
1

Module Extraction in Ontologies: The Case Of A
Single Concept Name

Anees ul Mehdi

Abstract—Modularity is important in the collaborative
development of large scale ontologies. The subject has al-
ready been studied deeply and different notions of modu-
larity have been introduced. Further different algorithms
for extracting module are developed. Such an extraction
requires an input ontology and a signature. The extracted
module is a subset of the original ontology containing no
concept name and role names other than those occurring in
the input signature. In this paper we focus on a very special
case of importing a single concept i.e., our input signature
contains only a single concept name. We will see that we
always end up with the same set of modules (modulo the
concept name being imported). An extracted module for
a single concept name (using the current techniques), may
contain a lot more other concept names and role names, we
prove that when we are only interested in the consequences
of the extracted module, we don’t get more information ex-
cept of what we get from the set of modules we present
here.

Index Terms—Module Extraction, Ontologies, Descrip-
tion Logics.

I. Introduction

WITH the increased popularity and growth in size of
ontologies, a natural question that arises is the one

of the re-usability. The ideas of modularity and re-usability
from software engineering guided people to study such no-
tions in ontologies. Modularity is not only important when
dealing with re-usability but we also need it in collabora-
tive development of ontologies. Because of the expressive-
ness and semantic of the underlying ontology language,
module extraction is rather a complex task. An important
question is how to define modularity in ontologies. We
come accross some notions of modularity in ([2], [3], [4],
[5]). We will use the existing notion of modularity from
[3].

In this paper, we focus on a very special case. We study
the import of a single concept name, say A. This issue
is already studied in [5] very deeply, where an algorithm
for importing a single concept name has been presented.
The output module contains additional concept names and
roles names. In [2], we come up with another algorithm
for module extraction, but a general one in the sense that
we are not restricted to the import of a single concept
name. Yet the resulting module may contain many other
symbols as well. In literature, a module in an ontology is
required to be the subset of the ontology. We will drop this
condition for our case. We will see that when importing
a single concept name A, there is always a TBox1 in the
set ΠA =

{
∅, {A = �}, {A = ⊥}, {¬(� � A)}, {¬(A �

Anees ul Mehdi, Department of Theoritical Computer Sci-
ence, Technical University of Dresden, Germany. Phone:
+49 15204047351, e-mail: s9768528@mail.inf.tu-dresden.de

1 We will be using the terms module and TBox interchangeably

⊥)}, {¬(� � A), ¬(A � ⊥)}, {⊥ � �}
}

which serves as
our required module.

We start by providing some basic definitions and notions
in Section II. The actual result is presented in Section III.
We present the notion of modularity in Definition III.1.
Further, we present Theorem III.3 regarding the import of
single concept name and later on prove it. The paper is
concluded in Section V, where we will discuss some of the
practical aspects of the import of a single concept name
and complexity issues.

II. Preliminaries

We introduce the description logic ALC where ALC
stands for ”attributive language with complement”.

A. Syntax

A signature of ALC is (disjoint) union of a set NC of
concept names and a set NR of role names. Let Σ be an
ALC signature. The set of ALC concept descriptions (over
Σ) is inductively defined as follows:

• every concept name in Σ is an ALC concept descrip-
tion.

• � (top concept) and ⊥ (bottom concept) are ALC
concept descriptions.

• If C,D are ALC concept descriptions over Σ and r
is a role name in Σ then the following are concept
descriptions:

– C �D (conjunction)
– C �D (disjunction)
– ¬C (negation)
– ∃r.C (existential restriction)
– ∀r.C (value restriction)
Concept names, �, and ⊥ are called atomic and all
the other descriptions are called complex.
A terminological axiom is of the form

C � D

where C, D are concept descriptions. Such axioms are
called General Concept Inclusions (GCIs).
We extend the usual definition of a TBox by allowing
negation of such inclusions as well. A TBox is a finite
set of GCIs or their negations, where the negation of
a GCI C � D is denoted by ¬(C � D).
For a concept description C, we define signature of C
(denoted by Sig({C})) as the set of all concept names and
role names occurring in C. Similarly, for a TBox T ,
we define the signature of T (denoted by Sig(T)) as the
set of all concept names and role names occurring in
T . Further, we extend the definition of Sig as follows:

Bahria University Journal of Information & Communication Technology Vol. 1, Issue 1, December 2008

1999-4974 ©2008 BUJICT

2

For X1,X2, ...,Xn (n ≥ 0):

Sig(X1 ∪ X2 ∪ ... ∪ Xn):=
⋃

1≤i≤n

Sig(Xi)

where the Xi’s are TBoxes or singleton sets of the
form {C} with C being a concept description.

B. Semantics

An interpretation I = (ΔI , .I) consists of a non-empty
set ΔI , the interpretation domain, and an extension map-
ping .I , that maps;

• A ∈ NC to a set AI ⊆ ΔI

• r ∈ NR to a binary relation rI ⊆ ΔI ×ΔI

The mapping .I is extended to the other concept descrip-
tions as follows:

• �I := ΔI ,⊥I := ∅
• (C �D)I := CI ∩DI , (C �D)I := CI ∪DI , (¬C)I :=

ΔI \CI

• (∃r.C)I := {d ∈ ΔI |∃e ∈ ΔI with (d, e) ∈ rI and e ∈
CI}

• (∀r.C)I := {d ∈ ΔI |∀e ∈ ΔI , (d, e) ∈ rI implies e ∈
CI}

An interpretation is said to be finite if it’s domain is
finite. An interpretation I satisfies a GCI C � D if CI ⊆
DI and if not then its negation is satisfied. I is a model
of a TBox T , in symbol I |= T , if it satisfies every GCI or
negated GCI in T . If I is a finite interpretation and is a
model of a TBox T , then we say that I is a finite model
of T .

A concept C is satisfiable with respect to T if there exists
a model I of T such that CI is nonempty. In this case we
also say that I is a model of C.

A concept C is subsumed by a concept D with respect
to T , T |= C � D in symbol, if CI ⊆ DI for every model
I of T .

A TBox T entails a TBox T ′ (in symbol T |= T ′) if for
all interpretation I, we have that I |= T implies I |= T ′.

Definition II.1 (ω-Lift of an Interpretation). For
any finite interpretation I, the lifting of I to ω is the
interpretation Iω defined as follows:

• ΔIω := {(x,i)|x ∈ ΔI ∧ i ∈ }
• AIω :=

{
(a, i)|a ∈ AI ∧ i ∈

}
for every concept

name A ∈ NC

• rIω :=
{
(〈a, i〉, 〈a′, i〉)|(a, a′) ∈ rI ∧ i ∈

}
for role

name r ∈ NR

From now onward, all the interpretations we will be con-
sidering are finite except for the interpretations obtained
by lifting some finite interpretation to ω.

Lemma II.2. Let C be an ALC-concept description sat-
isfiable w.r.t. a TBox T and I a model of T and C. Then
Iω is also a model of T and C.

Proof: We show that for all (d,i) ∈ ΔIω and all concept
names D, (d, i) ∈ DIω iff d ∈ DIω . The proof is by the
induction on the structure of D.

• For the atomic concepts, it follows from the definition
of Iω.

• Let D = D1 �D2 and d ∈ ΔI :
d ∈ DI

⇔ d ∈ D1
I and d ∈ D2

I

⇔ (d,i) ∈ D1
Iω and (d,i) ∈ D2

Iω for i ∈ (induction
hypothesis)
⇔ (d,i) ∈ DIω .
The case D = ¬D′ can be treated in a similar fashion.

• Now suppose D = ∃rD′ and d ∈ ΔI :
d ∈ DI

⇔ there is a d′ ∈ ΔI with (d,d′) ∈ rI and d′ ∈ D′I

⇔ (d′, i) ∈ ΔIω with 〈(d, i), (d′, i)〉 ∈ rIω and (d′, i) ∈
D′Iω for i ∈ ⇔ d ∈ DIω .

Further, it follows from the prove that for a GCI C � D,
CI ⊆ DI iff CIω ⊆ DIω . Hence I satisfies C � D iff Iω

does so. Further Iω |= T iff I |= T .

III. Modularity

In [3], a module is defined as follows:

Definition III.1 (Module). Let T ∗ ⊆ T be ontologies
and S a signature. We say that T ∗ is a S-module in T , if for
every ontology T ′ and concept descriptions C and D with
Sig(T ′∪{C}∪{D})∩Sig(T)⊆ S, we have T ′∪T |= C � D
iff T ′ ∪T ∗ |= C � D.

In our case, we are interested in the import of a single
concept name A i.e., S = {A}. As already mentioned, we
drop the condition of a module T ∗ being a subset of the
(original) TBox T . We will show that there is a fixed set
of TBoxes such that for any signature S={A}, one of the
TBoxes satisfies the requirements of the module given in
Definition III.1 except that it needs not be a subset of
the original TBox T . This makes sense because we are
interested in the consequences of a TBox regardless of its
being a subset or not. Hence we introduce the notion of a
signature substitute.

Definition III.2 (Σ-Substitute). Let T and T ∗ be two
TBoxes and Σ a signature. T ∗ is called Σ-substitute for T
if for all TBoxes T ′ with Sig(T)∩Sig(T ′) ⊆ Σ, we have:

T ′ ∪T |= C � D iff T ′ ∪T ∗ |= C � D
for any ALC concept description C and D over Σ.

Based on the notion presented in Definition III.2, we state
the following theorem.

Theorem III.3. Let T be a TBox and A a concept name
with A ∈ Sig(T). Then there is a T ∗ ∈ ΠA, where

ΠA =
{
∅, {A = �}, {A = ⊥}, {¬(�� A)}, {¬(A �

⊥)}, {¬(�� A),¬(A �⊥)}, {� �⊥}
}

such that T ∗ is a {A}-substitute for T .

Note that T ∗ satisfies the conditions of being a module
of T except that we don’t require for T ∗ to be a subset of
T . As we are assuming that any importing TBox T ′ shares
only the symbol A with original TBox T , the meaning of
A in T can be as one of the following:

56

MODULE EXTRACTION IN ONTOLOGIES: THE CASE OF A SINGLE CONCEPT NAME 3

• T says nothing about A.
• A is the whole domain.
• A is an unsatisfiable concept.
• A is not representing the whole domain.
• A is not an unsatisfiable concept.
• TBox T is unsatisfiable.

In Theorem III.3, ΠA is the set of TBoxes where each TBox
represents exactly one of the above mentioned cases. These
TBoxes are related with one another in the sense that (ΠA,
|=) forms the lattice given in Figure 1. Note that there
is always a TBox in ΠA, namely ∅, which is entailed by
the original TBox T . But there may be other TBoxes
T ∗ ∈ ΠA such that T |= T ∗. Just as an example, consider
the case where T |= {� � ⊥}, then of course T |= T ∗ for
all T ∗ ∈ ΠA. By observing the structure of the lattice we
constitute the following lemma.

∅

{¬(�� A)}
�������

{¬(A �⊥)}
�������

{¬(�� A),¬(A �⊥)}
�

�
���

�
�

��	

{A �⊥}

{� � A}

{� �⊥}

��������

�
�

�
���

Fig. 1. Lattice induced by (ΠA, |=)

Lemma III.4. Let T be any TBox and A a concept name.
Then there is a unique T ∗ ∈ ΠA with T |= T ∗ such that for
all T ∗∗ ∈ ΠA: if T |= T ∗∗ then T ∗ |= T ∗∗.

Proof: The proof of the lemma is just a consequence
of the induction of the lattice by ΠA with respect to |=.
The existence of such a unique TBox T ∗ follows from the
construction of the lattice i.e., for all TBoxes T ∗∗ ∈ ΠA

with T |= T ∗∗, T ∗ is the most specific of these TBoxes.

Proof: (Theorem III.3)
Let T and A be as in Theorem III.3. By Lemma III.4,

there is a unique T ∗ ∈ ΠA with T |= T ∗ such that for all
T ∗∗ ∈ ΠA we have: if T |= T ∗ then T |= T ∗∗. We show T ∗

is a Σ-substitute for T where Σ = Sig(T ′∪{A}). It suffices
to show that

T ′ ∪ T |= C � D iff T ′ ∪ T ∗ |= C � D

where C and D are ALC-concept descriptions over Σ.

To prove the right to left direction i.e., if T ′∪T ∗ |= C �
D then T ′ ∪T |= C � D. It suffices to show that for any
ALC-concept description C, if C is satisfiable with respect
to T ′ ∪ T then it is satisfiable with respect to T ′ ∪ T ∗

as well. But that is trivial by the choice of T ∗ (as in
Lemma III.4). Since T |= T ∗, therefore any model of T is
also a model of T ∗. Hence C is also satisfiable with respect
to T ′ ∪T ∗.

Similarly to prove the left to right direction we show that
any ALC-concept description C satisfiable with respect to
T ′ ∪T ∗ is also satisfiable with respect to T ′ ∪T . Depend-
ing on the form of T ∗ ∈ ΠA we make the following case
distinctions.

1. T ∗ = {� � ⊥}:
The case is trivial as no concept description is satisfi-
able with respect to T ′ ∪{� �⊥}.

2. T ∗ = {� � A}
Let I be a model of T ′, T ∗ and C, and J be a model
of T . Model J surely exists because we can assume
that TBox T is consistent. In case it is not, nothing
has to be proved then. Lifting both I and J to ω we
get Iω and Jω respectively. It follows from Lemma
II.2 that Iω is a model of T ′, T ∗, C and Jω is model
of T . Since |ΔIω | = |ΔJω |, we can define a bijection
π : ΔIω → ΔJω .
Now we define an interpretation K as follows:

• ΔK := ΔJω

• For each concept name B and role name r in Sig(T):

BK :={d|d ∈ BJω}
rK :={(d,d′)|(d,d′) ∈ rJω}

and if B and r in Sig(T ′ ∪{A}) then

BK :={π(d)|d ∈ BIω}
rK :={〈π(d),π(d′)〉|(d,d′) ∈ rIω}

Here K is well-defined because Sig(T ′)∩Sig(T) ⊆ {A}
and |AIω | = |AJω | = |ΔK| hence AK = ΔK. It is easy
to show that K is a model of T and of T ′, T ∗ and C.
Thus C is also satisfiable with respect to T ′ ∪T .

3. T ∗ = {A �⊥}
This case is analogous to the case T ∗ = {� � A} ex-
cept that A is interpreted by ∅.

4. T ∗ = {¬(�� A),¬(A �⊥)}
Let I be a model of T ′ ∪T and C and J a model of
T such that AJ �= � and AJ �= ⊥. The existence of
such a model J is guaranteed as T |= T ∗. Now again
we lift both the models to ω obtaining Iω and Jω

respectively. Again we define a bijection π : ΔIω →
ΔJω which satisfies the following:
For any d ∈ ΔIω ,

• if d ∈ AIω , then π(d) = d′ ∈ ΔJω such that d′ ∈ AJω .
• if d ∈ (¬A)Iω , then π(d) = d′ ∈ ΔJω such that d′ ∈

(¬A)Jω .
Note that we can define such a bijection as |AIω | =
|AJω | and |¬AIω | = |¬AJω |. Now we define an inter-
pretation K as follows:

57

4

• ΔK := ΔJω

• For any concept name B and role name r if B and r
are in Sig(T) then

BK :={d|d ∈ BJω}
rK :={(d,d′)|(d,d′) ∈ rJω}

and if B and r in Sig(T ′ ∪{A}) then

BK :={π(d)|d ∈ BIω}
rK :={〈π(d),π(d′)〉|(d,d′) ∈ rIω}

Note that for any d ∈ ΔIω , π guarantees that
if d ∈ AIω (respectively d ∈ (¬A)Iω) then π(d) ∈
AJω (respectively π(d) ∈ (¬A)Jω). Hence K is well-
defined as A is the only common symbol between T ′,
T ∗, C and T . Further, K is a model of T ′∪T and C.
Hence C is satisfiable with respect to T ′ ∪T .

5. T ∗ = {¬(A �⊥)}
As T |= T ∗, all we know about the way A is inter-
preted in a model of T is that A cannot be inter-
preted by the empty set. Thus we have the following
sub-cases:

• A is interpreted by the whole domain i.e., � � A,
therefore the case is analogous to Case 2.

• A is interpreted by some none empty set but not by
� i.e., ¬(A � ⊥) and ¬(� � A) and therefore is
analogous to case 4.

6. T ∗ = {¬(�� A)}
Similar to case 5 except that here we have the follow-
ing sub-cases:

• A is interpreted by the empty set i.e., A � ⊥ hence
can be treated like case 3.

• A is interpreted by some none empty set other than
the domain i.e., ¬(A �⊥) and ¬(�� A) and there-
fore again is analogous to case 4.

7. T ∗ = ∅
This is the most interesting case in the sense that we
don’t know the way concept name A is interpreted
in a model of TBox T . Hence we have to look for all
the possibilities that concept name A is interpreted
in a model of T . Let I be a model of T ′ and C.
Then we have the following sub-cases:

(a) I |= �� A
This means that the concept name A is interpreted
by the whole domain. Hence is analogous to Case
2.

(b) I |= A �⊥
This means that the concept name A is interpreted
by the empty set. Hence is analogous to Case 3.

(c) Neither (a) nor (b)
Let J1 be models of T and A and J2 of T and ¬A.
Models J1 and J2 surely exist because T |= T ∗ and
its not the case that T ∗ = {� � A} or T ∗ = {A �
⊥}. Let J be the disjoint union of J1 and J2.
Then J is a model of T , A and ¬A. By lifting both
I and J to ω, we get Iω, and Jω. Lemma II.2
ensures that Iω is a model of T ′ and C, and Jω a

model of T , A and ¬A. Now we define a bijection
π := ΔIω → ΔJω such that

• if d ∈ AIω then π(d) ∈ AJω

• if d ∈ (¬A)Iω then π(d) ∈ (¬A)Jω

Note that |AIω | = |AJω | = |¬AIω | = |¬AJω |, there-
fore, π is well-defined.
We define an interpretation K as follows:

• ΔK := ΔJω

• For concept name B and role name r if B and r
are in Sig(T) then

BK :={d|d ∈ BJω}
rK :={(d,d′)|(d,d′) ∈ rJω}

and if B and r in Sig(T ′ ∪{A}) then

BK :={π(d)|d ∈ BIω}
rK :={〈π(d),π(d′)〉|(d,d′) ∈ rIω}

Again K is well-defined because Sig(T ′) ∩ Sig(T) ⊆
{A}. Hence K is a model of T . Similarly K is also a
model of T ′, and C. Thus, C is also satisfiable with
respect to T ′ ∪T .

Theorem III.3 shows that when importing a single con-
cept name, say A, in an ontology from some other ontology,
one of the TBoxes in ΠA(as in Theorem III.3) serves as a
module. The important thing here is the relaxation of the
condition for a module being a subset of the original ontol-
ogy. In practical problems when we are only interested in
the conclusion of a TBox only, our notion of signature sub-
stitute reflects a black box behavior of a module(of course,
in the case of import of a single concept name).

IV. Practical Issues

Theorem III.3 shows us that when importing a single
concept name, we don’t get much information in the sense
that the set of TBoxes (as ΠA Thoerem III.3) always re-
mains the same. In literature we come accross algorithms
for extracting module. In case of single concept name im-
port, by using such algorithms we may end up with mod-
ule which is not the minimal i.e.,the extracted module may
contain many other concept names and role names as well.
In contrast, we have shown that for importing a concept
name A, one of the TBoxes in ΠA(as in Theorem III.3)
serves as the required module. Nevertheless, this does not
mean that such algorithms are not of much practical inter-
est. We don’t get much from a single concept name import
when we are interested in consequences of an ontology. But
there are applications (e.g., modeling) where the existing
notions and algorithms are applicable and useful.

The complexity of the task of determining the TBox T ∗

in ΠA (as in Theorem III.3), which fulfills the requirement
of a module, depends on the underlying Description Logic
in which the TBox T (as in Theorem III.3) is formulated.
In general we can perform the task as follows:

• For all T ∗ ∈ Π, check whether T |= T ∗. This can
be done by checking whether T |= C � D for all

58

MODULE EXTRACTION IN ONTOLOGIES: THE CASE OF A SINGLE CONCEPT NAME 5

{C � D} ⊆ T ∗. But there can be at most two GCIs
in a T ∗ ∈ ΠA. Hence this later task is ExpTime-
Complete in ALC for example. Further there are only
six T ∗ ∈ ΠA to be checked. Finally determining the
most specific T ∗ (see Lemma III.4) needs a constant
time. Overall the task of determining TBox T ∗ is
ExpTime-Complete in the case of ALC.

V. Conclusion

In this paper, we have studied the import of a single
concept name for the purpose of reuse. Making a slight
change (i.e. dropping the condition for a module being a
subset of the original ontology) in the notion of modularity,
we have seen that we end up always with the same set of
modules for a single concept name. We have also seen that
our notion of modularity reflects the black-box behavior of
modules. Finally we have seen that the complexity of com-
puting such a module depends on the underlying ontology
language in which the original ontology is formulated.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F
Patel-Schneider. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge Unviersity Press,
2003.

[2] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did i damage
my ontology? a case for conservative extensions in description
logics. In Patrick Doherty, John Mylopoulos, and Christopher A.
Welty, editors, Proceedings of KR2006: the 20th International
Conference on Principles of Knowledge Representation and Rea-
soning, Lake District, UK, June 2–5, 2006, pages 187–197. AAAI
Press, 2006.

[3] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and
Ulrike Sattler. Just the right amount: Extracting modules from
ontologies. In Proceedings of WWW-2007: the 16th International
World Wide Web Conference, Banff, Alberta, Canada, May 8–
12, 2007, 2007. To Appear.

[4] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ul-
rike Sattler. A logical framework for modularity of ontologies. In
Manuela M. Veloso, editor, Proceedings of IJCAI’07: the 20th
International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6–12, 2007, pages 298–303, 2007.

[5] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya
Kalyanpur. Modularity and web ontologies. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors, Proceedings
of KR2006: the 20th International Conference on Principles of
Knowledge Representation and Reasoning, Lake District, UK,
June 2–5, 2006, pages 198–209. AAAI Press, 2006.

[6] Carsten Lutz and Frank Wolter. Conservative extensions in
the lightweight description logic EL. In Frank Pfenning, edi-
tor, Proceedings of the 21th Conference on Automated Deduction
(CADE-21), volume 4603 of Lecture Notes in Artificial Intelli-
gence, pages 84–99. Springer-Verlag, 2007.

59

