
Bahria University Journal of Information & Communication Technology Vol. 1, Issue 1, December 2008

1999-4974 ©2008 BUJICT

Abstract— Keystroke dynamics refers to the timing

information that expresses precisely when each key was
pressed and released as a person types. In this paper, we
present a novel keystroke dynamic recognition system by using
a novel fusion approach. Firstly, we extract four types of
keystroke latency as the feature data from our dataset. We
then calculate their mean and standard deviation to be stored
as template. The test feature data will be transformed into
similarity scores via Gaussian Probability Density Function
(GPD). We also propose a new technique, known as Direction
Similarity Measure (DSM), to measure the trend differential
among each digraph in a phrase. Lastly, various fusion rules
are applied to improve the final result by fusing the scores
produced by GPD and DSM. Best result with equal error rate
of 2.791% is obtained when the AND voting rule is used.

Index Terms—dwell time, flight time, keystroke dynamics,
keystroke latency.

I. INTRODUCTION
Our society today depends heavily on computers; they are
fundamental parts of nearly every aspect of our lives.
Security is a vital component of most computer systems,
especially in E-Commerce activities over the internet. The
most well known and familiar mechanism used to guarantee
the security of the information system is through user
authentication by textual passwords and PINs.

However, this kind of security method is weak in several
aspects. Users tend to have the habit of writing down
passwords and leave them in front of the computer or places
which are highly exposed to the public. Besides, simple
passwords are often easy to guess by using either dictionary
or brute force attacks. In addition, negligent users normally
use fragile passwords commonly composed of date of birth,
phone numbers, nick names, vehicle registration number,
and other clues which are easy to guess. All these aspects
lead to compromise of user passwords without knowledge
of their disclosure.

Biometrics is a unique authentication method which
identifies a person based on his/her physiological or
behavioral characteristics. A physiological characteristic is a
relatively stable physical feature owned by a person, such as
palm print or finger images, facial characteristics, and iris
pattern. Behavioral characteristics are traits that are learned
or acquired like signature, voice, gait, and keystroke

1 Faculty of Information Science and Technology, Multimedia

University,
Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka, Malaysia,
psteh@mmu.edu.my, tsong@mmu.edu.my, tee.connie@mmu.edu.my
2 Electrical and Electronic Engineering Department, Yonsei University,
Seoul, South Korea, bjteoh@yonsei.ac.kr

dynamics. Keystroke dynamics is a behavioral biometric
identification method based on the assumption that
individual type in unique manners. Keystroke dynamics is
an intelligent data processing technique which investigates
the way a user types at a terminal by monitoring the
keyboard inputs with an attempt to identify the user based
on his/her habitual typing patterns. Keystroke dynamics
functions in conjunction with conventional password
authentication to provide extra layer of security to computer
systems. It is non-intrusive and operates in parallel with the
user’s normal activities. Due to the wide social acceptance
of the existing password measure, keystroke dynamics
biometric system is readily to be accepted by the public.
Apart from that, no additional hardware is required as this
technology uses the existing keyboard and hence it is
comparatively cheaper as compared to the other biometric
systems.

In this paper, the main objective is to present and analyze
a fusion approach which combines the score from a new yet
simple method, namely Direction Similarity Measure
(DSM), with the score generated by Gaussian Probability
Density Function (GPD) on keystroke dynamics. This paper
is organized as follows. A review of the previous work is
presented in Section II while Section III introduces the
methodology and algorithm used in this study. Section IV
presents our proposed fusion approach and explain the
fusion rules employed in the experiment. The results are
reported and discussed in Section V. Finally, Section VI
presents and discusses the conclusions and future work.

II. RELATED WORKS
As early as the 1860’s, telegraph was the main method for
long-distance communication. Telegraph operators
recognized each other by the different ways they used to tap
the telegraph keys. Today, the telegraph keys have been
replaced by keyboard. It has been well-known that keyboard
typing patterns of different users are unique among large
population and the distinctive typing dynamics holds
promise as individual identifier [1].

In year 1980, the first research on keystroke dynamics
had been conducted by Gaines et al. [2]. The experiment
involved 6 secretaries as subjects. Each was asked to type
three passages, consisting 300-400 words each, at two
different sessions. The keystroke interval was recorded for
the experiment, and T-test was used to check whether two
populations have the same average and standard deviation.
Although the study achieved noteworthy result, 0% False
Acceptance Rate (FAR) and 4% False Rejection Rate
(FRR), it was impractical in real cases because of the low

Performance Enhancement on Keystroke
Dynamics by Using Fusion Rules
Pin Shen Teh1, Andrew Beng Jin Teoh2, Thian Song Ong1, Connie Tee1

26

number of users involved and the length of text used.
Five years later, Umphress and Williams [3] performed

an experiment on 17 computer programmers. Each of them
were required to type one passage of 1400 words which
served as template, and another passage of 300 words as
verification attempt. They identified the user by comparing
the mean and standard deviation of the keystroke latencies
and digraph between the reference profile and test data.
Modest result of 17% FAR and 30% FRR were obtained.
The major limitation of their experiment was that large
typing string was required for generating reference profile
and testing data.

In 1990, Joyce and Gupta [4] reported promising
approach with 0.25% FAR and 16.67% FRR. The authors
built a mean reference signature for eight sets of users’
keystroke patterns consisting of username, password, first
name, and last name. They then computed the norm of the
test keystroke pattern to the mean reference signature, which
was used to determine if a user was legitimate based on a
predefined threshold.

Bleha and Obaidat [5] used Linear Perceptron as their
classifier to verify the identity of users. The time durations
between keystroke of user’s password was collected. The
data was collected from 10 valid users and 14 invalid users
throughout a period of eight weeks. Half of the sample data
collected was used as training data and the remaining half
for testing. FAR of 8% and FRR of 9% was achieved using
the proposed method.

A neural network approach was employed in year 2000
by Cho et al. [6]. Users typed their passwords for 150 to 400
times within several days. The last 75 timing vectors were
separated for testing purpose. Keystroke duration time and
interval time were used as the feature data in the
experiment. The timing vectors which were determined as
outliers were discarded. Result of 0% FAR and 1% FRR
was reported. However, the research had some limitations.
Firstly it was time consuming to train the model, secondly
the data were preprocessed subjectively by human, and
thirdly, a large data set was required to train the network.

While a lot of research work for keystroke dynamics
focused on text phrase of various lengths, [7] performed
their research on a six digits pin code typed on a numeric-
pad. Their experiment involved 14 people. 50 samples of
users and 13 random chosen imposters were used for
training purpose. A multi-layer perceptron with the back-
propagation learning rule were used. The system was able to
achieve 9.9% FAR and 30% FRR. The main problem of
using neural networks was that it required imposters’
samples for training. Besides, the results suggested that the
approach is not feasible for large scale use.

In [8], the training and testing data were collected from
43 users who type fixed string of length 37 for nine
consecutive times over a period of two months. Monte Carlo
approach was used to generate random simulated data from
the users’ samples. Approximately 19 times of the simulated
data were generated to complement the 387 vectors of raw
data. Four subsets were obtained from the training set which
comprised of raw and simulated data. Wavelet transforms
were performed to obtain a total of eight training subsets for
each user. Parallel decision trees were used to authenticate

users based on their keystroke patterns. A remarkable result
of 0.88% for FAR and 9.62% for FRR was archived in the
research.

Rodrigues et al. [9] implemented Hidden Markov Models
(HMM) as classifier in their research. They limited their
investigation over numerical passwords of length eight.
Twenty people were invited to contribute to this experiment.
Each individual was instructed to type their passwords ten
times in four different sessions, yielding a total of 800
samples. An EER of 3.6% was obtained.

Hosseinzadeh, Krishnan et al. [10] introduced Gaussian
Mixture Models (GMM) in keystroke identification. The
authors claimed that keystroke pattern was harder to
duplicate as compared to written signature. The reason
given was that an imposter had limited number of trials to
test on, as most authentication systems would block further
access if the verification trial exceeded a certain number of
times. A total of 8 subjects were enrolled into their system
by typing their full name ten times. The authors also
suggested that longer text tended to have lower
classification error as it was harder to be reproduced by the
others. This is logical as lower number of characters has
lower complexity pattern and thus can be easily replicated.
Keystroke duration and latency were extracted from the user
samples. The Expectation Maximization (EM) algorithm
was used to train the GMMs separately using the two
extracted keystroke features. Log-likelihood test was
performed on the test vector to obtain a probability on how
close it was as compared to the user template. The
experiment produced superior result of FRR equaled 2.4%
and FAR equaled 2.1%. The advantage of their method was
on its ability to update the user template upon each
successful authentication. However, due to the small
number of subjects tested, the result obtained was not
decisive.

While conventional timing-based typing characteristics
have been widely studied by most of the researchers, [11]
investigated the prospect of using typing pressure. They
combined the global features of pressure sequences and
dynamic time warping with keystroke timing features. The
three methods produced separate scores which were then
combined using weighted sum rule to obtain the final score.
However, they did not indicate how those weights were
allocated. In their experiment, 50 samples were provided by
each of the 100 users. They were able to obtain an EER of
2.04% by using traditional keystroke dynamics, while the
combination with pressure features improved the EER to
1.41%. Although promising result is reported using this
approach, pressure sensitive keyboard is not common in real
life, making it impractical for large scale deployment.
Further more, the percentage of improvement after using
pressure sensitive features is fairly insignificant as
compared to the increase of cost for the pressure sensitive
keyboard.

27

Guven, Akyokus et al. [12] conducted an experiment on a
classifier that resembled neural network like structure for
keystroke recognition. This classifier involved timing
between successive key strikes (keystroke latency) of 16
users. Usually, weights of neural networks are computed
using learning techniques which reduce the variation
between an actual output and predicted output. In this study,
the weights of the neural network like structure were
determined by statistical method which included the mean
and standard deviations of the keystroke latencies. Test
latency was compared to see if they fall within two times the
standard deviation of the reference latency. If all the test
latency fulfilled the criteria then the whole string would be
considered valid. The experiment recorded poor FRR of
17% and FAR of 26%, which is unfavorable for a practical
authentication system. Although the authors attempted to
improve the result by using pre-processing methods such as
outlier removal, their effort was to no avail.

Hocquet, Ramel et al. [13] studied the possibility of
combining three different methods. The first method was
using mean and standard deviation of different instances of
keystroke latency. The second method deployed the
measure of disorder which studied the variation between the
time ranks of two signatures. The last method applied time
discretization, where each latency was quantized into
different levels based on a range of predetermined intervals.
Each method formed a matching score which then
normalized and combined by using weighted sum rule to
obtain the final score. However, no clear indication was
given on which method of normalization was used and how
the weights were determined. The experiment was carried
out on a privately collected database of 38 users consisting
of username and passwords with the length between 8 to 30
characters. The performance of the experiment was recorded
at an EER of approximately 5%.

In this paper, our two proposed methods Gaussian
Probability Density Function (GPD) and Direction
Similarity Measure (DSM) are low in complexity and fast in
computation. We also propose a fusion approach to merge
the scores produced by the said methods which is able to
significantly improve the overall result. Besides, our method
is able to archive a comparative result compare to those in
the literature even with a large number of users involves in
the experiments.

III. METHODOLOGY
In this section, we first discuss the process of data

collection. This is followed by the explanation of keystroke
features extracted from the raw keystroke data collected.
Next, template generation process will be discussed. We
will also explain the two methods for matching the test
keystroke data with the reference template.

A. Data Collection
In this research, a program was developed to capture the

user keystroke timing using Microsoft Visual Basic 6.0. A
total of 100 users are invited to contribute their biometric
typing dynamics to the system. During the data collection
phase, the users are asked to type his or her favorable
username, password and a special fixed line of text (“the

brown fox”) successively for ten times. This special phrase
of text is crucial if we intend to compare different typing
patterns among different users.

Two events occur each time the user type a character on
the keyboard, to be particular the “key press” and “key
release”. Each triggered key event will be coupled with a
timestamp and these timestamps are kept in plain text files
for username, password and special phrase separately.
These files are very small in size and do not consume large
storage space as they are only normal ASCII files. Figure 1
shows an example of the raw keystroke timestamp of a
particular user.

B. Feature Extraction
There are a number of ways to extract and analyze the

keystroke feature data from the raw keystroke data
collected. Some of the examples are keystroke latency,
duration of a key hold, pressure of keystroke, frequency of
word errors, typing speed and typing difficulty. Usually, not

all of these features will be used for testing purpose. In
Figure 2, we illustrate the four types of possible keystroke
features. Most of the keystroke features used in the literature
are D1 and D3. However, we use all of the four features in
our experiment.

1) Dwell Time (D1)
The amount of time on how long a particular key is press

down.

1 1 1D R P= − (1)

2) Flight Time (D2)

The time interval between a key press and the successive
key press.

Fig.1. Sample keystroke timestamp file.

Fig.2. Four types of keystroke features used in our experiment.

28

2 2 1D P P= − (2)

3) Flight Time (D3)
The time interval between a key release and the

successive key press. It may consist of negative value if the
successive key is pressed before a key is released.

3 2 1D P R= − (3)

4) Flight Time (D4)
The time interval between a key release and the

successive key release.

4 2 1D R R= − (4)

C. Template Generation
After obtaining the useful features from the raw keystroke

timing data, template generation process will merge and
compress all the collected keystroke samples into a compact
yet distinctive representation form. These templates
comprise of mean and standard deviation of the keystroke
feature for each character of username, password and fixed
phrase text.

Let a training set of n latencies, 1 2, ,..., nt t t , the mean
μ of the set is defined as

1

1 n

i
i

t
n

μ
=

= ∑ (5)

And standard deviation σ is defined as below

2

1
()

n

i
i

t

n

μ
σ =

−
=

∑
 (6)

These generated templates are kept in database and they
serves as the reference comparison for future verification
uses.

D. Matching
When a new test template is received, a matching

function is formulated to calculate the similarity score
between the test templates against the stored reference
template. We introduce two types of matching function,
which are Gaussian Probability Density Function (GPD)
and Direction Similarity Measure (DSM). The decision
whether to accept a user will base on the score obtained by
these functions. A test signature is considered valid if the
matching score is above a predefine threshold.

1) Gaussian Probability Density Function (GPD)

The mean and standard deviation in the template and
keystroke timing data of a test signature are applied in the
function as below.

()
()2

221
2

t

f t; , e
μ

σμ σ
σ π

−
−

= (7)

μ : Mean of a character from reference template
σ : Standard deviation of a character from reference
template
t : Keystroke timing data of a character from test signature

Since the function is used to calculate how close the value
of reference template and test data template, the output
value is a score ranging from zero to one. The closer the
score towards the value one, the more similar the test
signature will be to the reference template. Hence, we can
simplify the function to the form as shown below.

()2

22

t

GPDScore e
μ

σ

−
−

= (8)

As an example, Figure 3 shows the score of a particular
character “Y”, the test data’s latency is 856 as compared to
the reference template which is 819.857. Thus, a similarity
score of 0.8045 is obtained. We observe that the closer the
latency to the mid of the graph the higher the score
achieved, and vise versa. Matching is performed on each
and every character in a phrase, which will yield separate
individual sub score for each template. The final GPD score

is obtained by calculating the average of all sub scores.
2) Direction Similarity Measure (DSM)

Direction Similarity Measure is a simple yet
discriminative approach. The concept behind this method is

Dwell Time Graph Genuine Vs Genuine

0

100

200

300

400

500

600

700

800

900

T H E B R O W N F O X

Phrase

Ti
m

e
In

te
rv

al

alanots's Template alanots

Fig.4. Comparison of dwell time between user reference template and user’s
own test data.

Fig.3. Matching score of a character “Y” obtain by using GPD.

29

to determine the consistency of users’ typing behavior. Let
ΔD denotes the differentials of D in two consecutive
strokes. ΔD represents the strength of the changes and their
signs represent the type of the change, i.e. plus sign
symbolizes increment, whereas minus sign symbolizes
decrement.

For example, Figure 4 shows the comparison of a user’s
reference template and user’s own keystroke input. We
observe the change of sign in ΔD. If both signs are the
same, we increase the count and vise versa. For example,
the difference of ‘H-E’ in the template is -ve (550-520),
while +ve (500-560) for test data. Since the sign is different,
it will not be counted. Another example is ‘W-N’. The
difference of user template is +ve (590-700) while it is +ve
(570-640) for the test data, both have the same sign
indicating a match. The formula of calculating the Direction
Similarity score is defined as follows.

1DSM
mScore

n
=

−
 (9)

m: Total matches in a phrase
n : Total characters in a phrase

IV. FUSION
By using fusion technique to combine the matching

scores generated by both GPD and DSM, we are able to
archive promising result, which is better than using GPD
and DSM alone. User reference template will be retrieved
from the database to be compared with the claimers’ login
latency. For each matching process, GPD and DSM are used
simultaneously, resulting in two different matching scores.
After each matching component produces a partial score, the
scores are diverted to the fusion component to produce a
final score by using fusion rules. An overview of our fusion
approach can be visualized in Figure 5.

Finally a decision (accept/reject) will be made based upon
the final score. In the fusion stage, six fusion rules are
experimented and each of them is discussed below.

A. Sum rule
Sum rule is one of the simplest and frequently used fixed

fusion rules which form an average final score from two
given matching scores.

2
GPD DSM

final
Score ScoreScore +

= (10)

B. Weighted Sum rule
Instead of assigning a unique weight to each score, a bias

weight w is attached to each score for weighted sum rule.
It is useful if we wish to emphasize one of the score against
the other.

1 2final GPD DSMScore wScore wScore= + (11)

C. Product rule
Product rule has a similar concept to sum rule, where by

the only difference is that the multiplication operator is used
instead of addition.

2
GPD DSM

final
Score ScoreScore = (12)

D. Max rule
Instead of computing an overall score value, Max rule

does no computation but to only choose an optimal score
from the available scores. So, the final score will be the
score with the largest value among the given scores.

(,)final GPD DSMScore MAX Score Score= (13)

E. OR voting rule
OR voting rule does not merge two score values either,

instead it merges the decision made upon the individual
score. A decision on a score will be accepted if it is higher
as compared to a predefine threshold. The final decision will
be “accept” as long as any one of partial score fulfills the
previous mentioned condition. The only possibility where
OR voting rule will produce a reject decision is when both
scores are lower than the threshold.

F. AND voting rule
The way AND voting rule works is similar but stricter

compared to OR voting rule. It will produce an accept
decision only when every scores are above the threshold.

Fig.6. EER of the fusion between GPD and DSM four different keystroke
features.

Fig.5. An overview of our proposed fusion approach.

Fig.7. EER of the fusion between GPD and DSM using six fusion rules with
four different keystroke features.

Fig.6. EER of the fusion between GPD and DSM four different keystroke
features.

30

All the other possible combination will result in a negative
decision.

V. EXPERIMENTS AND DISCUSSIONS
In the experiments, testing was done on user template

with seven training samples against three testing samples.
The testing phase is divided into two parts: (1) Genuine user
testing, and (2) Imposter user testing. In the first phase, each
user’s template is compared with their own testing data
(which is the remaining sample data that is not used for
template generation). The false rejection rate (FRR) is
obtained by taking the ratio of wrongly rejected genuine
user and the total number of comparison made. On the other
hand, during the imposter user testing, each user template is
compared to all the other user testing data. The false
acceptance rate (FAR) is obtained by taking the ratio of
wrongly accepted imposter and the total number of
comparison done. The testing phase is repeated by
comparing the test data template score against a threshold in
the range 0 to 1 with the interval of 0.01. For each threshold
value, we will obtain a value for FAR and FRR. The equal
error rate (EER) is obtained where FAR is closest to FRR.

In order to achieve more reliable result, our experiment
was performed on randomly selected combination of
training and testing data. In each combination, we set ten
different orders of combinations with the number of training
data is seven and number of testing data is three. The final
result is obtained by averaging the EER obtained for each
combination of sample data. All the results discussed in the
later section are portrayed using this final average EER.

By using only GPD on different keystroke features, we
are able to achieve the best EER of 7.72% by using D1. On
the other hand DSM was only able to obtain the best EER of
22.744% using D4. As we can see in Figure 6, GPD out
performs DSM no matter which keystroke feature was used.
Since DSM only compares the difference in sign of each
coupled character instead of the actual value of the latency,
we suspect that this may be the possible reason for the poor
performance of DSM. In another aspect, we notice that D1 is
the best choice to be used as keystroke feature. Based on
Figure 6 and 7, we can draw a conclusion that by using D1
as keystroke feature, better performance can be archived for
most of the methods tested.

After fusion of GPD and DSM was performed on the six

fusion rules, the best result was obtained at EER of 2.791%
using the AND voting rule. This result does not only shows
a drastic improvement of approximately 20% compare to
DSM but also an approximately 5% improvement of GPD.
Figure 8 shows the EER comparison between GPD, DSM,
and after fusion with the six fusion rules.

We notice that all of the fusion rules at least archive a
better result compared to DSM except OR voting rule. The
reason behind the big performance gap between OR and
AND voting rule might be due to the nature of the two
methods GPD and DSM. As we have discussed previously
GPD is able to perform better than DSM, in other words the
chances of GPD accepting an imposter is low while DSM is
higher. Assume a case when GPD rejects an imposter, while
DSM has a higher chance to wrongly accept the imposter. If

OR voting rule is used, the final decision will be to wrongly
accept the imposter. Thus, this results to an overall
degradation of performance. On the other hand, if AND
voting rule is used, the final decision will be accept only
when both GPD and DSM accept a user. Therefore, a
stricter condition reduces the chance to wrongly accept an
imposter hence increases the overall performance.

 Table I summarize the performance comparison between
our method and those discussed in the literature. Most of the
experiment involves less then 50 subjects, thus the
experiment result obtain are not conclusive. The
performance obtained by Lv and Wang [11] is the most
comparative to ours. They perform their experiment on 100
users and yet still able to obtain a good EER of 1.41%.
However, keystroke pressure is used as feature resulting in
the need of an additional pressure sensitive keyboard. The
additional hardware required might have low acceptance
and scalability in real life compared to

ours which only uses normal keyboard.

VI. CONCLUSION AND FUTURE WORKS
As a conclusion, our experiments show that by combining

the scores from two methods, Direction Similarity Measure
(DSM) with the scores obtained using Gaussian Probability
Density Function (GPD), the result can be improved

significantly as compared to using them individually. We
also show in our experiment that using dwell time as
keystroke feature leads to better result then all the other
keystroke latency. As we can see from the result of this
experiment that fusion helps to increase the performance,
future work can be directed on fusing more information i.e.
combining the information of multiple keystroke features
instead of using them separately. Another two issues that
could be investigated are the user gradual change of typing
patterns as well as some special circumstances when the
user is unable to provide their normal typing pattern such as
in the case of hand injury. The two problems will affect the
performance of a keystroke dynamic recognition system.

Fig.8. EER comparison between all methods (fusion and non fusion
approach).

31

REFERENCES
[1] M. S. Obaidat, and B.Sadoun, "Keystroke Dynamics Based

Authentication" in Biometrics: Personal Identification in Networked
Society, Anil Jain et al (Editors), pp. 213-229, Kluwer, MA, 1999.

[2] R. Gaines, W. Lisowski, S. Press, and N. Shapiro, “Authentication by
keystroke timing: Some preliminary results”, The Rand Report R-256-
NSF. Rand Corporation, Santa Monica, CA, 1980.

[3] D. Umphress, and G. Williams, “Identity verification through
keyboard Characteristics”, Int. J. Man-Machine Studies, vol. 23, no. 3,
pp. 263-273, Sept. 1985.

[4] R. Joyce and G. Gupta, “Identity authorization based on keystroke
latencies”, Commun. ACM, vol. 33, no. 2, pp. 168–176, Feb, 1990.

[5] S. Bleha and M.S. Obaidat, “Computer User Verification Using the
Perceptron”, IEEE Trans. Systems, Man, and Cybernetics, vol. 23, no.
3, pp. 900-902, May/June, 1993.

[6] S. Cho, C. Han, D. Han, and H. Kim, “Web-based keystroke dynamics
identity verification using neural network”, Journal of organizational
computing and electronic commerce vol. 10, no.4, pp.295–307, 2000.

[7] T. Ord and S.M. Furnell, "User Authentication for Keypad-Based
Devices Using Keystroke Analysis," Proc. 2nd Int'l Network Conf.
(INC 2000), Plymouth, UK, 2000, pp. 263–272.

[8] Yong Sheng, V. V. Phoha and S. M. Rovnyak, “A parallel decision
tree-based method for user authentication based on keystroke
patterns”. IEEE Transactions on Systems, Man, and Cybernetics, vol.
35, no. 4, pp.826-833, 2005.

[9] Ricardo N. Rodrigues, Glauco F. G. Yared et al., "Biometric Access
Control Through Numerical Keyboards Based on Keystroke
Dynamics", D. Zhang and A.K. Jain (Editors), International
Conference of Biometrics (ICB 2006), LNCS 3832, pp.640-646, 2005.

[10] D. Hosseinzadeh, S. Krishnan and A. Khademi, “Keystroke
identification based on Gaussian Mixture Models,” in Proc. IEEE

Int’l Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2006, vol. 3, pp. 1144-1147.

[11] Lv, H.-R. and W.-Y. Wang, "Biologic Verification Based on
Pressure Sensor Keyboards and Classifier Fusion Techniques."
IEEE Transactions on Consumer Electronics, vol. 52, pp. 1057-
1063, August 2006.

[12] Ozlem Guven , Selim Akyokus , Mitat Uysal and Aykut Guven,
“Enhanced password authentication through keystroke typing
characteristics”, Proceedings of the 25th IASTED International
Multi-Conference: artificial intelligence and applications,
Innsbruck, Austria, February 12-14, 2007, p.317-322.

[13] Hocquet, S., J.-Y. Ramel, et al.,“User Classification for Keystroke
Dynamics Authentication”, Advances in Biometrics, Springer
Berlin / Heidelberg, pp. 531-539, 2006.

TABLE I
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED METHODS AND

EXISTING METHODS

Papers Database
(subjects) Features Result

(EER)
Gaines, Lisowski

et al. [2] 6 D3 2%

Umphress and
Williams [3] 17 D3 5.25%

Joyce and Gupta
[4] 33 D3 6.74%

Bleha and
Obaidat [5] 10 D3 8.5%

Cho, Han et al.
[6] 21 D1,D3 1%

Ord and Furnell
[7] 14 D3 19.95%

Sheng, Phoha et
al. [8] 43 D1,D3 2.25

Rodrigues, Yared
et al. [9] 20 D1,D3 3.6%

Hosseinzadeh,
Krishnan et al.

[10]
8 D1,D3 2.15

Lv and Wang
[11] 100 D1,D3,

pressure 1.41%

Guven, Akyokus
et al. [12] 16 D3 21.5%

Hocquet, Ramel
et al. [13] 38 D1,D3 5%

Our Method 100 D1,D2,D3,D4 2.791%

32

