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Abstract. The paper continues the investigations in [1]. We consider the problem of 
recognition of convex bodies in n-dimensional Euclidean space by k-flats sections, in particular for 
n=3 by linear or planar sections. This problem is equivalent to recognition of convex bodies by 
orientation-dependent chord length distributions (for linear sections) and orientation-dependent 
area distributions (for planar sections). The main goal of the article is to enlarge the class of bodies 
for which the form of the orientation dependent chord length distribution function and the cross-
section area distribution function are known. 
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Introduction 

Let G be the space of all lines in the Euclidean plane  ,  the polar 

coordinates of the foot of the perpendicular to g from the origin; ,  (  is the unit circle 
on the plane with center at the origin).  

Let  stands for a locally finite measure on G invariant with respect to the group of all 
Euclidean motions (translations and rotations). It is well known that the element of the measure up 

to a constant factor has the following form (see [2], [4]):  , where  is one 

dimensional Lebesgue measure, while   is the uniform measure on the unit circle. For a closed 

bounded convex domain D and a point O from the interior of D we denote by  the support 

function in direction , i.e. the maximum value of  with respect to the point O for which the 

line  intersects D: 

, 

where  is the set of nonnegative real numbers. When D has a center of symmetry we 
usually take the point O in center of symmetry. The function 

 
is known as the breadth function of  D, which does not depend on the choice of the point 

O. For the bounded convex domain D the chord length distribution function in direction  is 

defined as the probability of having chord with length less than or equal to  in the 
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bundle of lines  with coordinates  or .  A random line which is perpendicular to 

the direction  and intersects D has an intersection point (denote that point by ) with the line 

which is parallel to the direction  and passes through the origin. The intersection point  is 

uniformly distributed on the segment  or . Thus, 
 

 
 

where  is the line which is perpendicular to the direction  and intersects 

 at point . 
Since 1930s in line with the problem of finding forms of these functions for special domains 

the problem of determining bounded convex domain by its chord length distributions (mixed and 
orientation dependent) is studied. In [3] G. Matheron introduced the concept of the covariogram 
formulating a hypothesis that the covariogram of a bounded convex domain determines that 
domain in the subclass of all bounded convex domains up to translations and reflections. 

Let  be the  dimensional Euclidean space,  be a bounded convex domain,  be 

-dimensional unit sphere centered at the origin and  be -dimensional Lebesgue 

measure in . The function  

 for any  

is called the covariogram of convex body .  

is invariant with respect to translations and reflection. G. Matheron (see [3]) showed that 

for every and  
 

               ,          (1) 

 

where  denotes the line parallel to the direction  through  and  denotes the 

orthogonal complement of . 

It is not difficult to verify that for  (1) is equivalent to 
 

, 

 
i.e. the problem of determining bounded convex domain by its covariogram is equivalent to 

that of determining it by its orientation dependent chord length distribution. 

In [6] G. Bianchi and G. Averkov confirmed Matheron's conjecture for . Bianchi has 

also proved that for  the hypothesis is false (see [7]). For  the problem is open. 
All the above mentioned results and facts indicate that orientation dependent distribution 

function and covariogram are key concepts while studying bounded convex domains and 
investigation of these functions may give us results which can be generalized for all bounded 
convex domains or for some subclasses of such domains. 

 
Results 
In the three dimensional space two types of orientations dependent distributions can be 

considered. First is the probability that the random chord generated by intersection of the spatial 
line with the domain has length less than or equal to given number. In the second case random 
planes and their intersections with the domain are observed. 

Denote by  the space of all planes in . Each  can be introduced by spatial direction 

 ( , ) and by the distance  of the plane from the origin. 

Denote by  the area of the cross-section  and by  the support function in direction 

 with respect to a certain point  from the interior of : 
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 A random plane with direction  and intersecting  has an intersection point  with the line 

which is parallel to direction  and passes through the origin. The intersection point  is uniformly 

distributed over the interval  , where  is the breadth function in direction  

( ), which does not depend on the choice of the point . We can identify 

the points of the interval   and the planes which intersect  and have direction . Thus, 
 

 
 

where  is the plane with direction  intersection  at point . 

In the paper [8] is proved that for any finite subset  from , there are two non-congruent 
domains for which orientation-dependent chord length distribution functions coincide for any 

direction from . Moreover, in [8] explicit forms for covariogram and orientation-dependent chord 

length distribution function  for arbitrary triangle are obtained. Finally, if we have the 

values of   for everywhere dense set from , then we can uniquely recognized the triangle 
with respect to translations and reflections (see [8] – [13]). Thus, investigating covariograms of 
convex bodies we investigate the geometric properties of them. Find the explicit form of 
covariogram for subclass of convex domains: Using the explicit form of covariogram and Materon's 

formula find  for the corresponding subclass of convex bodies (see [1]). Construct 
algorithms to reconstruct convex body by its covariogram for finite number of directions (see [6], 

[7]) (the same problem for chord length distribution function  (see [5], [9]) in finite 
number of directions has negative solution (see [8]). The explicit forms for Covariogram of a 

triangle and for follows that their can be written in the form (see [8] and [10]): 
 

 
 

, 

 

where  is the maximal chord length  in direction . 
It is not difficult to note both for an ellipse and a triangle that the function through which the 

covariogram depends on    is an integral of the boundary of the domain up to a constant 

factor. 
Basing on this facts we suggest the following hypothesis: 

Does (or in what cases) the covariogram  of a bounded convex domain   depend on 

 through the function , i.e 

 

 
 

Is (or in what cases) the covariogram  of a bounded convex domain  a function 

depending only on , i.e. 

 

? 
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Let  is the equation of the boundary of a bounded convex domain  around the 

point of intersection of with the ray . 

Is it possible (or in what cases it is possible) to introduce  in the form 
 

 , 

 

where   and  are constants? 
In the last 2 years our group has obtained important results to calculate explicit forms of 

chord length distribution functions for different convex bodies. In particular, if  is a lens 
(this problem has important applications in crystallography, [14]). An algorithm for calculation of 

values of   for any bounded convex polygon is constructed. 
The program for effective implementation of this algorithm is constructed.  For any triangle 

explicit forms of and   are obtained (see [8]—[13]). 
We obtained the following results: 

1. Chord length distribution function in direction  for a regular polygon, 

2. Chord length distribution function in direction  for an ellipse, 
3. Cross-section area distribution function in a direction for an ellipsoid, 
4. Cross-section area distribution function in a direction for a cylinder, 
5. The covariogram of a parallelogram and cylinder. 
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Аннотация. Настоящая работа продолжает исследования начатые в [1]. 
Рассматривается проблема восстановления выпуклых тел в n-мерном евклидовом 
пространстве по сечениям k-плоскостями. В частности, для n=3 линейными и плоскими 
сечениями. Эта задача эквивалентна восстановлению выпуклых тел по зависящим от 
направления распределениям  длин хорд (для линейных сечений) и распределениям 
площади (для плоских поперечных сечений). Основной целью работы является расширение 
класса тел, для которых известны формы зависящих от направления функции 
распределения длины хорды и функции распределения площади поперечного сечения.                            

Ключевые слова: Ограниченное выпуклое тело; зависящее от направления 
распределение длины хорды; площади поперечных сечений. 
 


