Fixed Point Theorem for R-weakly Comuting Hybrid Mappings in Metrically Convex Spaces

Kiran Rathore* and Dr. K. Qureshi**
Deptt. of Mathematics, Barkatillaha University Bhopal, (MP)
**Additional Director, Higher Education Department, Govt. of M. P., Bhopal, (MP)
(Received 11 Feb., 2011, Accepted 12 March., 2011)

Abstract

In this paper we prove a fixed point theorem for two mappings of R-weakly commuting mappings in metrically convex spaces which generalizes the result due to Amit singh [1]. In process, several previous known results due to Imdad and Khan [9,10], Dolhare[5] and Nadler's [11] and others are derived as special cases.

Keywords : Fixed point, metrically convex metric spaces, hybrid contractie condition, R-weakly commuting mappings.

I. INTRODUCTION

As established in fixed point theorems for singlevalued and multi-valued mappings have been studied extensively and applied to diverse problems during the last few years. Imdad and Khan [9,10], Dolhare and Petrusel [5] proved some fixed point theorems for a sequence of set valued mappings which generalize the results due to Khan [7, 8], Ahmad and Khan [3], Amit singh [1] and others. Several authors proved some fixed point theorems for self mappings. Assad and Kirk [4] gave sufficient conditions for non-self mappings to ensure the fixed point proving a result on multi-valued contractions in complete metrically convex metric spaces. The purpose of this paper is to prove some coincidence and common fixed point theorems for a sequence of hybrid type nonself mappings satisfying certain contraction condition by using R-weakly commutatively between multi-valued mappings and singlevalued mappings.

II. PRELIMINARIES

Let (X, d) be a metric space. Then following by Nadler [11], we recall
(i) $C B(X)=\{A: A$ is non-empty closed and bounded subset of X \}
(ii) $C(X)=\{A: A$ is non-empty compact subset of $X\}$
(iii) For non-empty subsets A, B of X and $x \in X, d(x ; A)=\inf \{d(x ; a): a \in A\}$
$H(A ; B)=\max [\{\sup d(a ; B): a \in A\} ;\{\sup d(A . b): b \in B\}]$
It is well known that $C B(X)$ is a metric space with the distance H which is known as Hausdro-Pompeiu metric on X.

The following definitions will be used in the our proof.
Definition 1.1: Let P be a nonempty subset of a metric space $(X, d), T: P \rightarrow X$ and $F: P \rightarrow C B(X)$. The pair $(F$,
T) is said to be point wise R-weakly commuting on P if for given $x \in P$ and $T x \in P$, there exists some $R=R(x)>0$ such that $d(T y, F T x) \leq R, d(T x, F x)$ for each $y \in P \cap F x$.

Moreover, the pair (F, T) will be called R-weakly commuting on K if holds for each $x \in P, T x \in P$ with some $R>0$.

If $R=1$, we get the definition of weak commutatively of (F, T) on P due to Hadzic [12, 13] and Gajic [6]. For $K=X$ reduces to "point wise R-weakly commutatively" for single valued self mappings .

Definition 2.2: Let K be a nonempty subset of a metric space $(x, d), T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The pair (F, T) is said to be quasi-coincidentally commuting if for all coincidence points " x " of $(T, F), T F x \in F T x$ whenever $F x \in K$ and $T x \in K$ for all $x \in K$.

Definition 2.3: Let (X, d) be a complete metric space and let T be a mapping from X into $C B(X)$ such that for all $x, y \in X, H d(T x, T y) \leq r d(x, y)$ where, $0 \leq \mathrm{r}<1$. Then T has a fixed point.

Definition 2.4: Let K be a non-empty subset of a metric space $(X ; d) ; T: K \rightarrow X$ and $F: K \rightarrow C B(X)$. The p a i r (F, T) is said to be weakly commuting if for every $x ; y \in K$ with $x \in F y$ and $T y \in K$, we have

$$
d(T x ; F T y)=d(T y ; F y)
$$

In this Paper, we prove the following theorem :

Amit singh [1] proved the following theorem :

Theorem A: Let (X, d) be a complete metrically convex metric space and K is nonempty closed subset of X.

Let $\left\{F_{n}\right\}_{n=1}^{\infty}: K \rightarrow C B(X)$ and $S, T: K \rightarrow X$
Satisfying
(i) $\delta K \subseteq S K \cap T K, F_{i}(K) \cap K \subseteq S K, F_{j}(K) \cap K \subseteq T K$
(ii) $\left(F_{i}, T\right)$ and $\left(F_{j}, S\right)$ are point wise R-weakly commuting pairs.
(iii) $T x \in \delta K \Rightarrow F_{i}(x) \subseteq K, S x \in \delta K \Rightarrow F_{j}(x) \subseteq K$ and
$H\left[F_{i}(x), F_{j}(y)\right] \leq a d(T x, S y)+b_{\max }$
$\left\{d\left(T x, F_{i}(y)\right\}, d\left\{\left(S y, F_{j}(y)\right\}+c_{\max }\right.\right.$
$\left\{d(T x, S y), d\left(T x, F_{i}(x)\right\}, d_{l}\left(S y, F_{j}(y)\right\}\right.$
where $i=2 n-1, j=2 n, \quad(n \in N), i \neq j$ for all $x, y \in K$ with $x \neq y, a, b \geq 0$ and $\left\{(a+2 b+2 c)+\left(a^{2}+a b\right.\right.$ $+a c) / q\}<q<1$.
(iv) $\left\{F_{n}\right\}, S$ and T are continuous on K.

Then $\left(F_{i}, S\right)$ and $\left(F_{j}, T\right)$ have a point of coincidence.
Theorem B: Let (X, d) be a complete metrically convex metric space and P is nonempty closed subset of X. Let

$$
\left\{F_{n}\right\}_{n=1}^{\infty} P \rightarrow C B(X) \text { and } S, T, M: P \rightarrow X \text { satisfying }
$$

(i) $\delta P \subseteq S P \cap T P \cap M P, F_{i}(P) \cap P \subseteq S P$,

$$
F_{j}(P) \cap P C \subseteq T P, F_{k}(P) \cap P \subseteq M P
$$

(ii) $\left(F_{i}, S\right)$ and $\left(F_{j}, T\right)$ are point wise R-weakly commuting pairs.
(iii) $\quad T x \in \delta P \Rightarrow F_{i}(x) \subseteq P, S x \in \delta P \Rightarrow F_{j}(x) \subseteq P$ and $H\left[F_{i}(x), F_{j}(y)\right] \leq a d(T x, S y)+b_{\max }\left\{d\left(T x, F_{j}(y)\right\}\right.$
where $i=n-1, j=n,(n \in I), i \neq j$ for all $x, y \in P$ with $x \neq y, a, b \geq 0$
(iv) $\left\{F_{n}\right\}, S, T$ and M are continuous on P.

Then $\left(F_{i}, S\right),\left(F_{j}, \mathrm{~T}\right)$ and $\left(F_{k}, M\right)$ have a point of coincidence

Proof: Firstly we proceed to construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the following way:

Let $x \in \delta P$. Since $\delta P \subseteq T P$ there exists a point $x_{0} \in P$ such that $x=S x_{0}$. From the implication $S x_{0} \in \delta P$ which implies $F_{1}\left(x_{0}\right) \subseteq F_{1}(P) \cap P \subseteq S P$.

Since $y_{1} \in F_{1}\left(x_{0}\right)$ there exists a point $y_{2} \in F_{2}\left(x_{1}\right)$ such that $g \cdot d\left(y_{1}, y_{2}\right) \leq H\left[F_{1}\left(x_{0}\right), F_{2}\left(x_{1}\right)\right]$.

Suppose $\quad y_{1} \in P$. Then $y_{1} \in F_{1}(P) \cap P \subseteq S P$ implies that there exists a point $x_{1} \in P$ such that $y_{1} \in S x_{1}$.

Otherwise, if $y_{1} \notin P$, then there exists a point $p \in \delta P$ such that $d\left(S x_{0}, p\right)+d\left(p, y_{1}\right)=d\left(S x_{0}, y_{1}\right)$.

Since $p \in \delta P \subseteq S P$, there exists a point $x_{1} \in P$ with $p=S x_{1}$ so that $d\left(S x_{0}, T x_{2}\right)+d\left(T x_{2}, y_{1}\right)=d\left(S x_{0}, y_{1}\right)$

Let $y_{2} \in F_{2}\left(x_{1}\right)$ be such that $g . d\left(y_{1}, y_{2}\right), H\left[F_{1}\left(x_{0}\right)\right.$, $\left.F_{2}\left(x_{1}\right)\right]$.

Thus on repeating the foregoing arguments, we obtain two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that
(v) $y_{n} \in F_{n}\left(x_{n-1}\right), y_{n+1} \in F_{n+1}\left(x_{n}\right)$
(vi) $y_{n} \in P \Rightarrow y_{n}=T x_{n}$
or $\quad y_{n} \notin P \Rightarrow T x_{n} \in \delta P$
and $d\left(S x_{n-1}, T x_{n}\right)+d\left(T x_{n}, y_{n}\right)=d\left(S x_{n-1}, y_{n}\right)$
(vii) $y_{n+1} \in P \Rightarrow y_{n+1}=S x_{n+1} \quad$ or $\quad y_{n+1} \notin P S x_{n+1} \in \delta P$ and $d\left(T x_{n}, S x_{n+1}\right)+d\left(S x_{n+1}, y_{n+1}\right)=d\left(T x_{n}, y_{n+1}\right)$

Now we represent
$A_{0}=\left\{T x_{i} \in T x_{n}\right\}: T x_{i}=y_{i}$
$A_{1}=\left\{T x_{i} \in T x_{n}\right\}: T x_{i} \neq y_{i}$
$B_{0}=\left\{S x_{i+1} \in S x_{n+1}\right\}: S x_{i+1}=y_{i+1}$
$B_{1}=\left\{S x_{i+1} \in S x_{n+1}\right\}: T x_{i+1} \neq y_{i+1}$
First we show that $\left(T x_{n}, S x_{n+1}\right) \notin A_{1} \times B_{1}$ and $\left(S x_{n-1}, T x_{n}\right) \notin B_{1} \times A_{1}$.

If $T x_{n} \in A_{1}$, then $y_{2} \neq T x_{n}$ and we have
$T x_{n} \in \delta P$ which implies that

$$
y_{n+1} \in F_{n+1}\left(x_{n}\right) \subseteq P . \text { Hence } y_{n+1}=S x_{n+1} \in B_{0}
$$

Similarly, we can say that
$\left(S x_{n-1}, T x_{n}\right) \notin B_{1} \times A_{1}$.
Now we have the following two cases :
Case 1: If $\left(T x_{n}, S x_{n+1}\right) \in A_{0} \times B_{0}$, then
$g d\left(T x_{n}, S x_{n+1}\right) \leq H\left[F_{n+1}\left(x_{n}\right), F_{n}\left(x_{n-1}\right)\right] \leq a d\left(T x_{n}, S x_{n-1}\right)+$ $\mathrm{b}_{\max }\left\{d\left(T x_{n}, F_{n+1}\left(x_{n}\right)\right), d\left\{\left(S x_{n-1}, F_{n}\left(x_{n-1}\right)\right\} \leq \operatorname{ad}\left(y_{n}, y_{n-1}\right)+\right.\right.$ $b_{\max }\left\{d\left(y_{n}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right)\right\}$ which is also represent
$d\left(T x_{n}, S x_{n+1}\right) \leq(a+b) / \operatorname{g.d}\left(S x_{n-1}, T_{n}\right)$, if $d\left(y_{n-1}, y_{n}\right) \geq$ $d\left(y_{n+1}, y_{n}\right)$
or $d\left(T x_{n}, S x_{n+1}\right) \leq h d\left(S x_{n-1}, T_{n}\right)$
where $h=\max (a+b) / \mathrm{g}<1$
Similarly if $\left(S_{n-1}, T x_{n}\right) \in B_{0} \times A_{0}$, then
$d\left(S_{n-1}, T x_{n}\right) \leq(a+b) / \operatorname{g.d}\left(S x_{n-1}, T_{n-2}\right)$, if $d\left(y_{n-2}, y_{n-1}\right)$ $\geq d\left(y_{n-1}, y_{n}\right)$
or $d\left(S x_{n-1}, T x_{n}\right) \leq h . d\left(S x_{n-1}, T_{n-2}\right)$
where $h=\max (a+b) / g<1$.
Case 2: If $\left(T x_{n}, S x_{n+1}\right) \in A_{0} \times B_{1}$, then
$d\left(T x_{n}, S x_{n+1}\right)+d\left(S x_{n+1}, y_{n+1}\right)=d\left(T x_{n}, y_{n+1}\right)$
which is also represent
$d\left(T x_{n}, S x_{n+1}\right) \leq d\left(T x_{n}, y_{n+1}\right)=d\left(y_{n}, y_{n+1}\right)$ and hence
$g \cdot d\left(T x_{n}, S x_{n+1}\right) \leq g \cdot d\left(y_{n}, y_{n+1}\right) \leq H\left[F_{n+1}\left(x_{n}\right), F_{n}\left(x_{n-1}\right)\right]$.
Therefore combining above inequalities, we have

$$
\begin{aligned}
& d\left(T x_{n}, S x_{n+1}\right) \leq k \cdot d\left(S x_{n-1}, T x_{n-2}\right) \\
& \text { where } k=\max \{(a+b) / g,(g+a+b) / g\}<1
\end{aligned}
$$

Similarly one can establish the other inequalities as well. Thus in all the cases we have

$$
d\left(T x_{n}, S x_{n+1}\right) \leq k_{\max }\left\{d\left(S x_{n-1}, T x_{n}\right), d\left(T x_{n-2}, S x_{n-1}\right)\right\}
$$

whereas

$$
d\left(T x_{n+1}, S x_{n+1}\right) \leq k_{\max }\left\{d\left(S x_{n-1}, T x_{n}\right), d\left(T x_{n}, S x_{n-1}\right)\right\}
$$

Now on the lines of Assad and Kirk [4], it can be shown by induction that for $n=1$, wehave

$$
d\left(T x_{n+1}, S x_{n+1}\right) \leq k^{n / 2} \mu, d\left(S x_{n+1}, T x_{n+2}\right) \leq k^{n / 2+1} \cdot \mu
$$

whereas

$$
\mu=k^{-1} \max \left\{d\left(T x_{0}, S x_{1}\right), d\left(S x_{1}, T x_{2}\right)\right\}
$$

Thus the sequence
$\left\{T x_{0}, S x_{1}, T x_{2}, S x_{3}, \ldots T x_{n}, S x_{n+1}\right\}$ is a Cauchy sequence and hence converges to a point z in X. Now we assume that there exists a subsequence $\left\{T x_{n k}\right\}$ of $\left\{T x_{n}\right\}$ which is contained in A_{0}. Further subsequences $\left\{T x_{n k}\right\}$ and $\left\{S x_{n k+1}\right\}$ both converge to $z \in P$ as P is closed subset of the complete metric space (X, d). Since $T x_{n k} \in F_{j}\left(x_{n k-1}\right)$.

For every even integers $j \in I$ and $S x_{n k-1} \in P$ using point wise R-weakly commutatively of $\left(F_{j}, S\right)$ we have

$$
d\left[S F_{j}\left(x_{n k-1}\right), F_{j}\left(S x_{n k-1}\right)\right] \leq R_{1} d\left[F_{j}\left(x_{n k-1}\right), S x_{n k-1}\right] \text { for every }
$$ even integer $j \in I$ with some $R_{1}>0$. Also

$$
\begin{aligned}
& d\left[S F_{j}\left(x_{n k-1}\right), F_{j}(z)\right] \leq d\left[S F_{j}\left(x_{n k-1}\right),\right. \\
& \left.F_{j}\left(S x_{n k-1}\right)\right]+H\left[F_{j}\left(x_{n k-1}\right), F_{j}(z)\right]
\end{aligned}
$$

Making $k \rightarrow \infty$ in above two conditions and using the continuity of S and F_{j}, we get $d\left\{S z, F_{j}(z)\right\} \leq 0$ yielding thereby $S_{z \in} F_{j}(z)$, for any even integer $j \in \mathrm{I}$. Using point wise R-weak commutatively of $\left(F_{i}, T\right)$ we have
$d\left\{T F_{i}\left(x_{n k}\right)\right\}, F_{i}\left(T x_{n k}\right) \leq R_{2} d\left(F_{i}\left(x_{n k}\right), T x_{n k}\right)$ for every odd integer $i \in I$ with some $R_{2}>0$, besides

$$
d\left[T F_{i}\left(x_{n k}\right), F_{i}(z)\right] \leq d\left[T F_{i}\left(x_{n k}\right), F_{i}\left(\mathrm{~T} x_{n k}\right)\right]+H\left[F_{i}\left(x_{n k}\right), F_{i}(z)\right]
$$

Therefore as earlier the continuity of F_{i} and T implies $d\{T z, F(z)\} \leq 0$ yielding thereby $T z \in F_{i}(z)$, for any odd
integer $i \in I$ as $k \rightarrow \infty$.
If we assume that there exists a subsequence $\left\{S x_{n k+1}\right\}$ contained in B_{0}, then above inequalities establish the earlier conclusions.

Remark

If we put $c=0$ in theorem A then we get theorem B.

AKNOWLEDGEMENT

I am thankful to Dr. K. Qureshi, Additional Director, Higher Education Department, Govt. of M. P., Bhopal for his valuable suggestions and guidance during the preparation of my paper.

REFERENCES

[1] Amit singh. On common fixed point of mappings and multi valued map-pings volume 2, number 4, 2009, 135145.
[2] A. Ahmad and M. Imdad. Some common fixed point theorems for mappings and multi valued mappings. J. Math. Anal. Appl., 218(2): (1998), pp. 546-560.
[3] A. Ahmad and A.R. Khan. Some common fixed point theorems foe non-self hybrid contractions. J. Math. Anal. Appl., 213(1): 1997, pp. 275-286.
[4] N.A. Assad and W.A. Kirk. Fixed point theorems for setvalued mappings of contractive type. J. Math., 43(3): (1972), pp. 553-562, (1972).
[5] U.P. Dolhare and A. Petrusel. Some common fixed point theorems for sequence of nonself multi valued operators in metrically convex metric spaces. Fixed Point Theorey, 4(2): pp. 143-158, (2003).
[6] Lj. Gajic. Coincidence points for set-valued mappings in convex metric spaces. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 16(1): pp.13-25, (1986).
[7] M.S. Khan. Common fixed point theorems for multi valued mappings. J. Math., 95(2), pp. 337-347, (1981).
[8] M.S. Khan and M.D. Khan. Some fixed point theorems in metrically convex spaces. Georgian Math. J., 7(3): 2000, pp. 523-530.
[9] M. Imdad and A. Ahmad, On common fixed point of mappings and set-valued mappings with some weak conditions of commutatively, Pub 1. Math. Debrecen 44(1994): number 1-2, 105-114.
[10] M. Imdad, A. Ahmad, and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat. 10 (2001), number 2, 233244.
[11] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30(1969): number 2, 475-488.
[12] O. Hadzic, On coincidence points in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 19(1986), no. 2, 233-240.
[13] O. Hadzic and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces,Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 16(1986): number 1, 13-25.

