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A B S T R A C T 

In model updating procedures, the experimental data provide information for a 
configuration error modelling. The selection of the measurement DOFs in the 
experimental frequency response function should make the updating procedure as 
capable as possible of detecting configuration mismodelling in the initial model. The 
selection of the measurement DOFs should be sensitive to the effects of the possible 
configuration mismodelling in the model. For the model updating procedure, the 
experimental data should be measured in such a way that the modified model resulting 
from the updating procedure is the most likely to be reckoned as an updated model. This 
paper proposes a technique for selecting measurement points that should provide the 
best structural information for updating. The selected measurement points would define 
the defects that can be detected. The proposed method is based on the derivative of the 
frequency response function which materializes the participation of each element on the 
variation of the measured frequency response.  

1 Introduction 

Several model updating methods currently exist; these often work well when the distance between the analytical model 
and the experimental structure is not very large.  Nevertheless, their robustness depends on their sensitivity to noise and the 
number and location of exploited measurements. Indeed, this matter of sensors placement is of a paramount importance as 
one cannot measure all degrees of freedom; in practice, some DOFs are not accessible and often the number of DOFs of the 
structure is by far higher than the number of sensors that are usually used in the laboratory. Also, if the number of 
measurement points is insufficient or badly distributed, the updating process may be impossible. The effect of limited 
degrees of freedom is a parameter which should be considered [1]). 

The question that still arises today in the field of model updating and structural damage detection is how to choose 
measurement points and their corresponding degrees of freedom to better update structural model. This is the objective we 
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attempt to attain in the proposed procedure in the frequency domain. The main idea is to avoid measuring at degrees of 
freedom that would give the same information appreciably.   

Many authors have contributed on this subject. Among all the procedures we may find in the literature, we will 
describe in the following just the fundamental procedures ones.   

Kammer [2], presents a method called Effective Independence (EfI) to place a small number of sensors for modal 
identification of large space structure; this method is also used by Yao et al. [3] for comparison with genetic algorithm 
method (GA) to conclude that the sensor location obtained by GA correspond to larger fitness than the sensor locations 
estimated by the EfI method. To overcome the problem of selecting the measurement DOFs with low response, Imamovic 
[4] proposed a modified method, called the Average Driving DOF - Effective Independence (ADDOF-EI) method for 
selecting as few measurement DOFs as possible to identify the measured modes as linearly independent as possible. This 
algorithm does not differ very much from the algorithm of the basic EfI method. Reynier and Abou-Kandil [5] proposed 
two methods : the first one is based on minimisation of noise effect in least squares sense and the second one is based on 
the observability gramian, knowing that the smallest eigenvalues of the observability gramian represents the poorest case of 
information. Xia and Hao [6] introduced a new concept of damage measurability in terms of two sensitivity factors, namely 
the sensitivity of a residual vector to the structural damage, and the sensitivity of the damage to the measurement noise. He 
et al. [7] proposed a statistical method named tolerance domain, combined with modal independence method. Trendafilova 
[8],[9] used mutual information to find the optimal distance between measurement points so that no information is lost nor 
information is doubled; this method is a technique for determining a measurement point configuration based on the optimal 
distance between the sensors. The technique used by Skelton and Li [10], called economic design ED, minimizes the total 
required precision while satisfying the system performance constraints. The majority of these methods are applied in the 
modal domain and are all compared to the EfI technique which remains the reference method.  

The technique of sensor placement proposed in this paper is for frequency domain updating method. 

Based on a predefined number of sensors, the proposed method is a technique of measurement points selection which 
should provide the information of the structure that is sensitive to the updating parameters Asma and Bouazzouni [11]. 

2 Updating Method 

The choice of the measurement points for updating finite element model depends mainly on the mathematical form of 
the updating method used. The one we consider here may be based on either modal data or frequency response 
measurement. The proposed sensors placement strategy is intended for frequency responses measurements (FRF) based 
updating methods. This family of methods employs the measured FRF data and optimizes an objective function which is a 
difference between the initial values and those to be determined.  

The updating procedure used here consists of a least squares frequency domain minimization procedure [12], which 
uses the following output error: 
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where [E] is the matrix containing columns of errors e(ω), Euclidean difference between measured and analytical 
response vectors respectively {y (ω)}(s) and {y(ω)} of any frequency ωt. 

 {e(ωt)}={y(ωt)}-{y(ωt)}(s) (2) 

Assuming the well known parameterization of the structure, the global mass and stiffness matrices are expanded into a 
linear sum of submatrices such as: 

 [ ] [ ]∑
=

=
Ne

i

e
ii MmM

1

)(  and [ ] [ ]∑
=

=
Ne

i

e
ii KkK

1

)(  (3) 



24 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 1 (2014) 22–31 

 

where [M]i
(e)  and [K]i

(e)  are the mass and the stiffness elementary matrices of the ith  element expanded to the 
dimension of the global structure.  

mi, ki are the unknown mass and stiffness correction parameters of ith element; the case where mi = ki = 1 corresponds 
to well modelised ith element.    

The damping matrix is assumed to be proportional to the mass and stiffness matrices: [B] = α[M]+ β[K].  

The solutions of the optimization method are given by: 

 0=
∂
∂

im
δ

 and  0=
∂
∂

ik
δ  (i=1...,Ne) (4) 

This led to a system with 2Ne unknowns with 2Ne equations. 
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The Newton-Raphson resolution leads to an iterative system of the form: 
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where p (0) is the initial estimation and J is the Jacobian matrix.   

•(v) representing the iteration step v. 

Before minimizing the cost functions (1), a frequency parameterization is used in order to assign analytical frequency 
values to the chosen experimental frequency ones. We use a frequency parameterization presented in [13] which minimizes 
the error vector (2). This leads to: 

 {e(ωt)}= {e(ωAt,ωXt)}={y(ωAt)}-{y(ωXt)}(s) 
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Knowing that Xtω is the frequency at which the measurement is taken and Atω  is the corresponding analytical one. 

As the unmeasured degrees of freedom are replaced by their analytical counterparts in (2), this is thus a reduction 
technique. The efficiency of the method depends on the number and the positioning of the measurements points and 
experimental noise. The number and location of the measurement points must be chosen so that the measured response 
functions are sensitive to the type and location of structure’s errors.  

The choice of the parameters to be updated is an important task when updating models of complex structures. While 
choosing too many parameters increases the computing time, working with a small number of parameters limits updating 
possibility and may not help find an optimal solution. The way to come about this problem of selecting the optimal 
parameters is to carry out a sensitivity analysis. 

3 Choice of the measurement points 

Let us consider a structure with n degrees of freedom whose linear dynamic behaviour in the frequency measurement 
band ωi∈{ω1, ω2  .., ωs }, “s” is the number of working frequencies is described by the equations of motions. 
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where [M], [K] and [B] are respectively n×n mass, stiffness and damping matrices.  
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ni ffff ,,,)( 21 =ω  is the input vector. ωi is the 

frequency measurement with ωi∈{ω1, ω2  .., ωs },  “s” is the number of excitation frequencies. 

Let “r” be the number of sensors to be optimized. If initially all DOFs are assumed to be measured, we will thus have a 
matrix Y constituted by the columns y(ωi) 
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Let us then calculate
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ip
Y

∂
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; this matrix represents the influence on measurements [Y] of either mass (pi=mi) or stiffness 

(pi=ki) modelling defect of the ith element. The sensitivity matrix should be capable of taking into account the effects on 
dynamic behaviour of the structure induced by a unit variation of the updating parameters [1]. In our case, consider the 
information matrix I defined by Asma and Bouazzouni [11]: 
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where ( )H denotes complex conjugate transpose. 

The fact that the EfI method considers the trace of [ΦTΦ] in modal domain is very interesting for modal data based 
updating methods. In the case of frequency response based updating methods we may consider the diagonal of the 
information matrix which represents the global influence of either mass or stiffness variation of the ith element on 
measurements: 

 { } [ ]( ))( ii pIDiagv = , {v}i ∈ Rn, i=1,2Ne (11) 

This represents the sensitivity of the response vector to changes in structural parameter (i.e. damage in structures). The 
larger components of the vector {v}i correspond to the DOF of greater sensitivity to ith element damage.  

Having determined {v}i,, the updating procedure can then be performed. These vectors are all sensitive to damage in 
one or another structural element.  

To perform the strategy, the sum of all vectors {v}i called witness vector W is calculated as follow:   
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Since a large term in W will cause a larger residual vector in (2), to a change in parameters p (damage), the damage 
will be easily and accurately detected. It is then interesting to place a sensor on the DOF corresponding to the larger 
component of the witness vector.   

In a second way, we should make measurement independent in the sense of information, none information is lost and 
none information is redundant. Thus, we should remove all DOFs which give identical or linearly dependent overall 
information, i.e. those which do not increase the rank of the measured matrix Y.  

 

Fig. 1 – schematic of the proposed strategy 
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Finally, the proposed measurement point selection method consists of three steps: 

compute the witness vector {W} using (12); 

the maximum value of {W} corresponding to the first DOF to be measured, the measured response vector Y is 
constructed by the row of the corresponding DOF; 

the next DOF to be selected is the one corresponding to the component of second largest value of {W} and increasing 
the rank of Y when the corresponding row is added to the Y matrix. 

Repeat step c until the number of measurement points is equal to the predefined number “r”.  

This is materialised by the corresponding organigram showed on figure 1. 

4 Numerical Results 

To simulate measurements, random noise is added according to the model Trendafilova and Heylen [8]: 

 { } { }),()..1(),( )(
Xt

s
Xt iyndgiy ωω +=  (13) 

where g is equal randomly to 1 or –1,  

d :  random value between 0 and 1,   

n :  noise percentage. 

{ } )(),( s
Xtiy ω : Simulated response measurement 

{ }),( Xtiy ω   : Calculated response measurement 

Simulation was carried out up to a 5% rate noise. 

To improve the efficiency of measurement point’s choice and taking into account the updating procedure, consider the 
plane doubly embedded lattice structure made up of 30 welded beams (figure 2).  The structure is discretised into 30 finite 
elements with 39 degrees of freedom.  

 

Fig. 2 – Structure out of lattice doubly embedded 

Choice of the working frequencies and the force position: 

As presented previously, it is interesting to maximize the witness vector. So, in the presented application the force 
position should be chosen on a DOF which maximizes this vector. For this purpose, we calculate the witness vector for all 
possible positions of the force and compare the modulus of the obtained vectors; Working frequencies are other parameters 
which can induce a great variation of this kind of vectors. The optimization must include those parameters. 
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Consider the above structure working in the frequency band [0, 520] Hz. In order to choose the working frequencies, 
we divide the frequency band into three parts, the first one represent low frequencies [0, 200], the second part, middle 
frequencies [150, 350] and the third part represents high frequencies [330, 520]. 

 Consider now the five sets of twenty excitation frequencies shown on table 1 and figure 3: 

1. frequencies close to the Eigen-frequencies {ω1} 
2. frequencies covering  the first part of the band {ω2} 
3. frequencies covering the second part of the band {ω3} 
4. frequencies covering the third part of the band {ω4} 
5. frequencies covering all the considered band {ω5} 

Table 1: Considered working frequencies sets 
{ω1} {ω 2} {ω 3} {ω 4} {ω 5} 

12 14 160 339 14 
37 22 108 348 39 
84 29 186 361 62 

111 39 195 370 94 
124 49 208 385 120 
141 54 224 391 139 
170 62 232 396 160 
205 70 240 407 186 
220 78 245 415 208 
248 94 257 426 232 
266 100 268 434 257 
325 109 276 442 284 
340 120 284 450 318 
361 139 302 456 339 
384 144 310 466 370 
405 152 318 474 391 
426 160 324 482 426 
457 168 332 490 450 
466 186 339 498 474 
511 195 350 510 498 

 

 

Fig. 3 – repartition of the working frequencies sets in the frequency band considered 
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We should choose the set which maximizes the modulus of the witness vector W. In other way, we should choose 
either the position of the excitation force which maximizes this witness vector. This is calculated for different positions of 
the excitation force. Figure 4 represents the witness vector modulus calculated for every sets of working frequencies, and 
for different positions of the excitation force (rotational degrees of freedom are eliminated on the figure). 

 

Figure 4: Modulus of the witness vector for different position of the excitation force and various working frequencies 

We can see that excitation frequencies close to the eigenfrequencies maximize the witness vector modulus and 
consequently are more useful for updating purpose. For these working frequencies, we see from figure 4 that for 
maximizing the witness vector modulus the excitation point should be at 38th DOF, i.e. the y-displacement of the 15th node. 

Application of the method  

To simulate the real structure, defaults of +20%, +30%, and +20% to the stiffness are introduced respectively in the 
elements 2, 14, and 17 with 5% of random noise.  

Figure 5a shows a comparison of the elements of the witness vector using barplot. This comparison shows that the 
most important values are for rotational degrees of freedom, this indicate that they are most useful than translation degrees 
of freedom. We deduce from this figure that the four DOFs to be selected are {6, 35, 38, 39}. i.e. y-displacement of nodes 
14, 15, and rotational DOF of nodes 2, 15. Considering that only translational degrees of freedom can be measured and 
avoiding to measure at the excitation node 15, the comparison of the witness vector elements without rotational and 
excitation node DOFs (Figure 5b) shows that the four DOFs to be selected are {2, 5, 16, 35}, i.e. the y-displacement of 
nodes 3, 4, 14, and the x-displacement of the node 6.  

The proposed sensor placement method is then compared to the EfI one. The latter technique gives the selection 
{26, 19, 14, 22} as sensor positions. 
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Figure 5: (a) Witness vector elements (b) Witness vector elements without rotational and node excitation DOFs 

 To improve and validate the proposed strategy, the previously presented updating algorithm is used to detect 
defaults considering that measurements are taken in the selected DOFs {2, 5, 16, 35} and for those obtained by the EfI 
method {26, 19, 14, 22}. Obtained results by each of these methods as for detected defaults are compared with all 
translational DOFs measured for the same chosen excitation frequencies (lightly closes to the eigenfrequencies, the first set 
on table 1).  

 Table 2 shows that the selection of measurement points that we obtained by the suggested method give better 
results than those obtained by the EfI method. Indeed the updating results obtained using the measurement points obtained 
by the EfI method show defects where they do not exist; this is due certainly to the position of the excitation force. The EfI 
algorithm is a very powerful technique for the choice of measurement points for modal data based updating and expansion 
methods; it may be very useful in the frequency domain too. Contrarily to our proposed method where the position of the 
excitation forces plays a dominating part, the EfI algorithm does not deal with it. 

Table 2: Updating results for different sets of measurement points 

Elts Defect Set I Set II Set III Elts Defect Set I Set II Set III 

1 0 -0,72 2,97 0,19 16 0 2,34 -2,12 1,27 

2 20 19,28 3,48 18,89 17 20 12,79 26,68 19,67 

3 0 2,26 5,14 -0,59 18 0 3,28 -1,99 1,38 

4 0 0,01 7,00 0,50 19 0 -1,17 0,01 0,47 

5 0 1,91 8,96 0,64 20 0 0,41 -6,00 -1,10 

6 0 1,03 4,28 0,08 21 0 -0,62 -0,01 -0,98 

7 0 -2,64 0,10 -1,27 22 0 -1,27 -0,02 0,76 

8 0 -0,50 -0,37 1,23 23 0 0,55 -0,93 -0,85 

9 0 2,07 -4,15 -0,68 24 0 -3,15 2,65 0,81 

10 0 4,15 -4,02 0,84 25 0 -0,66 -3,65 -1,01 

11 0 0,27 -1,46 -0,48 26 0 -1,74 3,91 -0,28 

12 0 0,74 1,92 -1,19 27 0 -0,71 8,06 0,12 

13 0 -1,32 -2,46 -0,04 28 0 -1,19 1,29 1,99 

14 30 31,16 22,60 30,76 29 0 -0,04 4,18 0,64 

15 0 -2,90 -0,03 -0,89 30 0 0,29 -0,05 -0,20 
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 The results obtained with the limited number of DOFs selected {2, 5, 16, 35} (set I on table 2) are very close to 
those obtained when all translational DOFs are measured (set III on table 2). This confirms that the proposed strategy gives 
a limited number of measurements equivalent to measurements on all translational DOFs. The introduced stiffness defects 
are localized and nearly quantified.  

The method is validated by many other simulated cases which show the effectiveness of this technique. 

5 Conclusion 

A method based on first order derivative of the response vector function has been presented for the choice of 
measurement points to successfully update models. Working frequencies and the position of the excitation force are 
optimized regarding to the maximisation of the witness vector. In order to estimate the performance of the suggested 
method, an updating procedure is applied with a limited number of measurements taken on the DOFs selected by the 
proposed method and those selected by the EfI method; the same updating procedure is used with measurements on all 
translational DOFs. The validation on numerical test cases of the proposed method has been carried out. Compared to the 
EfI method, the suggested method gave better results. Adding to that, it is well indicated for the frequency domain.  

This technique can be also used for structural identification and damage detection purposes. 
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