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Abstract— In this paper, some unsolved problems of the 

Mathematica software package are documented. At first, it is 

shown, using a number of examples, that the processing 

(simplification) of rational-fractional expressions involving 

powers in the general form, has been implemented in Maple more 

carefully than in Mathematica. Then, an error in Mathematica is 

demonstrated, leading to incorrect results at a change of a 

function’s body. For each example of symbolic or symbolic-

numeric computations, alternate routes for solving the emerged 

problem are proposed (where possible). An added problem, 

related to Mathematica’s computing speed is documented, 

employing examples related to two-dimensional gas dynamics 

problems. It is shown that Mathematica computes rather slowly 

(about one thousand times slower) compared to a Fortran code. 
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I. INTRODUCTION 

Modern theoretical mathematics and the development of 
information technologies are strongly connected to powerful 
software packages, widely applied in the areas of science and 
engineering, such as Mathematica [1], which is one of the most 
powerful tools supporting scientific research, applied design, 
and teaching of specialists, postgraduates and students. 
Mathematica was designed as software mainly aiming to 
automate the work of scientists and mathematicians. The 
software contains a wide spectrum of mathematical methods 
and numerical algorithms for conducting theoretical and 
applied research as well as a powerful system for the 
visualization of obtained results.  Starting from version 2, the 
subsequent versions of Mathematica are the world leaders in 
the area of symbolic mathematics for PCs, providing the 
execution of numerical computations, employing elegant 
graphical output forms, and also the execution of especially 
laborious analytic computations and transformations. 
Mathematica has been adapted to the most recent operating 
systems and hardware, making it available to most platforms 
including Microsoft Windows, Apple Mac and Linux. 

Mathematica enables the performance of laborious analytic 
computations. However, the possibility of errors in the 
produced results due to internal software design is a rather 
important issue, considering that the source of such problems is 

rarely detected by the user. Even after the error has been 
localized, the end-user will need further time in order to replace 
the piece of his code where some built-in operators or 
Mathematica functions work incorrectly. Even though, it is 
usually possible to implement such alternate approaches, due to 
the large number of available functions, such internal errors 
and/or imperfections of Mathematica reduce its efficiency. 
Most importantly, in some cases, the erroneous results 
produced may be externally believable and thus not identified 
as such. Therefore, when there are no verifying mathematical 
relations, it is necessary to duplicate the analytic computations 
by using a different software system, for example, Maple, 
REDUCE, etc.  

In the examples of analytic, symbolic-numeric and numeric 
computations presented in the following, the licensed copies of 
the following program packages were used: Mathematica 3.0.0 
(license L2718-0816), Mathematica 4.1.0 (license L2989-
2426), Mathematica 8.0.4.0 (license L3427-3055), and Maple 7 
(license P/N: 01-0701-00-B-SN-A-E-0, serial number 
693366959). Further, the licensed copy of the operating system 
Windows XP Professional (license E85-05798) was used. 

The capabilities of seven general-purpose systems for 
analytic computations, namely Axiom, Derive, Macsyma, 
Maple, Mathematica, MuPAD, and REDUCE were analyzed 
previously [2] on 542 short problems. Mathematica produced 
completely wrong results in 13 of the 542 examples. Some 
added examples, not included in the above set, are documented 
in the present paper. In these cases, Mathematica either outputs 
an incorrect result or outputs a correct result having a bulky 
form, and one fails in its simplification with the aid of the built-
in functions of the system. For each such example, alternate 
solving routes are proposed where possible.  

II. INSUFFICNET EFFICIENCY OF SIMPLIFICATION 

FUNCTIONS   

Consider the basic problem of mathematical analysis of the 
calculation of the sum: 

 

S = 2 + 2·3x + 3·4x
2
 + … + n(n – 1)x

n–2
. 
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The Mathematica command: 

 
S=Sum[j*(j-1)*x^(j-2),{j,2,n}],  

 

where Sum[…] is the built-in function of the system, gives 

the following solution: 
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It is clear that this expression can be simplified by dividing 

its numerator and denominator by x. Instead of doing this by 
hand using the pen and paper one can try to use the built-in 

function Simplify[…], which is intended for the 

simplification of expressions. However, instead of the expected 
simplification of (1), the function produces the same result (1). 

Another built-in function, PowerExpand[…], enables the 
simplification of expressions involving power functions. But 
the application of this function to (1) also leaves this expression 

without change. The Mathematica function Expand[S] 

expands a complex fraction S into the sum of elementary 
fractions: 
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It can be seen from (2) that Mathematica has performed in each 
elementary fraction the divisions of both the numerators and 
denominators by the factor x. Therefore, one can now hope that 

the subsequent application of the function Simplify[…] to 
the sum of fractions (2) would yield the desired result. 
However, at the simplification of (2), Mathematica has 
multiplied both the numerator and denominator of the final 
expression by x, with the output being again the original 
expression (1). Mathematica also contains the function 

Together[…] which reverts the sum of fractions to a single 
fraction. Since there is no factor x in the denominators of (2), 
one may hope that this function will produce the result in the 
desired simplified form. However, the application of this 
function to (2) leads again to expression (1). 

It should be noted that the Maple software produces the 

desired result for this task, using its simplify command, as 
shown below: 

 
S:=simplify(sum(j*(j-1)*x^(j-2),j=2..n)); 
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The problem of the ideal incompressible fluid flow around a 

motionless sphere is a relatively simple example of a three-

dimensional fluid dynamics problem. The fluid flow is 

assumed to be directed at infinity along the z  axis of a 

Cartesian coordinate system zyxO . The solution of this 

depends on three dimensional coordinates zyx ,, . Let 

wvu ,,  be the dimensional components of the fluid velocity 

vector along the axes zyx ,, , respectively, and let p  be the 

dimensional pressure of the fluid. The nondimensionalization 

of independent and dependent variables in the problem under 

study is given by: 
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where R is the dimensional sphere radius, U∞ is the 

freestream velocity and ρ is the fluid density. It is assumed for 
definiteness that the sphere center lies in the coordinate origin 
(0,0,0) of the coordinate system Oxyz. The exact solution of the 
problem under consideration is then obtained with the aid of 
the velocity potential theory so that, for example, the velocity 
component u has the form: 

 

  
5

3

r

xz
u −= ,           (3) 

 

where r = (x
2
 + y

2
 + z

2
)
1/2

. One can try to obtain expression (3) 

with the aid of Mathematica by performing: 

 
 

r = Sqrt[x^2+y^2+z^2];fi=V0*r* 
(1+1/2*(R/r)^3)*z/r; u = D[fi, x]; 

u1 = u/.{x-> R*x1,y-> R*y1,z-> R*z1} 
u1a=PowerExpand[u1/V0]; 
Print["u1a = ",u1a]; 

 
The following notations are used here: fi is the velocity 

potential, V0 = U∞, x1, y1 and z1 are the dimensionless 

spatial coordinates and u1a is the dimensionless velocity 

component along the x-axis. The following expression is 

obtained for u1a as a result: 
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It is shown from (4) that the function 

PowerExpand[u1/V0] has “missed” the presence of the 
common factor R

2·5/2
 = R

5
 in the denominator.  
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u1b= Simplify[u1/V0]; Print["u1b = ",u1b]; 
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The function Simplify[u1/V0] was able to detect the 

common factor R
2 only in the base of the power function.  

And, finally,  

 
u1c=PowerExpand[u1b]; Print["u1c = ",u1c]; 
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It is seen from (5) that the combination of the functions 

Simplify[…] and PowerExpand[…] has led to the 

correct result. 

     It is interesting to solve the same task with Maple and to 
see how many steps are needed to obtain (5): 

 
u:=-3*R^3*V0*x*z/(2*(x^2+y^2+z^2)^(5/2)); 
u1c:=simplify(subs(x=x1*R,y=y1*R,z=z1*R, 

u/V0),assume=positive); 

III. SOME PECULIARITIES OF THE PROCESSING OF COMPLEX 

QUANTITIES IN MATHEMATICA  

Beside the capability of executing the basic arithmetic 
operations on complex numbers, in Mathematica the built-in 

functions Re[z], Im[z], Conjugate[z], Abs[z], 

and Arg[z]are also included. The purpose of each of these 

functions is clear from its name. The letter I is reserved in the 

system to denote the imaginary unit i = 1− .  

Example:  

 
z = 5 – 4I; Print[“Re(z) = “, Re[z], 

”; Im(z) = “, Im[z]]; 
 

Answer: Re(z) = 5; Im(z) = –4.  

Let now z = cos
2
x + i tg(x)/x, where x is a real variable. The 

application of function Re[z] in this case gives the answer 
Re(z) = Re(cos

2
(x)) – Im(tg(x)/x) because it is assumed in 

Mathematica that each of the functions cos
2
(x) and tg(x)/x may 

be complex. The function ComplexExpand[z] performs the 

simplification of the complex number z = a + ib under the 
assumption that both expressions a and b are real.  

Example: 

 
z = Cos[x]^2 + I*Tan[x]/x; 

ComplexExpand[Re[z]] 
 

The answer is obtained in the form Re(z) = cos
2
x. However, 

the operation zim1 = ComplexExpand[Im[z]] leads 

to: 

 

                 
sin(2 )

Im( )
(1 cos(2 ))

x
z

x x
=

+
       (6) 

 

instead of the expected: 

 

                    
tg( )

Im( ) .
x

z
x

=         (7) 

 
Using the well-known trigonometric relations it is easy to 

transform (6) to (7). The right-hand side of (6), however, 
requires 20 symbols, and the right-hand side of (7) requires 7 
symbols, if one counts the horizontal bar separating the 
numerator from the denominator as a single symbol. The built-

in function ByteCount[expr] available in Mathematica 

counts the number of bytes used internally by the system to 

store the expression expr. The call ByteCount[zim1] 

gives for the right-hand side of (6) the answer 488 bytes.       
Let us now try to simplify expression (6) with the aid of the 

function Simplify[…]: the command zim2 = 
Simplify[zim1] gives (7). ByteCount[zim2] gives 

160 bytes. This means that the internal representation of (6) in 
Mathematica is three times longer compared to (7). 

      The danger of the appearance of bulky expressions like (6) 

in the process of symbolic manipulations consists of the fact 

that if (6) is used at the next stages of the analytic procedure 

then this may lead to a multiple “swell” of the final expressions. 

Further, bulky expressions deteriorate the visibility and 

understanding of final results. It is, therefore, desirable to 

execute the multi-stage analytic procedures in the interactive 

regime. As soon as a bulky expression of type (6) suddenly 

appears at a stage, one can try to simplify it with the aid of the 

following functions: Simplify[…],ExpandAll[…], 

FullSimplify[…],Expand[…], PowerExpand[…]. 

      Let us now see how the Maple system solves the task of 

finding the imaginary part of the complex number z = cos
2
x + i 

tg(x)/x. The function evalc(…)in the Maple system is an 

analog of the function ComplexExpand[…] of 

Mathematica.  
Thus, we have in Maple:  

 
z:= cos(x)^2 + tan(x)/x*I; evalc(Im(z)); 

 

The answer is (7). Thus, the function evalc(…) 
immediately outputs the answer, which is optimal from the 
viewpoint of its length.  

 Let us return to Mathematica. In a search for a simple 
alternative way of obtaining Im(z) in the 
optimal form (7) one can use the following definition of the 
imaginary part of the number z: Im(z) is the coefficient 
affecting i.  
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To find the coefficients affecting some variable, the 

function Coefficient[…] is provided.  

Let us use it:  

 
z = Cos[x]^2 + I*Tan[x]/x; 

         zim = Coefficient[z, I]                    (8) 

 
In this case, Mathematica prints the following diagnostic 

message: “Coefficient:: ivar : i is not a 

valid variable. >>” and does not output any result. 

One can circumvent this situation by replacing I in (8) with a 

different letter, say j: Coefficient[z/.I -> j, j]. 
The answer is then obtained in the optimal form (7). 

      Summarizing the contents of this and foregoing sections 
one can draw the following conclusion: the simplification of 
analytic expressions has been implemented more carefully in 
Maple than in Mathematica.  

IV. AN EXAMPLE OF INCORRECT WORK OF MATHEMATICA AT 

A CHANGE OF A FUNCTION’S BODY 

As a preliminary discussion, we assume that there is a 

variable parameter M in the user’s Mathematica code, which 

must be specified at the beginning of the code. To conserve the 
information about already computed variants it is important to 
store in the program the information about already considered 

values of the parameter M. This is also convenient from the 

viewpoint that it will be easy to return again to one of the 
computed runs, which proved to be the best among all other 
variants. It is very simple to store the information about already 

used values of M in the following way: M = 5; M = 10; M 
= 15; M = 20. Here the last assignment operator cancels 

any of the foregoing assignment operators of the form M = …, 

so that one can be sure that the Mathematica program of the 

user will execute the next run with the value M = 20. This is 

always the case in practice.  

Let us now consider the following Mathematica program: 

 
f[x_]:=x*x/;x>1; expr1=y^2-f[x]*z/.x-> 2 

 
Here the first command defines the function in the case 

when x>1. The system yields a correct result of the symbolic 

computation in the second command: expr1 =y
2
 – 4z. Let us 

now assume that it is necessary to replace the body of the 

function f[x_] at some stage of the analytic computation with 
a different body, for example, with the body  

 
f[x_]:=-x/;x ≠ 1; 

 

It is obvious that this new definition of the function should 

cancel the foregoing definition of this function. Let us now 

assume that it is necessary to calculate the expression:  

 
 

expr2=expr1^2-f[x]*z/.x-> 2; 

in the next line of the Mathematica code. Mathematica outputs 

the following answer: expr2 = (y
2
 – 4z)

2
 – 4z. This answer is 

obviously incorrect because f[2]=-2 in accordance with the 

new definition of function f[x_]. That is, Mathematica has 

ignored the new definition of the function f[x_]:=-x/;x 
≠ 1 and continues using the old definition 

f[x_]:=x*x/;x>1. Below we present the solution of the 

given problem within the Mathematica framework: 

 
f1[x_]:=-x/;x ≠ 1; 

expr2a=expr1^2-f[x]*z/.f[x]-> f1[x] 
expr2=expr2a/.x-> 2 

 

This time, Mathematica has produced the correct result: expr2 

= (y
2
 – 4z)

2
 + 2z. 

V. SLOW NUMERICAL COMPUTATIONS  

Many engineering problems are described by systems of 

partial differential equations. Common examples include 

problems of fluid dynamics, magnetohydrodynamics, 

elasticity theory etc. Problems whose solutions depend on two 

or three spatial variables and the time variable t are considered 

the most laborious computationally. Such problems are 

commonly computed with the use of advanced 

supercomputers and parallel computations. 

The ability to perform an on-line analysis of the results 

obtained through the simulation of multidimensional problems 

increases significantly with the use of graphical representations. 

ANSYS Fluent (www.ansys.com) is a well known software 

that integrates not only the programs for the numerical 

solution of gas dynamics problems, structural mechanics, and 

electromagnetics but also a number of computer graphics 

procedures for the visualization of the results of 

multidimensional computations. 

Since the Mathematica software had already integrated 

initially the means for symbolic manipulations, numerical 

computations and graphical visualization of the results with 

the aid of numerous built-in functions, it appeared to be 

attractive for the specialists concerned with numerical 

modeling of various applied problems. Examples of the 

numerical solutions of some relatively simple one-, two-, and 

three-dimensional problems of continuum mechanics were 

presented in [3], which may be computed with acceptable 

CPU time expenses within the framework of Mathematica at a 

fairly moderate total number of spatial computing mesh nodes. 

An attempt to apply Mathematica for the numerical solution of 

two-dimensional problems of gas dynamics on curvilinear 

spatial computing meshes was implemented successfully in 

[4]. But it turned out that the developed Mathematica code had 

a computational speed, which was many times smaller than the 

speed of the corresponding Fortran code. The developers of 

the considered system recommended the use of the built-in 

function Compile[…] to accelerate the numerical 

computations in Mathematica. However, its application 

reduced the CPU time needed for solving the two-dimensional 
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problems of gas dynamics only by the factor of 5/3 = 1.67 [4] 

rather than by the factor of 20, as it was declared in [1]. 

The Euler equations, which represent one of the basic 

mathematical models for gas dynamics problems, have the 

following form for the two-dimensional flow of an inviscid, 

non-heat-conducting compressible gas: 

 

              ∂w/∂t + ∂f(w)/∂x + ∂g(w)/∂y = 0,          (9) 

 

where x and y are the Cartesian spatial coordinates, t is the 

time, and 

 

w = (ρ, ρu, ρv, ρE)
T
,  f(w) = (ρu, ρu

2
 + p, ρuv, ρuH)

T
, 

                     g(w) = (ρv, ρvu, ρv
2
 + p, ρvH)

T
.                       (10) 

  

Here p,ρ,u, and v denote the pressure, density, and velocity 

components; E = ε + (1/2)(u
2
 + v

2
), ε is the specific internal 

energy, H = E + (p/ρ). The superscript T denotes the 

transposition operation. The ideal gas equation of state p = (γ – 

1)ρε, γ = const > 1 is used. An explicit TVD method as applied 

to equations (9) and (10) was described in detail in [5], and 

therefore, the computational formulas of this method are not 

presented here. The method has either the second or third 

order of accuracy in spatial variables and in the subregions of 

smooth flow depending on the numerical value of the 

available weight parameter φ.  

      The method uses the flux limiters as well as the Roe 

averaging. As in other TVD methods, a switching from the 

higher approximation order to the first approximation order is 

carried out in the regions of shock waves and contact 

discontinuities for the purpose of obtaining monotonous 

profiles of numerical solution [5]. 

      The problem of the oblique shock reflection from a wall is 

frequently used for verification of new numerical methods for 

solving (9) and (10). The exact solution of this test problem 

represents a piecewise constant function and is found 

numerically with machine accuracy with the aid of the theory 

of the oblique shock waves [3]. The value φ = π/6 for the angle 

between the incident shock and the x axis was used in the 

computational examples presented below, as shown in Figure 

1. 

      Numerical solution was found by the pseudo-unsteady 

method. At the initial moment of time, the entire flow field 

was specified equal to the values of the undisturbed supersonic 

free stream, which were specified for subregion 1, as shown in 

Figure 1, that is the initial gas flow was parallel with the x-

axis. 

 

 
 

 

      The criterion for the difference solution w
n
 convergence to 

the limiting stationary solution was taken in the form Res(n) < 

ε, where ε is the user-specified small positive number;  
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n is the time layer number (n = 0,1,2,…), 
n

kj

n

kj
gf

2/1,,2/1
ˆ,ˆ

±±
 are 

the difference approximations of fluxes f(w) and g(w) in (9) by 
the method of [5], h1 and h2 are the steps of the uniform 
rectangular computational grid in the (x,y) plane. 

      For the numerical solution of the given problem, two 
codes were developed: one in Mathematica and the other in 
Fortran 90. Both results have coincided. All the computations 
were carried out on a PC with an 3GHz Intel processor. The 
Mathematica code was run both in Mathematica 4.1.0 and in 
Mathematica 8.0.4.0. To execute 2600 time steps the 
Mathematica 4.1.0 and Mathematica 8.0.4.0 needed 22457 and 
27312 seconds, respectively. Fortran needed only 21.45 
seconds for the same computation. Thus, Mathematica 4.1.0 
computes this two-dimensional task 1047 times slower than the 
Fortran code. In the case of Mathematica 8.0.4.0, the 
corresponding slow-down factor is equal to 27312/21.45 = 
1273.29. The computations of the same problem were also 
done in Mathematica 4.1.0 and in Fortran 90 on a coarser grid 
of 80x20 cells, and 1600 time steps were done. In this case, 
Mathematica 4.1.0 needed 3455 sec. of CPU time, and the 
Fortran code needed only 3.36 sec. of CPU time. The 
corresponding slow-down ratio is 3455/3.36 = 1028.28. The 
discrepancy in the slow-down factors of 1047 and 1028 is 
explained by the well-known fact that a larger number of the 
intermediate printouts leads to larger CPU time expenses in 
Mathematica. In both runs — on the 160x40 grid and on the 
80x20 grid — the information about the solution residual was 
printed every 50 time steps. On the 160x40 grid, 2600 time 
steps were executed, and on the 80x20 grid, a much smaller 
number of 1600 time steps were done.  

      One can assume with an insignificant error that the two-
dimensional gas dynamics problems are solved in Mathematica 
4.1.0 one thousand times slower compared to Fortran. In the 
case of Mathematica 8.0.4.0, the corresponding slow-down 
factor is higher and is equal to about 1270. Such unfavorable 
slow-down factors make the considered versions of 
Mathematica inapplicable for numerical solution of complex 
multidimensional problems of fluid dynamics. 

      It should be noted that Mathematica has been written 
using the C language. This language was developed at later 
times compared to the Fortran language. Therefore, the C 
compilers have absorbed the later developments in the area of 
the programming theory. In this connection, it is reasonable to 
expect that C compilers should generate exe files which should 

Fig. 1. Spatial region in the problem of the 

oblique shock wave reflection. 
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be no less efficient compared to the exe files created by Fortran 
compilers. On this background, an extremely slow speed of 
numerical computations in the arithmetic of floating-point 
machine numbers in Mathematica looks rather strange. 

 

 
   (a) 

      
                    (b)                                                        (c) 

 

 
(d)  

Fig. 2. The problem of the oblique shock wave reflection from a solid wall: (a) 

Mach number contours; (b) gas pressure in section y = 0.5; (c) residual (11) as 
a function of the number of time steps n; (d) the surface M = M(x,y). 

 

     Mathematica has a large number of the built-in functions 
of computer graphics, which enable the obtaining of high-
quality graphs of curves, pictures of surfaces, contour plots, 
etc. In order to use these possibilities for the purpose of a rapid 
on-line visualization of the results of numerical solution of 
complex multidimensional problems of fluid dynamics and 
mathematical physics the present author has implemented a 
simple interface between Fortran and Mathematica. The 
realization of this interface reduces to the following: upon 
termination of the basic computation by Fortran, an output of 
the computed results to the external file or several external files 
in Mathematica format was implemented. And a small program 
is then written in Mathematica which ensures the graphical 
visualization of computed results in a form suitable for the 
user. The exit from the Fortran shell and entry into the 
Mathematica program needs about 3 seconds of the user’s 
time, and then the Mathematica program is started by pressing 
the keys Shift/Enter. It reads the arrays of numerical results 
from the external files created by the Fortran code, and the user 
can see in a few seconds the computed results in a graphical 
form on the monitor screen.  

Figure 2 shows the results of numerical computation, by 
Fortran, of the problem of the oblique shock wave reflection 
from a solid wall, which were obtained by the steadying 
computation using the method of [5] on a uniform grid of 

160x40 cells; the parameter of the method φ = 1/3, which 
ensures the third-order accuracy of the method in spatial 
variables in smooth flow subregions. All these graphical results 
were obtained with the aid of the above-described small 
Mathematica 8 program, which reads the arrays of numerical 
results from external files created by Fortran. Figure 2(a) shows 

the lines of the constant Mach number M= cvu /22 + , 

where = /c pγ ρ  is the sound velocity. The solid line in 

Figure 2(b) is the exact solution, and the dashed line is the 
result of the computation by the method of [5]. Figure 2(c) 
shows the residual (11) in the case of the method of [5]. It can 
be seen that 2400 time steps are needed to ensure a drop of the 
solution residual norm to the level of machine round-off errors 
10

–10
 – 10

–12
.  

VI. CONCLUSIONS 

1. As the above-presented examples show, the processing 

(simplification) of the rational-fractional expressions 

involving power functions is implemented in Maple 

more thoroughly than in Mathematica.  

2. An error in Mathematica is demonstrated, which leads 

to an incorrect result of the user’s program at a change 

of a function’s body. 

3. It is shown by the example of numerical solution of a 

well-known model of a two-dimensional gas dynamics 

problem that the two-dimensional problems of gas 

dynamics are computed slower in different versions of 

Mathematica, by factors ranging from 1000 to 1273 

compared to Fortran. Such an unfavorable ratio of the 

CPU time expenses makes the considered Mathematica 

versions unacceptable for numerical solution of complex 

multidimensional fluid dynamics problems.  
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