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Abstract— Keystroke dynamics refers to the timing 

information that expresses precisely when each key was 
pressed and released as a person types. In this paper, we 
present a novel keystroke dynamic recognition system by using 
a novel fusion approach. Firstly, we extract four types of 
keystroke latency as the feature data from our dataset. We 
then calculate their mean and standard deviation to be stored 
as template. The test feature data will be transformed into 
similarity scores via Gaussian Probability Density Function 
(GPD). We also propose a new technique, known as Direction 
Similarity Measure (DSM), to measure the trend differential 
among each digraph in a phrase. Lastly, various fusion rules 
are applied to improve the final result by fusing the scores 
produced by GPD and DSM. Best result with equal error rate 
of 2.791% is obtained when the AND voting rule is used. 
 

Index Terms—dwell time, flight time, keystroke dynamics, 
keystroke latency. 

I. INTRODUCTION 
Our society today depends heavily on computers; they are 
fundamental parts of nearly every aspect of our lives. 
Security is a vital component of most computer systems, 
especially in E-Commerce activities over the internet. The 
most well known and familiar mechanism used to guarantee 
the security of the information system is through user 
authentication by textual passwords and PINs. 

However, this kind of security method is weak in several 
aspects. Users tend to have the habit of writing down 
passwords and leave them in front of the computer or places 
which are highly exposed to the public. Besides, simple 
passwords are often easy to guess by using either dictionary 
or brute force attacks. In addition, negligent users normally 
use fragile passwords commonly composed of date of birth, 
phone numbers, nick names, vehicle registration number, 
and other clues which are easy to guess. All these aspects 
lead to compromise of user passwords without knowledge 
of their disclosure. 

Biometrics is a unique authentication method which 
identifies a person based on his/her physiological or 
behavioral characteristics. A physiological characteristic is a 
relatively stable physical feature owned by a person, such as 
palm print or finger images, facial characteristics, and iris 
pattern. Behavioral characteristics are traits that are learned 
or acquired like signature, voice, gait, and keystroke 
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dynamics. Keystroke dynamics is a behavioral biometric 
identification method based on the assumption that 
individual type in unique manners. Keystroke dynamics is 
an intelligent data processing technique which investigates 
the way a user types at a terminal by monitoring the 
keyboard inputs with an attempt to identify the user based 
on his/her habitual typing patterns. Keystroke dynamics 
functions in conjunction with conventional password 
authentication to provide extra layer of security to computer 
systems. It is non-intrusive and operates in parallel with the 
user’s normal activities. Due to the wide social acceptance 
of the existing password measure, keystroke dynamics 
biometric system is readily to be accepted by the public. 
Apart from that, no additional hardware is required as this 
technology uses the existing keyboard and hence it is 
comparatively cheaper as compared to the other biometric 
systems. 

In this paper, the main objective is to present and analyze 
a fusion approach which combines the score from a new yet 
simple method, namely Direction Similarity Measure 
(DSM), with the score generated by Gaussian Probability 
Density Function (GPD) on keystroke dynamics. This paper 
is organized as follows. A review of the previous work is 
presented in Section II while Section III introduces the 
methodology and algorithm used in this study. Section IV 
presents our proposed fusion approach and explain the 
fusion rules employed in the experiment. The results are 
reported and discussed in Section V. Finally, Section VI 
presents and discusses the conclusions and future work.  

II. RELATED WORKS 
As early as the 1860’s, telegraph was the main method for 
long-distance communication. Telegraph operators 
recognized each other by the different ways they used to tap 
the telegraph keys. Today, the telegraph keys have been 
replaced by keyboard. It has been well-known that keyboard 
typing patterns of different users are unique among large 
population and the distinctive typing dynamics holds 
promise as individual identifier [1].  

In year 1980, the first research on keystroke dynamics 
had been conducted by Gaines et al. [2]. The experiment 
involved 6 secretaries as subjects. Each was asked to type 
three passages, consisting 300-400 words each, at two 
different sessions. The keystroke interval was recorded for 
the experiment, and T-test was used to check whether two 
populations have the same average and standard deviation. 
Although the study achieved noteworthy result, 0% False 
Acceptance Rate (FAR) and 4% False Rejection Rate 
(FRR), it was impractical in real cases because of the low 
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number of users involved and the length of text used. 
Five years later, Umphress and Williams [3] performed 

an experiment on 17 computer programmers. Each of them 
were required to type one passage of 1400 words which 
served as template, and another passage of 300 words as 
verification attempt. They identified the user by comparing 
the mean and standard deviation of the keystroke latencies 
and digraph between the reference profile and test data. 
Modest result of 17% FAR and 30% FRR were obtained. 
The major limitation of their experiment was that large 
typing string was required for generating reference profile 
and testing data. 

In 1990, Joyce and Gupta [4] reported promising 
approach with 0.25% FAR and 16.67% FRR. The authors 
built a mean reference signature for eight sets of users’ 
keystroke patterns consisting of username, password, first 
name, and last name. They then computed the norm of the 
test keystroke pattern to the mean reference signature, which 
was used to determine if a user was legitimate based on a 
predefined threshold. 

Bleha and Obaidat [5] used Linear Perceptron as their 
classifier to verify the identity of users. The time durations 
between keystroke of user’s password was collected. The 
data was collected from 10 valid users and 14 invalid users 
throughout a period of eight weeks. Half of the sample data 
collected was used as training data and the remaining half 
for testing. FAR of 8% and FRR of 9% was achieved using 
the proposed method. 

A neural network approach was employed in year 2000 
by Cho et al. [6]. Users typed their passwords for 150 to 400 
times within several days. The last 75 timing vectors were 
separated for testing purpose.  Keystroke duration time and 
interval time were used as the feature data in the 
experiment. The timing vectors which were determined as 
outliers were discarded. Result of 0% FAR and 1% FRR 
was reported. However, the research had some limitations. 
Firstly it was time consuming to train the model, secondly 
the data were preprocessed subjectively by human, and 
thirdly, a large data set was required to train the network. 

While a lot of research work for keystroke dynamics 
focused on text phrase of various lengths, [7] performed 
their research on a six digits pin code typed on a numeric-
pad. Their experiment involved 14 people. 50 samples of 
users and 13 random chosen imposters were used for 
training purpose. A multi-layer perceptron with the back-
propagation learning rule were used. The system was able to 
achieve 9.9% FAR and 30% FRR. The main problem of 
using neural networks was that it required imposters’ 
samples for training. Besides, the results suggested that the 
approach is not feasible for large scale use. 

In [8], the training and testing data were collected from 
43 users who type fixed string of length 37 for nine 
consecutive times over a period of two months. Monte Carlo 
approach was used to generate random simulated data from 
the users’ samples. Approximately 19 times of the simulated 
data were generated to complement the 387 vectors of raw 
data. Four subsets were obtained from the training set which 
comprised of raw and simulated data. Wavelet transforms 
were performed to obtain a total of eight training subsets for 
each user. Parallel decision trees were used to authenticate 

users based on their keystroke patterns. A remarkable result 
of 0.88% for FAR and 9.62% for FRR was archived in the 
research. 

Rodrigues et al. [9] implemented Hidden Markov Models 
(HMM) as classifier in their research. They limited their 
investigation over numerical passwords of length eight. 
Twenty people were invited to contribute to this experiment. 
Each individual was instructed to type their passwords ten 
times in four different sessions, yielding a total of 800 
samples. An EER of 3.6% was obtained. 

Hosseinzadeh, Krishnan et al. [10] introduced Gaussian 
Mixture Models (GMM) in keystroke identification. The 
authors claimed that keystroke pattern was harder to 
duplicate as compared to written signature. The reason 
given was that an imposter had limited number of trials to 
test on, as most authentication systems would block further 
access if the verification trial exceeded a certain number of 
times. A total of 8 subjects were enrolled into their system 
by typing their full name ten times. The authors also 
suggested that longer text tended to have lower 
classification error as it was harder to be reproduced by the 
others. This is logical as lower number of characters has 
lower complexity pattern and thus can be easily replicated. 
Keystroke duration and latency were extracted from the user 
samples. The Expectation Maximization (EM) algorithm 
was used to train the GMMs separately using the two 
extracted keystroke features. Log-likelihood test was 
performed on the test vector to obtain a probability on how 
close it was as compared to the user template. The 
experiment produced superior result of FRR equaled 2.4% 
and FAR equaled 2.1%. The advantage of their method was 
on its ability to update the user template upon each 
successful authentication. However, due to the small 
number of subjects tested, the result obtained was not 
decisive. 

While conventional timing-based typing characteristics 
have been widely studied by most of the researchers, [11] 
investigated the prospect of using typing pressure. They 
combined the global features of pressure sequences and 
dynamic time warping with keystroke timing features. The 
three methods produced separate scores which were then 
combined using weighted sum rule to obtain the final score. 
However, they did not indicate how those weights were 
allocated. In their experiment, 50 samples were provided by 
each of the 100 users. They were able to obtain an EER of 
2.04% by using traditional keystroke dynamics, while the 
combination with pressure features improved the EER to 
1.41%. Although promising result is reported using this 
approach, pressure sensitive keyboard is not common in real 
life, making it impractical for large scale deployment. 
Further more, the percentage of improvement after using 
pressure sensitive features is fairly insignificant as 
compared to the increase of cost for the pressure sensitive 
keyboard.  
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Guven, Akyokus et al. [12] conducted an experiment on a 
classifier that resembled neural network like structure for 
keystroke recognition. This classifier involved timing 
between successive key strikes (keystroke latency) of 16 
users. Usually, weights of neural networks are computed 
using learning techniques which reduce the variation 
between an actual output and predicted output. In this study, 
the weights of the neural network like structure were 
determined by statistical method which included the mean 
and standard deviations of the keystroke latencies. Test 
latency was compared to see if they fall within two times the 
standard deviation of the reference latency. If all the test 
latency fulfilled the criteria then the whole string would be 
considered valid. The experiment recorded poor FRR of 
17% and FAR of 26%, which is unfavorable for a practical 
authentication system. Although the authors attempted to 
improve the result by using pre-processing methods such as 
outlier removal, their effort was to no avail. 

Hocquet, Ramel et al. [13] studied the possibility of 
combining three different methods. The first method was 
using mean and standard deviation of different instances of 
keystroke latency. The second method deployed the 
measure of disorder which studied the variation between the 
time ranks of two signatures. The last method applied time 
discretization, where each latency was quantized into 
different levels based on a range of predetermined intervals. 
Each method formed a matching score which then 
normalized and combined by using weighted sum rule to 
obtain the final score. However, no clear indication was 
given on which method of normalization was used and how 
the weights were determined. The experiment was carried 
out on a privately collected database of 38 users consisting 
of username and passwords with the length between 8 to 30 
characters. The performance of the experiment was recorded 
at an EER of approximately 5%. 

In this paper, our two proposed methods Gaussian 
Probability Density Function (GPD) and Direction 
Similarity Measure (DSM) are low in complexity and fast in 
computation. We also propose a fusion approach to merge 
the scores produced by the said methods which is able to 
significantly improve the overall result. Besides, our method 
is able to archive a comparative result compare to those in 
the literature even with a large number of users involves in 
the experiments.  

III. METHODOLOGY 
In this section, we first discuss the process of data 

collection. This is followed by the explanation of keystroke 
features extracted from the raw keystroke data collected. 
Next, template generation process will be discussed. We 
will also explain the two methods for matching the test 
keystroke data with the reference template. 

A. Data Collection 
In this research, a program was developed to capture the 

user keystroke timing using Microsoft Visual Basic 6.0. A 
total of 100 users are invited to contribute their biometric 
typing dynamics to the system. During the data collection 
phase, the users are asked to type his or her favorable 
username, password and a special fixed line of text (“the 

brown fox”) successively for ten times. This special phrase 
of text is crucial if we intend to compare different typing 
patterns among different users. 

Two events occur each time the user type a character on 
the keyboard, to be particular the “key press” and “key 
release”. Each triggered key event will be coupled with a 
timestamp and these timestamps are kept in plain text files 
for username, password and special phrase separately. 
These files are very small in size and do not consume large 
storage space as they are only normal ASCII files. Figure 1 
shows an example of the raw keystroke timestamp of a 
particular user.  

B. Feature Extraction 
There are a number of ways to extract and analyze the 

keystroke feature data from the raw keystroke data 
collected. Some of the examples are keystroke latency, 
duration of a key hold, pressure of keystroke, frequency of 
word errors, typing speed and typing difficulty. Usually, not 

all of these features will be used for testing purpose. In 
Figure 2, we illustrate the four types of possible keystroke 
features. Most of the keystroke features used in the literature 
are D1 and D3. However, we use all of the four features in 
our experiment. 

 
 
 

1) Dwell Time (D1) 
The amount of time on how long a particular key is press 

down.  
 

1 1 1D R P= −  (1) 
 
2) Flight Time (D2) 

The time interval between a key press and the successive 
key press.  
 

 
Fig.1. Sample keystroke timestamp file. 

 
Fig.2. Four types of keystroke features used in our experiment. 
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2 2 1D P P= −  (2) 
 

3) Flight Time (D3) 
The time interval between a key release and the 

successive key press. It may consist of negative value if the 
successive key is pressed before a key is released.  

 

3 2 1D P R= −  (3) 
 

4) Flight Time (D4) 
The time interval between a key release and the 

successive key release. 
 

4 2 1D R R= −  (4) 
 

C. Template Generation 
After obtaining the useful features from the raw keystroke 

timing data, template generation process will merge and 
compress all the collected keystroke samples into a compact 
yet distinctive representation form. These templates 
comprise of mean and standard deviation of the keystroke 
feature for each character of username, password and fixed 
phrase text. 

Let a training set of n  latencies, 1 2, ,..., nt t t , the mean 
μ  of the set is defined as 
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And standard deviation σ  is defined as below 
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These generated templates are kept in database and they 
serves as the reference comparison for future verification 
uses. 
 

D. Matching 
When a new test template is received, a matching 

function is formulated to calculate the similarity score 
between the test templates against the stored reference 
template. We introduce two types of matching function, 
which are Gaussian Probability Density Function (GPD) 
and Direction Similarity Measure (DSM). The decision 
whether to accept a user will base on the score obtained by 
these functions. A test signature is considered valid if the 
matching score is above a predefine threshold. 

 
1) Gaussian Probability Density Function (GPD) 

The mean and standard deviation in the template and 
keystroke timing data of a test signature are applied in the 
function as below.  
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μ  : Mean of a character from reference template 
σ  : Standard deviation of a character from reference 
template 
t  : Keystroke timing data of a character from test signature 
 

Since the function is used to calculate how close the value 
of reference template and test data template, the output 
value is a score ranging from zero to one. The closer the 
score towards the value one, the more similar the test 
signature will be to the reference template. Hence, we can 
simplify the function to the form as shown below. 
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As an example, Figure 3 shows the score of a particular 
character “Y”, the test data’s latency is 856 as compared to 
the reference template which is 819.857. Thus, a similarity 
score of 0.8045 is obtained. We observe that the closer the 
latency to the mid of the graph the higher the score 
achieved, and vise versa. Matching is performed on each 
and every character in a phrase, which will yield separate 
individual sub score for each template. The final GPD score 

is obtained by calculating the average of all sub scores. 
2) Direction Similarity Measure (DSM) 

Direction Similarity Measure is a simple yet 
discriminative approach. The concept behind this method is 
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Fig.4. Comparison of dwell time between user reference template and user’s 
own test data. 

 
Fig.3. Matching score of a character “Y” obtain by using GPD. 
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to determine the consistency of users’ typing behavior. Let 
ΔD denotes the differentials of D in two consecutive 
strokes. ΔD represents the strength of the changes and their 
signs represent the type of the change, i.e. plus sign 
symbolizes increment, whereas minus sign symbolizes 
decrement.  

For example, Figure 4 shows the comparison of a user’s 
reference template and user’s own keystroke input. We 
observe the change of sign in ΔD. If both signs are the 
same, we increase the count and vise versa. For example, 
the difference of ‘H-E’ in the template is -ve (550-520), 
while +ve (500-560) for test data. Since the sign is different, 
it will not be counted. Another example is ‘W-N’. The 
difference of user template is +ve (590-700) while it is +ve 
(570-640) for the test data, both have the same sign 
indicating a match. The formula of calculating the Direction 
Similarity score is defined as follows. 

 

1DSM
mScore

n
=

−
 (9) 

m: Total matches in a phrase 
n : Total characters in a phrase 

IV. FUSION 
By using fusion technique to combine the matching 

scores generated by both GPD and DSM, we are able to 
archive promising result, which is better than using GPD 
and DSM alone. User reference template will be retrieved 
from the database to be compared with the claimers’ login 
latency. For each matching process, GPD and DSM are used 
simultaneously, resulting in two different matching scores. 
After each matching component produces a partial score, the 
scores are diverted to the fusion component to produce a 
final score by using fusion rules. An overview of our fusion 
approach can be visualized in Figure 5. 

Finally a decision (accept/reject) will be made based upon 
the final score. In the fusion stage, six fusion rules are 
experimented and each of them is discussed below. 

 

A. Sum rule 
Sum rule is one of the simplest and frequently used fixed 

fusion rules which form an average final score from two 
given matching scores.  

 

2
GPD DSM

final
Score ScoreScore +

=  (10) 

 

B. Weighted Sum rule 
Instead of assigning a unique weight to each score, a bias 

weight w  is attached to each score for weighted sum rule. 
It is useful if we wish to emphasize one of the score against 
the other. 

 

1 2final GPD DSMScore wScore wScore= +  (11) 

 

C. Product rule 
Product rule has a similar concept to sum rule, where by 

the only difference is that the multiplication operator is used 
instead of addition.  

 

2
GPD DSM

final
Score ScoreScore =  (12) 

 

D. Max rule  
Instead of computing an overall score value, Max rule 

does no computation but to only choose an optimal score 
from the available scores. So, the final score will be the 
score with the largest value among the given scores. 

  
( , )final GPD DSMScore MAX Score Score=  (13) 

E. OR voting rule 
OR voting rule does not merge two score values either, 

instead it merges the decision made upon the individual 
score. A decision on a score will be accepted if it is higher 
as compared to a predefine threshold. The final decision will 
be “accept” as long as any one of partial score fulfills the 
previous mentioned condition. The only possibility where 
OR voting rule will produce a reject decision is when both 
scores are lower than the threshold. 

F. AND voting rule 
The way AND voting rule works is similar but stricter 

compared to OR voting rule. It will produce an accept 
decision only when every scores are above the threshold. 

Fig.6. EER of the fusion between GPD and DSM four different keystroke 
features. 

 
 

 
Fig.5. An overview of our proposed fusion approach. 

Fig.7. EER of the fusion between GPD and DSM using six fusion rules with 
four different keystroke features. 

Fig.6. EER of the fusion between GPD and DSM four different keystroke 
features. 
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All the other possible combination will result in a negative 
decision. 

V. EXPERIMENTS AND DISCUSSIONS 
In the experiments, testing was done on user template 

with seven training samples against three testing samples. 
The testing phase is divided into two parts: (1) Genuine user 
testing, and (2) Imposter user testing. In the first phase, each 
user’s template is compared with their own testing data 
(which is the remaining sample data that is not used for 
template generation). The false rejection rate (FRR) is 
obtained by taking the ratio of wrongly rejected genuine 
user and the total number of comparison made. On the other 
hand, during the imposter user testing, each user template is 
compared to all the other user testing data. The false 
acceptance rate (FAR) is obtained by taking the ratio of 
wrongly accepted imposter and the total number of 
comparison done. The testing phase is repeated by 
comparing the test data template score against a threshold in 
the range 0 to 1 with the interval of 0.01. For each threshold 
value, we will obtain a value for FAR and FRR. The equal 
error rate (EER) is obtained where FAR is closest to FRR. 

In order to achieve more reliable result, our experiment 
was performed on randomly selected combination of 
training and testing data. In each combination, we set ten 
different orders of combinations with the number of training 
data is seven and number of testing data is three. The final 
result is obtained by averaging the EER obtained for each 
combination of sample data. All the results discussed in the 
later section are portrayed using this final average EER. 

By using only GPD on different keystroke features, we 
are able to achieve the best EER of 7.72% by using D1. On 
the other hand DSM was only able to obtain the best EER of 
22.744% using D4. As we can see in Figure 6, GPD out 
performs DSM no matter which keystroke feature was used. 
Since DSM only compares the difference in sign of each 
coupled character instead of the actual value of the latency, 
we suspect that this may be the possible reason for the poor 
performance of DSM. In another aspect, we notice that D1 is 
the best choice to be used as keystroke feature. Based on 
Figure 6 and 7, we can draw a conclusion that by using D1 
as keystroke feature, better performance can be archived for 
most of the methods tested. 

 
After fusion of GPD and DSM was performed on the six 

fusion rules, the best result was obtained at EER of 2.791% 
using the AND voting rule. This result does not only shows 
a drastic improvement of approximately 20% compare to 
DSM but also an approximately 5% improvement of GPD. 
Figure 8 shows the EER comparison between GPD, DSM, 
and after fusion with the six fusion rules.  

We notice that all of the fusion rules at least archive a 
better result compared to DSM except OR voting rule. The 
reason behind the big performance gap between OR and 
AND voting rule might be due to the nature of the two 
methods GPD and DSM. As we have discussed previously 
GPD is able to perform better than DSM, in other words the 
chances of GPD accepting an imposter is low while DSM is 
higher. Assume a case when GPD rejects an imposter, while 
DSM has a higher chance to wrongly accept the imposter. If 

OR voting rule is used, the final decision will be to wrongly 
accept the imposter. Thus, this results to an overall 
degradation of performance. On the other hand, if AND 
voting rule is used, the final decision will be accept only 
when both GPD and DSM accept a user. Therefore, a 
stricter condition reduces the chance to wrongly accept an 
imposter hence increases the overall performance. 

 Table I summarize the performance comparison between 
our method and those discussed in the literature. Most of the 
experiment involves less then 50 subjects, thus the 
experiment result obtain are not conclusive. The 
performance obtained by Lv and Wang [11] is the most 
comparative to ours. They perform their experiment on 100 
users and yet still able to obtain a good EER of 1.41%. 
However, keystroke pressure is used as feature resulting in 
the need of an additional pressure sensitive keyboard. The 
additional hardware required might have low acceptance 
and scalability in real life compared to  

 
 

ours which only uses normal keyboard. 

VI. CONCLUSION AND FUTURE WORKS 
As a conclusion, our experiments show that by combining 

the scores from two methods, Direction Similarity Measure 
(DSM) with the scores obtained using Gaussian Probability 
Density Function (GPD), the result can be improved 

significantly as compared to using them individually. We 
also show in our experiment that using dwell time as 
keystroke feature leads to better result then all the other 
keystroke latency. As we can see from the result of this 
experiment that fusion helps to increase the performance, 
future work can be directed on fusing more information i.e. 
combining the information of multiple keystroke features 
instead of using them separately. Another two issues that 
could be investigated are the user gradual change of typing 
patterns as well as some special circumstances when the 
user is unable to provide their normal typing pattern such as 
in the case of hand injury. The two problems will affect the 
performance of a keystroke dynamic recognition system. 

 
 
 
 
 

Fig.8. EER comparison between all methods (fusion and non fusion 
approach). 
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TABLE I 
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED METHODS AND 

EXISTING METHODS 

Papers Database 
(subjects) Features Result 

(EER) 
Gaines, Lisowski 

et al. [2] 6 D3 2% 

Umphress and 
Williams [3] 17 D3 5.25% 

Joyce and Gupta 
[4] 33 D3 6.74% 

Bleha and 
Obaidat [5] 10 D3 8.5% 

Cho, Han et al. 
[6] 21 D1,D3 1% 

Ord and Furnell 
[7] 14 D3 19.95% 

Sheng, Phoha et 
al. [8] 43 D1,D3 2.25 

Rodrigues, Yared 
et al. [9] 20 D1,D3 3.6% 

Hosseinzadeh, 
Krishnan et al. 

[10] 
8 D1,D3 2.15 

Lv and Wang 
[11] 100 D1,D3, 

pressure 1.41% 

Guven, Akyokus 
et al. [12] 16 D3 21.5% 

Hocquet, Ramel 
et al. [13] 38 D1,D3 5% 

Our Method 100 D1,D2,D3,D4 2.791% 
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