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A B S T R A C T 

 

The presented work is to develop a numerical computation program to determine the 
geometrical characteristics of arbitrary simply connected planar sections and 
applications to airfoils. In the literature, there are exact analytical solutions only for 
some simples’ geometries, such as circular, rectangular and elliptical sections. 
Hence our interest is focused on the search of approximate numerical solutions for 
more complex sections used in aeronautics. The used method is to subdivide the 
section in the infinitesimal triangular sections with a single observer within the area 
having a suitable position. The characteristics of any triangle, given by the positions 
of these three nodes are known in the literature. Using the principle of compound 
surfaces, one can determine the geometric characteristics of the airfoil surface. The 
analytic function of the airfoil boundary is obtained by using the cubic spline 
interpolation because the airfoil is given in the form of tabulated points. Error 
estimation is done to determine the accuracy of the numerical computation. 

1 Introduction 

The geometric characteristics of a section, in particular for geometry of an airfoil play a very important role for the 
calculation of strength of materials or elasticity for example. By external stress applied, the calculation of the stress 
distribution is related to the knowledge of the geometric characteristics of the section of the structure [1], [2] and [3]. Such 
buckling beams occur about the axis having the moment of inertia as small as possible. So the critical buckling force is 
related to the small value of the moment of inertia. Hence our interest is directed towards the calculation of moment of 
inertia Imin. In addition, the second example is the phenomenon of torque. So, the torsional stress is related to the knowledge 
of the value of polar moment of inertia IP. In the general case of circular cross-sections are used. But for a plane, most of 
the structures are non-circular [4]. Hence our interest is also aimed for calculating the polar inertia moment of airfoils. 
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Another important phenomenon is the determination of the distribution of the bending stress that is simple or deflected. 
This constraint is related to the both inertia moments along the two axes of applications of bending moment and the product 
of inertia of the considered section. The calculation of these moments of inertia must be done to respect to axes through the 
center of gravity of the section. So in this case it is necessary to determine the position of the center of gravity of the 
section relative to the mark definition of the field. 

This study is then to produce a program for numerical computation of geometrical properties of plane simply connected 
complex sections and make the application to airfoils using the principle of the discretization of the domain into triangular 
elements with one observer inside the area, provided that all nodes of the domain boundary is visible by the internal point 
(observer). The triangles are defined by the positions of these three nodes [5]. Two nodes are on the boundary and the third 
one is that the internal point. The geometric characteristics of any triangle are known [5], [6], [7], [8] and [9]. Using the 
principle of the composite surface, it may determine the geometric characteristics of this surface. As the number of triangle 
is very important, the calculation becomes numerical. The accuracy of the calculation depends on the discretization. More 
the number of triangles is high, more we have a good accuracy. Generally, the boundary of the airfoil is given in the form 
of tabulated points [4]. Then the points must be interpolated to determine an analytical form of the geometry. The choice is 
the cubic spline interpolation [10] and [11]. This is a very good interpolation. It keeps the curvature of the airfoil at the 
leading edge. Our application is limited for airfoils used in subsonic and transonic regime of flight. 

2 Geometric characteristics of a triangle 

The triangular element is presented by the boundary nodes as presented in figure 1. The coordinates of nodes 1, 2, 3 are 
known in relation to any reference xoy. 

The geometric characteristics A, xG, yG, Sx, Sy, Ix, Iy and Ixy can be determined by the following integral with m=0, 1, 2 
and n=0, 1, 2 [5], [7], [8] and [9] : 

 ∫∆= dydxyx nm
mnI   (m=0, 1, 2) (n=0, 1, 2)  (1) 

Then A=I00, Sx=I01, Sy=I10, Ixx=I02, Iyy=I20 and Ixy=I11. Using these relations, we can calculate the geometric 
characteristics and the position xG, yG  of the center of gravity of a triangular surface with respect to any axis as follows. 
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The numbering of the nodes must be made in the counterclockwise direction. 
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 Fig. 1 - Triangular element with three-nodes. 

3 Mesh Generation 

It should be noted that the geometry of the airfoil is given in the form of tabulated values [4]. So we used the cubic 
spline interpolation to find an analytical equation for the upper and lower surface. The number of points selected for the 
mesh generation is different from that given for the definition of the geometry of the airfoil. We are interested in simply 
connected domains with a single observer. 

3.1  Stretching function 

Due to the curvature of the boundary, it is sometimes useful to condense the nodes into a well specified to have a good 
presentation of the boundary, especially at the leading edge of the airfoil for subsonic wings region. 

If the stretching function is applied to the EA side (see Figure 2), for example the airfoil chord, standardized 
independent variable is given by: 

 AE

A*

ηη
ηηη
−
−

=  (10) 

with :  EA
* ηη  η  η ≤≤≤≤  and 10  

where :   η represents x 

The stretching function used is given by [5] and [12] : 
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Once the value of s is obtained, it is required to specify the distribution of x. For example 

 )( EAA xxs xx −+=   (12) 

For values of P> 1.0, it is possible to condense the nodes to point A. 

Typical distributions of points on the EA segment for different values of P and Q, are shown in the following figure 2: 

 

 

 
 

 

 
 

Fig. 2- Distribution of nodes according to equation (12) 
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Obtained for the ordinate of the considered point on the boundary, it is sufficient to use the analytic function of the 
upper or lower surface. 

3.2 Internal Mesh 

The resulting mesh is formed by triangular cells, two nodes of each triangle are on the boundary of the airfoil and the 
third node is located in the inner surface of the airfoil. The internal point is common to all the triangles formed in the 
domain. The position of internal node must be chosen so that it is visible to all nodes of the boundary. If for example the 
node is not visible to some points of the boundary, we must in this case to change the position of the internal node as the 
first solution, or to divide the area of airfoil by several blocks. For each block we must choose the internal point so that it is 
visible to all nodes in the block. For our chosen geometry of airfoils, the resolution of this problem is by changing the 
internal point; see Figure 3, 4, 5, 6 and 7. 

3.3 Connecting triangles in a mesh 

The numbering of the nodes of the mesh starts with the trailing edge counter clockwise. Then the internal point is 
appointed by the point P outside dialling. If the number of points on the boundary is NN, then the total number of points is 
one NN+1. Therefore the number of treated triangle is equal to NT = NN. 

The problem is to assemble these triangles to get the result for the entire domain. To get results, we must have to know 
the numbers of nodes of each triangle, see Figure 1. For the triangle number (i) (i = 1, 2, 3, ..., NT), the nodes N1 and N2 
respectively takes the values i and i +1. For the last triangle, the number of node N2 = 1 (closure of the boundary). For this 
triangle, one side is on the lower side with a node that is the trailing edge. 

4 Geometric characteristics of the composite section (Airfoil) 

Surface area has been divided into small triangular elements. Then, the calculation of geometrical characteristics for 
the entire domain is approximated by the sum of all the geometric characteristics of triangles constituting the field. So we 
can write: 
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The center of gravity of this section is given by the equations (5) and (6). 

The terms under the summation sign in the relations (13), (14), (15), (16), (17) and (18) are given by the relations in a 
triangle, presented by the relations (2), (5), (6), (7), (8) and (9). 

The geometric characteristics of the entire section from the central axis can be determined by using the Hugues 
theorem (parallel axis theorem) [1], [2] and [3]. So we have: 
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The polar moment of inertia of the entire section can be calculated by the following equation [5]. Then: 

 
''
yxP III +=   (22) 

Can be determined as a result, the two values of principal moments of inertia and the principal directions by simple 
relationships known in the literature [1], [2] and [3]. The key to these results is the central inertia moment given by the 
relations (19), (20) and (21). 

To justify the accuracy of the obtained results, it is recommended to calculate the error of the numerical calculation and 
accurate results. The exact solution for the airfoils results do not exist. We can choose a simple section, like half circle, and 
discretize it with the same approach presented and see the convergence of the solution in terms of number of nodes. All this 
must be done by the same developed numerical calculation program. Then, for each parameter A, xG, yG, Ix’, Iy’, Ixy’, the 
value of the relative error may be computed by the following formula: 
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5 Results and comments 

In Figures 3, 4, 5, 6 and 7 were taken the following parameters P=1.90, Q=2.00 for the extrados and P=0.01, Q=2.00 
for intrados. Note that the numbering of the nodes on the upper surface begins from the trailing edge to the leading edge 
whereas for the lower surface, the numbering of nodes starts from the leading edge to the trailing edge. The mesh is made 
so that there is condensation of nodes to the edge for rounding the bend. This procedure is especially important for subsonic 
and transonic airfoils. 

 

Fig. 3 - Triangular mesh on the surface of a wing airfoil with NT=10. 

 

Fig. 4 - Triangular mesh on the surface of a wing airfoil with NT=50. 

 

 

 

Fig. 5 - Triangular mesh on the surface of a wing airfoil with NT=100. 
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Fig. 6 - Triangular mesh on the surface of a wing airfoil with NT=300. 

 

Fig. 7 - Triangular mesh on the surface of a wing airfoil with NT=600. 

For example, for the following figure 8, the inside point P is not visible in the last two segments of the lower surface 
adjacent to the trailing edge, while this configuration is no longer valid for the calculation of geometric characteristics. 

 

 

Fig. 8 - Position of internal point where it is no longer visible to the last segment of the lower surface. 

In Figures 3, 4, 5, 6 and 7, the scale is not chosen orthonormal in order to see the distribution of nodes on the boundary. 
The airfoil selected from these figures is that the non-symmetrical NACA 63-412 with camber. The points defining the 

geometry are shown in Table 1. Note that this airfoil is presented by 26 points on each side. The data points in the airfoil 
presented in Table 3 can be found in references [4]. The points of the table 1 are used to determine the analytical function 
of the extrados and the intrados of using cubic spline interpolation. 

Table 1 – Definition of the NACA 63-412 airfoil surface 

Upper surface in (%) of C  Lower surface in (%) of C 

 x/C (%) y/C (%)  x/C (%) y/C (%)   x/C (%) y/C (%)  x/C (%) y/C (%) 

1 0.000 0.000 14 39.924 8.062  1 0.000 0.000 14 40.076 -3.778 
2 0.336 1.071 15 44.964 7.894  2 0.664 -0.871 15 45.035 -3.514 
3 0.567 1.320 16 50.000 7.567  3 0.933 -1.040 16 50.000 -3.164 
4 1.041 1.719 17 55.031 7.125  4 1.459 -1.291 17 54.969 -2.745 
5 2.257 2.460 18 60.057 6.562  5 2.743 -1.716 18 59.943 -2.278 
6 4.727 3.544 19 5.076 5.899  6 5.273 -2.280 19 64.924 -1.799 
7 7.218 4.379 20 70.087 5.153  7 7.782 -2.685 20 69.913 -1.265 
8 9.718 5.063 21 75.089 4.344  8 10.282 -2.995 21 74.911 -0.764 
9 14.735 6.138 22 80.084 3.492  9 15.265 -3.446 22 79.916 -0.308 

10 19.765 6.929 23 85.070 2.618  10 20.235 -3.745 23 84.930 0.074 
11 24.800 7.499 24 90.049 1.739  11 25.200 -3.919 24 89.951 0.329 
12 29.840 7.872 25 95.023 0.881  12 30.160 -3.984 25 94.977 0.330 
13 34.882 8.059 26 100.000 0.000  13 35.111 -3.939 26 100.000 0.000 
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The second problem is to justify the convergence of the numerical results to the exact solution. Taking the example of a 

half-circle of radius R=1.00 placed at the origin of coordinates. It is only interested in the convergence of values A, yG,  
Ix’, Iy’ and Ixy’ since they depend on the discretization. In that case xG=0.0 and Ixy’=0.00 for reasons of symmetry. We 
can deduce the other parameters such as Imax and Imin and the orientation of the principal axes of inertia, through the 
application of analytical relationships [1], [2] and [3]. Results on the cross-sectional area are normalized by the square of 
the value of the section chord. About the center of gravity, it is normalized by the chord of the airfoil. For the moments of 
inertia, the results are normalized by C4. The search results are presented in Table 2. 

Table 2 - Effect of discretization on the convergence 

NT A/C2 yG/C Ix’/C4 Iy’/C4 

10 1.366025 0.410683 0.095860 0.273424 
50 1.556667 0.425612 0.108811 0.380670 

100 1.565860 0.425038 0.109356 0.388254 
200 1.569144 0.424676 0.109594 0.391161 
500 1.570370 0.424495 0.109706 0.392290 

1000 1.570705 0.424431 0.109745 0.392612 
3000 1.570793 0.424414 0.109755 0.392696 
7000 1.570802 0.424413 0.109756 0.392704 

 
We note from the table 2, the cross-sectional area converges to the exact section before the convergence of yG then Ix' 

and Iy'. To have an accuracy of ε=10-6, it takes about a discretization of 7000 points for this section. 

 

 

Fig. 9 - Relative error parameters A, yG, Ix’ and Iy’ according to the number of points of the boundary 

The figure 9 shows the relative error on the parameters A, yG, Ix' and Iy' according to the number of points on the 
domain boundary. Note that the convergence is made of monotonically way. We still notice that the value of yG converge 
first then the cross-sectional area, moment of inertia then central Ix' and ending the central inertia Iy'. 

The values in tables 3, 4 and 5 are obtained for a discretization of 7000 points on the domain boundary.  

According to table 5, we see that the moment of inertia Ix’ is much lower than the moment of inertia Iy', because the 
size of the airfoil thickness is much smaller than the chord of the airfoil. 

Determining the centroid position is made relative to the reference of the definition section. This marker is associated 
with the leading edge of the section (airfoil). 

The airfoils selected in this publication regarding all airlines. It took 32 airfoils as this table 3 shows them. 
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Table 3 - Area of several airfoils geometries 

N° Airfoil A/C2 N° Airfoil A/C2 

1 NACA0012 0.082055 17 NACA M1 0.043951 
2 NACA 63-412 0.075572 18 ONERA OA209 0.063816 
3 RAE 2822 0.077874 19 OAF 128 0.077549 
4 NACA 0010-34 0.070332 20 ONERA NACA CAMBRE 0.078835 

5 NACA 62 0.079999 21 
NASA LANGLEY  
RC-08 B3 

0.058713 

6 RAF 30 0.084460 22 NASA LANGLEY RC-08 N1 0.052830 
7 E-385 0.052908 23 TRAINER 60 0.117166 
8 NACA 23009 0.061020 24 TSAGI 8% 0.055092 
9 NACA 2412 0.081935 25 TSAGI 12% 0.082490 

10 NASA AMES A-01 0.073867 26 EPPLER 520 0.096675 
11 AQUILA 9.3% 0.062041 27 EPPLER 635 0.076116 

12 AVISTAR 0.098823 28 
LOCKHEED  
L-188 ROOT 

0.096874 

13 CHEN 0.080130 29 NACA 63-415 0.093841 
14 FAUVEL 14% 0.088348 30 NACA 63-210 0.063168 
15 EIFFEL 385 0.085813 31 NACA 64-108 0.050974 
16 WORTMANN FX 2 0.135732 32 NASA LANGLEY 64-012 0.075871 

 

Table 4 - Position of centroid for various airfoils. 

N° xG /C yG/C N° xG /C yG/C 

1 0.420140 0.000000 17 0.435090 0.000000 
2 0.408059 0.018247 18 0.422121 0.010153 
3 0.423024 0.004443 19 0.380560 0.007638 
4 0.456492 0.010800 20 0.424568 0.009142 
5 0.424989 0.000000 21 0.448388 0.007719 
6 0.417490 0.000000 22 0.429594 0.011036 
7 0.395866 0.065633 23 0.402856 0.001122 
8 0.416665 0.012368 24 0.434106 0.008528 
9 0.420004 0.015671 25 0.434231 0.012695 
10 0.427888 0.010394 26 0.411404 0.000000 
11 0.412244 0.031870 27 0.412580 0.015713 
12 0.431799 0.016442 28 0.433125 0.015941 
13 0.406882 0.047129 29 0.406008 0.018335 
14 0.391245 0.013107 30 0.409342 0.009139 
15 0.396116 0.063444 31 0.417749 0.004563 
16 0.448082 0.025545 32 0.415146 0.000000 
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Airfoils that have yG=0.0 mean that this airfoil is symmetrical. In this case the product of inertia Ixy'=0.0. These 
results are found for the airfoil number 1 (NACA 0012), number 5 (NACA 62), number (RAF 30) and number 17 (NACA 
M1) from Table 3. 

To study the phenomenon of tension and compression of the blades of compressors and turbines, we are interested to 
know the area of the section as presented Table 3. 

The results presented in table 5 are very interesting to study the bending the blades of compressors and turbines and 
other possible configurations. The polar moment of inertia is aimed to study the phenomenon of torsion of wing airfoil. 

Table 5 - Central moments and the polar moment of inertia for different airfoils. 

N° Ix’/C4  ×104
 Iy’/C4 ×102 Ixy’/C4 ×104 IP/C4 ×102 

1 0.680850 0.449961 0.000000 0.456769 
2 0.626664 0.356460 0.333899 0.362727 
3 0.656618 0.381017 0.734876 0.387583 
4 0.419910 0.381014 0.091848 0.385213 
5 0.658346 0.426943 0.000000 0.433526 
6 0.776864 0.442631 0.000000 0.450399 
7 0.293604 0.256252 0.419879 0.259188 
8 0.298304 0.328142 -0.532930 0.331125 
9 0.698550 0.446935 0.075475 0.453920 

10 0.485877 0.415784 -0.473303 0.420643 
11 0.362594 0.323438 -0.483433 0.327064 
12 1.213518 0.538859 -0.189258 0.550994 
13 1.073318 0.467305 -2.989970 0.478039 
14 1.063061 0.453687 -1.845268 0.464318 
15 1.003570 0.457915 -1.491523 0.467951 
16 3.391618 0.664142 1.998717 0.698059 
17 0.098507 0.251254 0.000000 0.252239 
18 0.328390 0.343620 -0.512950 0.346904 
19 0.683397 0.398350 0.093947 0.405183 
20 0.608441 0.432101 -0.551573 0.438186 
21 0.235030 0.335478 -0.260739 0.337829 
22 0.203703 0.270996 -0.429491 0.273033 
23 2.165327 0.618330 -0.163497 0.639983 
24 0.214209 0.299568 -0.365493 0.301710 
25 0.717247 0.449155 -0.819278 0.456327 
26 1.271488 2.093213 0.000000 0.469655 
27 0.668562 0.405830 -1.731414 0.412515 
28 1.126240 0.521983 0.323426 0.533246 
29 1.202264 0.438758 0.408098 0.450780 
30 0.358821 0.299137 0.146401 0.302725 
31 0.183599 0.244406 0.054539 0.246242 
32 0.610931 0.360474 0.000000 0.366583 
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6 Conclusion 
 
This work allows us to determine the geometrical characteristics of simply connected complex sections used in 

aeronautics for the study of problems of elasticity. The discretization is made with triangular cells. One point is chosen in 
the inner area. The problems of elasticity as traction, simple bending or deflected, buckling and twisting can be studied if 
we know the geometric characteristics of the studied sections. All considered wings airfoil are presented in tabulated 
values. Since, cubic spline interpolation is used in this case to obtain an analytic function for the upper and lower surface. 
The airfoils studied involving only the field of incompressible and compressible subsonic and transonic area. The 
discretization of the domain can be done with any number of triangles. Application is made for a discretization of 7000 
triangles. Condensation nodes to the leading edge of the airfoil are used to refine the points to the edge having the large 
curvature in this region. The central moment of inertia Iy' is much less than Ix' having the dimension of the airfoil thickness 
(vertical axis) is less than the chord of the airfoil (dimension along the horizontal axis). 
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Appendix A. Nomenclature 

(xj , yj) Coordinates of a node 
NT Number of triangles in the domain 
NN Number of nodes on the boundary 
I20, I02 Moments of inertia of a triangle 
I10, I01 Static inertia of a triangle 
I11 Product of inertia of a triangle 
A, I00 Surface area of a triangle and the airfoil 
xG , yG Centred coordinates 
IP Polar moment of inertia 
η* Normalized variable 
P , Q Parameters for the control of mesh points (Function of condensation) 
C Chord of an airfoil 
Ix’, Iy’ Central moments of inertia 
Ixy’ Central product inertia 
P Internal point of the airfoil 
Ε Tolerance 
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