54 3,69	15,74 55,16		
12X18H9T, ctp.207, puc.177 12X18H9T, ctp.211, puc.181	нержавеющая	0,05-0,4	0,05-150	30,01	11,56		
40X13, crp.190, puc.149	нержавеющая нержавеющая	0,05-0,3	0,05-130	11,54	44,75		
40X13, ctp.191, puc.150	нержавеющая	0,05-0,4	0,05-150	29,53	9,39		
40A15, стр. 191, рис. 150 пержавскощая 0,05-0,4 0,05-150 29,55 9,59 Ппеделы изменения темпепатуры по всем маркам сталей- (900 - 1200) °C							

Пределы изменения температуры по всем маркам сталей- (900 - 1200) $^{\circ}$ С

по методу [2] получены с учетом 2/3 є. Следует отметить, что в работе [2], в которой изложен метод Андреюка Л.В. и др., данная рекомендации отсутствует, но она имеется в работе авторов [6], что явилось основанием для ее использования. Установлено, что без учета этой рекомендации средняя относительная погрешность метода [2] составила 26,4%. В процессе выполнения расчетов для рассмотренных марок сталей был определен ряд констант, входящих в расчетные формулы методов [1] и [2], которые представлены в таблице 3.

Константы, входящие в формулы расчета напряжения течения металла σ по методам [1] и [2]

Таблица 3

Константы, входящие в формулы расчета напряжения течения металла σ по методам [1] и [2]									
Обозначение марки	Пределы	измене-	Метод	Метод					
стали, номер страницы,	ния фа	кторов	[1]	[2]					
номер рисунка	3	U, c ⁻¹	σ_0 ,	N	A	В	С		
в работе [5]		0, 0	МПа						
			WITTE						
Ст3, стр.101, рис.22	0,05-0,5	0,5-50	88,353	74,777	0,134	0,186	-2,957		
Сталь 45, стр. 105, рис. 28	0,05-0,5	0,05-150	91,313	75,195	0,148	0,186	-3,369		
Сталь 45, стр. 105, рис. 29	0,05-0,4	0,5-50	88,353	74,691	0,144	0,193	-3,003		
Сталь 55, стр. 108, рис. 37	0,05-0,5	0,5-50	90,460	75,783	0,143	0,199	-2,977		
12ХН3А, стр.146, рис.97	0,05-0,4	0,5-50	104,924	100,273	0,116	0,185	-2,806		
14ГН, стр.119, рис.49	0,05-0,5	0,5-50	98,928	90,933	0,124	0,190	-3,065		
15СХНД, стр.133, рис.71	0,05-0,5	0,5-50	98,274	86,713	0,117	0,185	-2,943		
18ХНВА, стр.137, рис.80	0,05-0,45	0,05-150	111,419	100,720	0,119	0,206	-2,954		
40Х, стр.122, рис.52	0,05-0,5	0,5-50	97,992	88,577	0,136	0,208	-3,125		
60С2, стр.161, рис.114	0,05-0,5	0,5-50	101,825	76,032	0,149	0,207	-3,166		
60С2, стр.161, рис.113	0,05-0,5	0,05-150	100,711	72,959	0,154	0,203	-3,211		
ШХ15, стр.163, рис.118	0,05-0,5	0,5-50	100,050	94,082	0,152	0,202	-3,173		
У8, стр.156, рис.107	0,05-0,5	0,5-50	91,769	77,800	0,150	0,198	-2,992		
У12А, стр.159, рис.111	0,05-0,4	0,05-150	91,542	80,509	0,158	0,173	-2,987		
Х17Н2, стр.200, рис.164	0,05-0,4	0,5-50	112,357	123,742	0,116	0,118	-3,597		
Х12, стр.185, рис.139	0,05-0,4	0,05-150	111,227	140,380	0,148	0,144	-3,711		
ХВГ, стр.137, рис.79	0,05-0,5	0,05-150	104,619	82,604	0,157	0,222	-3,432		
Р18, стр.168, рис128	0,05-0,5	0,05-7,5	114,492	195,135	0,151	0,117	-3,985		
Р18, стр.169, рис.130	0,05-0,5	0,5-50	115,059	210,405	0,122	0,076	-2,409		
10Х17Н13М2Т, стр.219,									
рис.192	0,05-0,5	0,05-150	158,669	179,823	0,103	0,107	-3,140		
10Х17Н13М2Т, стр.221,									
рис.195	0,05-0,5	0,5-50	139,018	168,776	0,097	0,090	-2,716		
12Х13, стр.186, рис.141	0,05-0,4	0,05-7,5	111,212	126,520	0,116	0,161	-3,681		
12Х13, стр.187, рис.142	0,05-0,5	0,5-50	111,389	126,110	0,110	0,162	-3,657		
12Х18Н9Т, стр.207, рис.177	0,05-0,4	0,5-50	123,604	179,336	0,078	0,142	-3,226		
12Х18Н9Т, стр.211, рис.181	0,05-0,5	0,05-150	127,422	185,080	0,066	0,121	-3,344		
40Х13, стр.190, рис.149	0,05-0,4	0,5-50	111,214	124,682	0,127	0,178	-3,713		
40Х13, стр.191, рис.150	0,05-0,4	0,05-150	111,253	126,592	0,127	0,180	-3,720		

Выводы

Разработка компьютерной программы, окна которой представлены на рис. 1-4, позволила, используя имеющуюся экспериментальную графическую информацию по кривым упрочнения, реализовать метод [3] расчета напряжения течения металла в зависимости от текущих значений факторов є, U и T.

На базе теории планируемого эксперимента выполнен научно обоснованный анализ точности известных методов расчета напряжения течения металла.

Разработка компьютерной программы, окна которой представлены на рис. 5-6, позволила выполнить оценку точности методов Николаева В.А. [1] и Андреюка Л.В. и др. [2] для 27 конструкционных, инструментальных и нержавеющих сталей, экспериментальная информация для которых предоставлена в работе [5]. Средняя относительная погрешность по методу Николаева В.А. [1] равна 14.5%, по методу Андреюка Л.В. и др. [2] - 21,2%.

По указанной группе из 27 марок сталей получены константы, входящие в расчетные формулы методов Николаева В.А. [1] и Андреюка Л.В. и др. [2] .

ВІСНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ

2011 р. Серія: Технічні науки № 2 (23) ISSN 2225-6733

Список использованных источников:

- 1. Николаев В.А. Теория прокатки: Монография. Запорожье: Издательство Запорожской государственной инженерной академии, 2007. 228с.
- 2. Андреюк Л.В. Аналитическая зависимость сопротивления деформации сталей и сплавов от их химического состава / Л.В. Андреюк, Г.Г. Тюленев, Б.С. Прицкер // Сталь. 1972. № 6. С. 522-523.
- 3. Яковченко А.В. Определение напряжения течения металла с учетом истории процесса нагружения на основе уравнения А.Надаи / А.В.Яковченко, Н.И.Ивлева, А.А. Пугач //Наук. пр. ДонНТУ, сер.Металургія. Донецьк: ДонНТУ, 2010. Вип.. 12(177).- С.181-193.
- 4. Винарский М.С. Планирование эксперимента в технологических исследованиях : учеб. пособие / М.С. Винарский, М.В Лурье. К.: Техника, 1975. 168 с.
- 5. Полухин П.И. Сопротивление пластической деформации металлов и сплавов: Справочник / П.И. Полухин, Г.Я. Гун, А.М. Галкин. М.: Металлургия, 1983. -352c.
- 6. Андреюк Л.В. Аналитическая зависимость сопротивления деформации металла от температуры, скорости и степени деформации/Л.В. Андреюк, Г.Г. Тюленев //Сталь. -1972. №6. С. 825-828.

Bibliography:

- 1. Nikolaev V.A. Theory of rolling: Monograph. Zaporozhia: Publishing house of the Zaporozhia state engineering academy, 2007. 228p. (Rus.)
- 2. Andreyuk L.V. Analytical dependence of resistance deformation of steels and alloys on their chemical composition / L.V. Andreyuk, G.G. Tyulenev, B.S. Pricker // Steel. 1972. №6. p. 522, 523. (Rus.)
- 3. Yakovchenko A.V. Determination of tension of flow of metal taking into account history of process of ladening on the basis of equalization of A.Nadai / A.V.Yakovchenko, N.I.Ivleva, A.A.Pugach //DONNTU Donetsk: DONNTU, 2010. 12(177) P.181-193. (Rus.)
- 4. Vinarskiy M.S. Planning of experiment in technological researches: studies. manual / M.S. Vinarskiy, M.V Lur'e. K.: of Technician, 1975. 168p. (Rus.)
- 5. Polukhin P.I. Resistance the flowage of metals and alloys: Reference book / P.I. Polukhin, G.Y. Gun, A.M. Galkin. M.: Metallurgy, 1983. -352p. (Rus.)
- 6. Andreyuk L.V. Analytical dependence of resistance deformation of metal on a temperature, speed and degree of deformation/L.V. Andreyuk, G.G. Tyulenev //Steel. 1972. №6. P. 825-828. (Rus.)

Рецензент: Е.Н. Смирнов

д-р техн. наук, проф., ГВУЗ «ДонНТУ» Статья поступила 30.11.2011

УДК 621.7-97: 621.771.016: 621.771.23

©Сердюк И.А.¹, Хаджинов А.С.², Дворников С.Г³., Холодный А.А.⁴, Присяжный А.Г.⁵

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА ТЕМПЕРАТУРЫ РАСКАТА В ПРОЦЕССЕ ГОРЯЧЕЙ ЛИСТОВОЙ ПРОКАТКИ МЕТОДОМ КРИТЕРИАЛЬНЫХ УРАВНЕНИЙ

В статье на основе классических уравнений, описывающих процессы теплообмена, предложена математическая модель расчета среднемассовой температуры металла при горячей листовой прокатке, учитывающая все основные статьи теплового баланса и в достаточной степени соответствующая экспериментальным данным.

Ключевые слова: тепловой поток, температура раската, излучение, конвекция, пленочное кипение, работа деформации.

 1 канд. техн. наук, доцент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь

 2 канд. техн. наук, доцент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь

³студент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь

 4 студент, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь

 $^{^{5}}$ старший преподаватель, ГВУЗ «Приазовский государственный технический университет», г. Мариуполь