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Abstract: Semidefinite optimization is relatively a new field of researches. It finds a lot 

of applications in combinatorial optimization, computational geometry and network theory. 
Over the last years applications of semidefinite optimization are continuously expanded. We 
can find exact or approximate solution of many NP-hard problems by using semidefinite 
relaxation. In this paper we use a generalization of simplex-method for solving semidefinite 
problems. The main idea of this method is to use the approximation of the cone of semidefinite 
matrices by the sum of one-rank matrices. In this way we replace the original objective 
function by a linear combination of one-rank matrices. A lot of numerical experiments were 
performed and the findings are very encouraging. 
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1. Introduction. For the last 15 years semidefinite optimization has been an important 

subject of theoretical and practical researches. Its advance lies in the fact that we can 
efficiently solve a lot of NP-hard problems. Many applications of computational geometry, 
quadratic, combinatorial and polynomial optimization, network and optimal control theory 
can be efficiently solved by semidefinite relaxation [1]. 

There are a lot of methods for solving semidefinite problems. Primal-dual interior 
point method [2, 3] is widely used. The condition of positive semidefiniteness can be obtained 
only algorithmically, that considerably complicates the development of efficient algorithms 
for semidefinite programming. Interior point methods for linear programming problems were 
extended for solving semidefinite programming problems. This class of methods 
demonstrates good results for problems of middle dimension. Other methods for solving 
semidefinite problems didn’t obtain a wide circulation. Development of more efficient 
methods for solving semidefinite problems is continuing [4, 5]. In paper [6] a new 
semidefinite simplex method for solving this class of problems was proposed. 

In semidefinite problem we search the minimum point that is a semidefinite matrix. A 
set of such matrices forms a convex cone in the space of all matrices. Generatrices of 
semidefinite cone are the infinite number of one-rank matrices, such that each two of them are 
neighboring (the sum of generatrices is also a generatrix). This fact we will use for building a 
local approximation of a semidefinite cone by a polyhedral cone. 

 
2. SDP Formulation. Consider the following semidefinite problem: 

},,...,1,0,|min{ miXbXAXC ii       (1) 

where X  is semidefinite  matrix ),( nn  C  and iA  are symmetric matrices, and 

 ijij xcXC . 

This problem has the dual 
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where Z is also semidefinite matrix )( nn . 
 
3. Semidefinite Simplex method. Let’s consider primal semidefinite problem (1). It is 

well-known that any semidefinite matrix can be written as the sum of semidefinite matrices of 

rank one. [7, p.542]. They are formed by vectors ),,( 1 ni xxx  , where initial vector 

components of ix  are  -1, 0, 1. One-rank matrix equals Txx . There are a great number of all 
one-rank matrices. Let jX  denote this matrices. We seek for the solution of (1) as 

 ,jj XX   where the number of summands is greater than m  and 0 . Then the 

problem (1) can be formulated as follows: 

   }0  ,,...,1  ,|min{  mibXAXC ijjijj , 

or 

  }.0,,...,1,|min{  mibXAXC ijijjj           (2) 

The problem (2) is linear programming one that can be solved by simplex-method [6]. 
Its solution *  defines approximate solution for (1)  

 .*
jj XX   

In order to continue the minimization process it is necessary to add a new semidefinite 
one-rank matrix to the basis, such that estimate in modified line of objective function is 
negative. If there isn’t correction with negative value in objective function line, then current 
solution of problem (2) provides solution of problem (1). 

Let B  denote the matrix of basic elements of the optimal solution (2). Then elements 
of new k-th matrix column in (2) are equal to 

,1 T
kki xxAB   

and the row of objective function is equal to 

   T
kkj

T
kk

T
kk xxABxxCxxC 1  

or 

.)( 1   T
kkj

T
kk xxABxxCC  

Let   j
T
kk ABxxCCQ 1 , then 

k
T
k

T
kk QxxxxQ               

and this expression should be minimal. If matrix Q  is positive definite, than the value 
of the objective function (2) can not be reduced and the current solution is optimal for the 
problem (1). For minimizing k

T
k Qxx  we have to find the solution of the quadratic problem 

},|min{
2

qxQxxT           (3) 

for arbitrary .0q  It is well-known that problem (3) is effectively solved [8]. Let’s 
use the method of quadratic regularization for it’s solving [9]. We can rewrite (3) as follows: 

}, ,|min{
2

11 qxxsQxxx n
T

n         (4) 

where s  is chosen such as 
2*** xsQxx

T
  ( *x  is solution of problem (1)). Then 

by using transformation ,Pxz   we rewrite (4) as follows 

},   ,| min{
222

qzzsQzzz T           (5) 
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where P  is matrix )1()1(  nn  and equals to 
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Quadratic regularization method lies in transformation of (5) to one-parameter 
problems 

},  ,  ,)1(  |   min{
2222

qzdzrdszrQzzz T    (6) 

where parameter 0r  is minimal and such that matrix IrQzzQ T )1(*   is 
semidefinite, d  needs to be evaluated. The solution of (6) can be found from the solution of 
the problem 

},1| max{ *2 xQxx T            (7) 

that is equivalent to searching the eigenvector of a semidefinite matrix *Q . 

Let *x  be a solution of (7). Than Q  is semidefinite if 0** Qxx T . In this case the 

problem (1) is solved; otherwise we add a new column 
Txx **

 in (2) and again use the simplex 
method to solve the updated problem (1).  

If the feasible set of (2) is empty than the method of false basis is used for finding the 
initial basis.  

So when we solve (2) and the matrix Q  is negative definite on some step than the 
value of the objective function decreases and bounded below by the solution of the problem. 
That’s why semidefinite simplex method converges to the solution of the problem (1). 

 
4. Numerical experiments. We implement two methods: semidefinite simplex 

method and infeasible interior point method [10]. The algorithms were implemented in VBA 
for Excel. Semidefinite simplex method showed good results in solving semidefinite 
problems. Its main advantage before interior point methods is that simplex method doesn’t 
need an equality of primal and dual objective functions. 

Consider a small semidefinite optimization problem: 
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Its primal and dual objective functions are not equal. Interior point methods can’t 
solve such problem. Simplex method found an optimal solution 
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5. Conclusions. We can conclude that semidefinite simplex-method has some 

advantages over interior point methods. Let’s list these advantages: 
1. The dimension of the problem in simplex method is equal to 2)1( nn  , and for 

interior point methods – nnm )1(  . 
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2. Simplex method solves a wide variety of problems, because equality of primal 
objective function and dual objective function are not necessary. 

3. Simplex method is not sensitive to the choice of the initial point, while for interior 
point methods the initial point must be feasible (there are modifications of this method for 
infeasible interior point [10]). 

4. Interior point methods find the approximate solution of the problem (1). 
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