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Abstract—When the loading or the geometry of a structure is not 

symmetrical about the crack axis, rupture occurs in mixed mode 

loading and the crack does not propagate in a straight line. It is 

then necessary to use kinking criteria to determine the new 

direction of crack propagation. The aim of this work is to present 

a numerical modeling of crack propagation under mixed mode 

loading conditions. This work is based on the implementation of 

the displacement extrapolation method in a FE code and the 

strain energy density theory in a finite element code. At each 

crack increment length, the kinking angle is evaluated as a 

function of stress intensity factors. In this paper, we analyzed the 

mechanical behavior of inclined cracks by evaluating the stress 

intensity factors. Then, we presented the examples of crack 

propagation in structures containing inclusions and cavities. 
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I.   INTRODUCTION  

The use of crack propagation laws based on Stress Intensity 
Factors (SIFs) is the most successful engineering application of 
fracture mechanics. This characterizes the SIFs as the most 
important parameters in fracture analysis. In elastic fracture 
analysis, SIFs sufficiently define the stress field close to the 
crack tip and provide fundamental information on how the 
crack is going to propagate. Basically, the estimation methods 
can be categorized into two groups, those based on field 
extrapolation near the crack tip and those which use the energy 
release when the crack propagates. The latter group includes J-
contour integration, virtual crack extension and the strain 
energy release rate method. The main disadvantage of these 
methods is that the SIF components, KI and KII  in mixed mode 
application are either impossible or very difficult to be 
separated. Nevertheless, the first group which is based on near-
tip field fitting procedures requires finer meshes to produce a 
good numerical representation of crack-tip fields. Usually, the 
singular point elements are generated to facilitate the 
calculation [1]. 

One of the simplest and most frequently used methods is 
the displacement extrapolation method. It functions typically in 
obtaining displacement jumps along the crack faces and then 

applying the elasticity relations to compute a set of estimated 
SIF values [2]. In order to predict the fracture direction and 
loading based on the concept of Maximum Potential Energy 
Release Rate (MPERR), a new general mixed-mode brittle 
facture criterion was applied by Chang et al. [3]. The 
calculation and comparison of SIFs for a cracked Element Free 
Galerkin Method (EFGM) plate have been obtained by using 
several different numerical techniques in [4]. 

This paper aims to determine the SIFs for the crack 
propagation problem under linear-elastic fracture analysis by 
means of the displacement extrapolation method implemented 
in the Ansys finite element program. The method developed in 
this paper was applied to compute the stress intensity factors in 
elastic-plastic crack growth in plane stress problems. 

II. STRESS INTENSITY FACTOR AND CRACK PROPAGATION 

In linear elastic fracture mechanics the important 
parameters used are the stress intensity factors in various 
modes. Several methods have been proposed to determine the 
stress intensity factors, such as the displacement extrapolation 
near the crack tip [5], the J-integral [6] and the energy domain 
integral [7].  

In this paper, the displacement extrapolation method [8] is 
used to calculate the stress intensity factors as follows: 
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where E is the modulus of elasticity, ν is the Poisson’s ratio,  
L is the element length, u and v are the displacement 
components in the x and y directions, respectively and k  is an 
elastic parameter defined by: 
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The near tip nodal displacements at nodes b, c, d and e, 
shown in Figure 1 are of a great interest. The tangential and 
normal displacements to crack plane are denoted as u and v 
respectively. 

In order to simulate crack propagation under linear elastic 
condition, the crack path direction must be determined. There 
are several methods used to predict the direction of crack 
trajectory such as the maximum circumferential stress theory, 
the maximum energy release rate theory and the minimum 
strain energy density theory. The maximum circumferential 
stress theory asserts that, for isotropic materials under mixed-
mode loading, the crack will propagate in a direction normal to 
the maximum tangential tensile stress. In polar coordinates, the 
tangential stress is given by: 
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The direction normal to the maximum tangential stress can 

be obtained by solving 0=θσ θ dd  for θ. The nontrivial 

solution is given by: 
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which can be solved as: 
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III. NUMERICAL ANALYSIS AND VALIDATION 

A. Single edge cracked plate under plane stress condition 

The geometry of the single edge cracked plate under plane 
stress condition and its final mesh in the first step before crack 
propagation are shown in Figure 2. The plate has an initial 
crack length of a=0.4 units, plate length of L=2 units, plate 
width of W=1 unit and thickness of t=1 unit. The modulus of 
elasticity E is 1, and Poisson’s ratio ν is 0.3. The far-field 
tensile stress is σ=1 unit.  

 

Fig. 1.  Quarter-point triangular elements around the crack tip 

Figure 3 shows the final configuration corresponding to the 
last evaluated crack length obtained from the finite element 
software Ansys in the present study, which are found to be 
almost the same as the results obtained from the FRANC2D/L 
program and the results given by Alshoaibi et al. using the 
adaptive mesh strategy [9].  

Figure 4 shows the calculated values of stress intensity 
factors KI and KII during crack propagation steps for a cracked 
plate with an initial crack length of a=1 unit. The SIF KI is 
increase nonlinearly as crack increment length increases and 
the values of factor KII are negligible i.e. the crack propagates 
towards the horizontal path under mode I loading condition. 

 

 
                     (a)                             (b) 

Fig. 2.   (a) Problem statement and (b) the final mesh of the initial crack 

before crack propagates 

 

 

Fig. 3.  Final configuration corresponding to the last evaluated crack length 

 

 
Fig. 4.  Stress intensity factors KI and KII  as functions of crack extension 

in a cracked plate  
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B. Single edge cracked plate with an off-center hole 

The following example concerns a cracked part with a hole 
of radius r=0.2 units. In this section, we show the effect of the 
existence of a hole on the path of crack propagation under 
mode I loading conditions. This plate is meshed by an 8 nodes 
quadratic element and by special element meshing at the crack 
tip (Figure 5). The computation of the stress intensity factor is 
determined using the displacement extrapolation technique. At 
each increment of crack propagation the fork angle is evaluated 
using the maximum circumferential stress theory. The crack 

increment length ∆a is 8% of the initial crack length a. Figure 6 
shows the crack propagation trajectories for our geometric 
model. This figure shows that the crack is moving towards the 
hole since it creates a stress drop. Once the crack tip has moved 
beyond the hole, the crack reorients horizontally in mode I 
loading. We obtain a similar crack path as in [10-14]. Figure 7 
illustrates the predicted values of the SIFs for mode I loading 
during the crack propagation steps for our geometric model. 

 

 
Fig. 5.  Problem statement and the final mesh for of the single edge 

cracked plate with an off-center hole 

 

  
Fig. 6.  Crack trajectory in a cracked plate with a hole 

 

 
Fig. 7.  Stress intensity factors KI and KII as functions of crack extension in 

a cracked plate with an off-center hole 

C. Single edge cracked plate with an off-center inclusion 

In the present example, we replace the hole by an inclusion 
of a circular form and we study the influence of this inclusion 
on the crack path direction. A rectangular part is pre-cracked 
and submitted to a tensile test. This part contains an inclusion 
which may be more rigid or less rigid than the matrix. If Ematrix 
is the Young modulus associated with the matrix, and Eincl the 
one associated with the inclusion, we define R as the ratio: 
R=Ematrix/Eincl. 

This example shows the ability of the discrete approach, 
implemented in the finite element software, to deal with 
multimaterial applications. Figure 8 shows the geometrical of 
the cracked plate and the typical model mesh at the inclusion 
and at the crack.  In Figure 9, the crack propagation simulation 
is presented with a ratio R unit (Ematrix/Eincl=1), which means 
that we have an inclusion, but is made of the same material as 
the matrix. This figure shows five steps of crack propagation 
trajectories. As expected, the crack propagates horizontally, as 
in a homogeneous single-material. Figure 10 shows five steps 
of crack propagation trajectories for the structure with a soft 
inclusion (R=10 and Eincl=0.1), the inclusion is less rigid than 
the matrix; the crack is still attracted by the inclusion. The 
crack reorientation is however less pronounced than the one 
obtained with a hole. Conversely, if the inclusion is more rigid 
than the matrix (R=0.1 and Eincl=10), the crack is moving away 
from the inclusion (Figure 11). Good agreement is obtained for 
the crack path with the results presented in [15]. 

 

          
Fig. 8.  Geometrical model and typical mesh model near the inclusion and 

the crack 

 

 
Fig. 9.  Propagation of a crack in a part with an off-center inclusion (R=1) 

 

 
Fig. 10.  Propagation of a crack in a part containing a soft inclusion (R=10) 
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Fig. 11.  Propagation of a crack in a part containing a hard inclusion R=0.1 

The crack growth and its direction are determined by the 
calculated SIFs. Figure 12 shows the predicted values of the 
SIFs for mixed mode during crack propagation steps. As 
shown, the increase in crack length causes an increase of KI. 
This factor has the same curves for the three cases (R=1, 0.1 
and 10), i.e. it does not depend on the crack path direction. In 
the case of R=1, the values of KII are negligible i.e. the crack 
propagates towards the horizontal path under mode I loading 
condition. For a negative angle (hard inclusion case), KII  takes 
negative values and for the soft inclusion case takes positive 
values. 

 

 

 
Fig. 12.  Stress intensity factors KI and KII as functions of crack extension in 

cracked plate with : (a)  R=1 (b) R=0.1 (c) R=10 

Figure 13 illustrates a comparison between the paths of 
propagation, for the various applications presented in this 
study. Figure 14 shows the normal stress distribution for the 
final step chosen of the crack propagation, for four cases 
presented in this study. The maximum value of the normal 
stress is localized around the perturbated zone by the existence 
of a crack. 

 

 

Fig. 13.  Crack trajectories comparison 

 

       

 
 

Fig. 14.  Contour plots of the normal stress for cracked plate with (a) an off-

center hole (b) R=10 (c) R=1 (d) R=0.1 

IV.  CONCLUSION 

The predicted values of stress intensity factors for the crack 

propagation problem under linear elastic fracture analysis 

using the finite element method (FEM) and the displacement 

extrapolation technique was presented. In order to obtain a 

better approximation of the stress field near the crack tip, 

special quarter point finite elements as proposed by Barsoum 

are used. The estimated SIFs are used to further approximate 

the crack increment length and to predict the crack path 
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direction. The prediction of the latter is based on the 

maximum circumferential stress theory. Finally, the numerical 

finite element analysis for 2D with displacement extrapolation 

method and maximum circumferential stress theory, have been 

successfully employed to determine the effect of the inclusion 

on the crack path direction under linear-elastic analysis. 
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