Fixed Point Theorem for *R*-weakly Comuting Hybrid Mappings in Metrically Convex Spaces

Kiran Rathore* and Dr. K. Qureshi**

Deptt. of Mathematics, Barkatillaha University Bhopal, (MP) **Additional Director, Higher Education Department, Govt. of M. P., Bhopal, (MP) (Received 11 Feb., 2011, Accepted 12 March., 2011)

ABSTRACT : In this paper we prove a fixed point theorem for two mappings of R-weakly commuting mappings in metrically convex spaces which generalizes the result due to Amit singh [1]. In process, several previous known results due to Imdad and Khan [9,10], Dolhare [5] and Nadler's [11] and others are derived as special cases.

Keywords : Fixed point, metrically convex metric spaces, hybrid contractie condition, R-weakly commuting mappings.

I. INTRODUCTION

As established in fixed point theorems for singlevalued and multi-valued mappings have been studied extensively and applied to diverse problems during the last few years. Imdad and Khan [9,10], Dolhare and Petrusel [5] proved some fixed point theorems for a sequence of set valued mappings which generalize the results due to Khan [7, 8], Ahmad and Khan [3], Amit singh [1] and others. Several authors proved some fixed point theorems for self mappings. Assad and Kirk [4] gave sufficient conditions for non-self mappings to ensure the fixed point proving a result on multi-valued contractions in complete metrically convex metric spaces. The purpose of this paper is to prove some coincidence and common fixed point theorems for a sequence of hybrid type nonself mappings satisfying certain contraction condition by using R-weakly commutatively between multi-valued mappings and singlevalued mappings.

II. PRELIMINARIES

Let (X, d) be a metric space. Then following by Nadler [11], we recall

(i) $CB(X) = \{A: A \text{ is non-empty closed and bounded subset of } X\}$

(*ii*) $C(X) = \{A: A \text{ is non-empty compact subset of } X\}$

(*iii*) For non-empty subsets A, B of X and $x \in X, d(x; A) = \inf\{d(x; a) : a \in A\}$

 $H(A; B) = \max[\{\sup d(a; B) : a \in A\}; \{\sup d(A,b) : b \in B\}]$

It is well known that CB(X) is a metric space with the distance H which is known as Hausdro-Pompeiu metric on X.

The following definitions will be used in the our proof.

Definition 1.1: Let *P* be a nonempty subset of a metric space $(X, d), T : P \to X$ and $F : P \to CB(X)$. The pair $(F, P) \to CB(X)$ is the pair $(F, P) \to CB(X)$ is the pair of the pair

T) is said to be point wise R-weakly commuting on P if for given $x \in P$ and $T \ x \in P$, there exists some R = R(x) > 0 such that $d(Ty, FTx) \le R, d(Tx, Fx)$ for e a c h $y \in P \cap F x$.

Moreover, the pair (F, T) will be called R-weakly commuting on *K* if holds for each $x \in P, Tx \in P$ with some R > 0.

If R = 1, we get the definition of weak commutatively of (F, T) on P due to Hadzic [12, 13] and Gajic [6]. For K = X reduces to "point wise R-weakly commutatively" for single valued self mappings.

Definition 2.2: Let *K* be a nonempty subset of a metric space $(x,d),T: K \to X$ and $F: K \to CB(X)$. The pair (F, T) is said to be quasi-coincidentally commuting if for all coincidence points "*x*" of (T, F), $TF_X \in FT_X$ whenever $F_X \in K$ and $T_X \in K$ for all $x \in K$.

Definition 2.3: Let (X, d) be a complete metric space and let *T* be a mapping from *X* into CB(X) such that for all $x, y \in X$, $Hd(Tx, Ty) \le rd(x, y)$ where, $0 \le r < 1$. Then *T* has a fixed point.

Definition 2.4: Let *K* be a non-empty subset of a metric space (*X*; *d*); $T: K \to X$ and $F: K \to CB(X)$. The p a i r (*F*, *T*) is said to be weakly commuting if for every $x; y \in K$ with $x \in Fy$ and $Ty \in K$, we have

d(Tx; FTy) = d(Ty; Fy)

In this Paper, we prove the following theorem :

Amit singh [1] proved the following theorem :

Theorem *A*: Let (X, d) be a complete metrically convex metric space and *K* is nonempty closed subset of *X*.

Let
$$\{F_n\}_{n=1}^{\infty} : K \to CB(X)$$
 and $S, T : K \to X$
Satisfying

(i)
$$\delta K \subseteq SK \cap TK, F_i(K) \cap K \subseteq SK, F_j(K) \cap K \subseteq TK$$

(*ii*) (F_i, T) and (F_j, S) are point wise *R*-weakly commuting pairs.

(*iii*) $Tx \in \delta K \Rightarrow F_i(x) \subseteq K, Sx \in \delta K \Rightarrow F_j(x) \subseteq K$ and $H[F_i(x), F_j(y)] \le ad(Tx, Sy) + b_{max}$ $\{d(Tx, F_i(y)), d\{(Sy, F_j(y)\} + c_{max}\}$ $\{d(Tx, Sy), d(Tx, F_i(x)), d\{(Sy, F_j(y)\}\}$ where $i = 2n - 1, j = 2n, (n \in N), i \ne j$ for all

 $x, y \in K$ with $x \neq y, a, b \ge 0$ and $\{(a + 2b + 2c) + (a^2 + ab + ac)/q\} < q < 1.$

(*iv*) $\{F_n\}$, S and T are continuous on K.

Then (F_i, S) and (F_i, T) have a point of coincidence.

Theorem B: Let (X, d) be a complete metrically convex metric space and P is nonempty closed subset of X. Let

 $\{F_n\}_{n=1}^{\infty} P \to CB(X) \text{ and } S, T, M : P \to X \text{ satisfying}$ (*i*) $\delta P \subseteq SP \cap TP \cap MP, F_i(P) \cap P \subseteq SP,$ $F_j(P) \cap PC \subseteq TP, F_k(P) \cap P \subseteq MP$

(*ii*) (F_i , S) and (F_j , T) are point wise *R*-weakly commuting pairs.

(*iii*) $Tx \in \delta P \Rightarrow F_i(x) \subseteq P, Sx \in \delta P \Rightarrow F_j(x) \subseteq P$ and $H[F_i(x), F_j(y)] \le ad(Tx, Sy) + b_{\max}\{d(Tx, F_j(y))\}$

where i = n - 1, j = n, $(n \in I)$, $i \neq j$ for all $x, y \in P$ with $x \neq y, a, b \ge 0$

(*iv*) $\{F_n\}$, S,T and M are continuous on P.

Then (F_i, S) , (F_j, T) and (F_k, M) have a point of coincidence

Proof: Firstly we proceed to construct two sequences $\{x_n\}$ and $\{y_n\}$ in the following way:

Let $x \in \delta P$. Since $\delta P \subseteq TP$ there exists a point $x_0 \in P$ such that $x = Sx_0$. From the implication $Sx_0 \in \delta P$ which implies $F_1(x_0) \subseteq F_1(P) \cap P \subseteq SP$.

Since $y_1 \in F_1(x_0)$ there exists a point $y_2 \in F_2(x_1)$ such that $g.d(y_1, y_2) \le H[F_1(x_0), F_2(x_1)]$.

Suppose $y_1 \in P$. Then $y_1 \in F_1(P) \cap P \subseteq SP$ implies that there exists a point $x_1 \in P$ such that $y_1 \in Sx_1$. Otherwise, if $y_1 \notin P$, then there exists a point $p \in \delta P$ such that $d(Sx_0, p) + d(p, y_1) = d(Sx_0, y_1)$.

Since $p \in \delta P \subseteq SP$, there exists a point $x_1 \in P$ with $p = Sx_1$ so that $d(Sx_0, Tx_2) + d(Tx_2, y_1) = d(Sx_0, y_1)$

Let $y_2 \in F_2(x_1)$ be such that $g.d(y_1, y_2)$, $H[F_1(x_0), F_2(x_1)]$.

Thus on repeating the foregoing arguments, we obtain two sequences $\{x_n\}$ and $\{y_n\}$ such that

$$\begin{aligned} (v) \quad y_n \in F_n(x_{n-1}), y_{n+1} \in F_{n+1}(x_n) \\ (vi) \quad y_n \in P \Rightarrow y_n = Tx_n \\ \text{or} \qquad y_n \notin P \Rightarrow Tx_n \in \delta P \\ \text{and} \quad d(Sx_{n-1}, Tx_n) + d(Tx_n, y_n) = d(Sx_{n-1}, y_n) \end{aligned}$$

 $(vii) \quad y_{n+1} \in P \Longrightarrow y_{n+1} = Sx_{n+1} \text{ or } y_{n+1} \notin PSx_{n+1} \in \delta P$ and $d(Tx_n, Sx_{n+1}) + d(Sx_{n+1}, y_{n+1}) = d(Tx_n, y_{n+1})$

Now we represent

$$A_{0} = \{Tx_{i} \in Tx_{n}\}: Tx_{i} = y_{i}$$

$$A_{1} = \{Tx_{i} \in Tx_{n}\}: Tx_{i} \neq y_{i}$$

$$B_{0} = \{Sx_{i+1} \in Sx_{n+1}\}: Sx_{i+1} = y_{i+1}$$

$$B_{1} = \{Sx_{i+1} \in Sx_{n+1}\}: Tx_{i+1} \neq y_{i+1}$$

First we show that $(Tx_n, Sx_{n+1}) \notin A_1 \times B_1$ and $(Sx_{n-1}, Tx_n) \notin B_1 \times A_1$.

If $Tx_n \in A_1$, then $y_2 \neq Tx_n$ and we have

 $Tx_n \in \delta P$ which implies that

$$y_{n+1} \in F_{n+1}(x_n) \subseteq P$$
. Hence $y_{n+1} = Sx_{n+1} \in B_0$

Similarly, we can say that

 $(Sx_{n-1}, Tx_n) \notin B_1 \times A_1.$

Now we have the following two cases :

Case 1: If $(Tx_n, Sx_{n+1}) \in A_0 \times B_0$, then

 $\begin{array}{l} gd(Tx_n, Sx_{n+1}) \leq H[F_{n+1}(x_n), F_n(x_{n-1})] \leq ad(Tx_n, Sx_{n-1}) + \\ b_{\max}\{d(Tx_n, F_{n+1}(x_n)), d\{(Sx_{n-1}, F_n(x_{n-1})\} \leq ad(y_n, y_{n-1}) + \\ b_{\max}\{d(y_n, y_{n+1}), d(y_{n-1}, y_n)\} \text{ which is also represent} \end{array}$

 $d(Tx_n, Sx_{n+1}) \le (a + b) / g.d(Sx_{n-1}, T_n), \text{ if } d(y_{n-1}, y_n) \ge d(y_{n+1}, y_n)$

or $d(Tx_n, Sx_{n+1}) \le hd(Sx_{n-1}, T_n)$ where $h = \max(a + b) / g < 1$

Similarly if $(S_{n-1}, Tx_n) \in B_0 \times A_0$, then

 $\begin{aligned} &d(S_{n-1},\,Tx_n) \leq (a+b) \; / \; g.d(Sx_{n-1},\,T_{n-2}), \; \text{if} \; d(y_{n-2},\,y_{n-1}) \\ &\geq d(y_{n-1},\,y_n) \end{aligned}$

or $d(Sx_{n-1}, Tx_n) \le h.d(Sx_{n-1}, T_{n-2})$ where $h = \max(a + b) / g < 1$. **Case 2:** If $(Tx_n, Sx_{n+1}) \in A_0 \times B_1$, then $d(Tx_n, Sx_{n+1}) + d(Sx_{n+1}, y_{n+1}) = d(Tx_n, y_{n+1})$ which is also represent $d(Tx_n, Sx_{n+1}) \le d(Tx_n, y_{n+1}) = d(y_n, y_{n+1})$ and hence

 $g.d(Tx_n, Sx_{n+1}) \le g.d(y_n, y_{n+1}) \le H[F_{n+1}(x_n), F_n(x_{n-1})].$

Therefore combining above inequalities, we have

 $d(Tx_n, Sx_{n+1}) \le k.d(Sx_{n-1}, Tx_{n-2})$

where $k = \max\{(a + b) / g, (g + a + b) / g\} < 1$

Similarly one can establish the other inequalities as well. Thus in all the cases we have

$$d(Tx_n, Sx_{n+1}) \le k_{\max} \{ d (Sx_{n-1}, Tx_n), d(Tx_{n-2}, Sx_{n-1}) \}$$

whereas

$$d(Tx_{n+1}, Sx_{n+1}) \le k_{\max}\{d (Sx_{n-1}, Tx_n), d(Tx_n, Sx_{n-1})\}$$

Now on the lines of Assad and Kirk [4], it can be shown by induction that for n = 1, we have

 $d(Tx_{n+1}, Sx_{n+1}) \le k^{n/2}\mu, \ d(Sx_{n+1}, Tx_{n+2}) \le k^{n/2+1} \cdot \mu$

whereas

 $\mu = k^{-1} \max\{d(Tx_0, Sx_1), d(Sx_1, Tx_2)\}$

Thus the sequence

{ Tx_0 , Sx_1 , Tx_2 , Sx_3 ,..., Tx_n , Sx_{n+1} } is a Cauchy sequence and hence converges to a point z in X. Now we assume that there exists a subsequence { Tx_{nk} } of { Tx_n }which is contained in A_0 . Further subsequences { Tx_{nk} } and { Sx_{nk+1} } both converge to $z \in P$ as P is closed subset of the complete metric space (X, d). Since $Tx_{nk} \in F_i(x_{nk-1})$.

For every even integers $j \in I$ and $Sx_{nk-1} \in P$ using point wise R-weakly commutatively of (F_i, S) we have

 $d[SF_j(x_{nk-1}), F_j(Sx_{nk-1})] \le R_1 d[F_j(x_{nk-1}), Sx_{nk-1}]$ for every even integer $j \in I$ with some $R_1 > 0$. Also

 $d[SF_{j}(x_{nk-1}), F_{j}(z)] \le d[SF_{j}(x_{nk-1}), F_{j}(Sx_{nk-1})] + H[F_{j}(x_{nk-1}), F_{j}(z)]$

Making $k \to \infty$ in above two conditions and using the continuity of *S* and F_j , we get $d\{Sz, F_j(z)\} \le 0$ yielding thereby $Sz \in F_j(z)$, for any even integer $j \in I$. Using point wise *R*-weak commutatively of (F_i, T) we have

 $d\{TF_i(x_{nk})\}, F_i(Tx_{nk}) \le R_2 d(F_i(x_{nk}), Tx_{nk})$ for every odd integer $i \in I$ with some $R_2 > 0$, besides

$$d[TF_i(x_{nk}), F_i(z)] \le d[TF_i(x_{nk}), F_i(Tx_{nk})] + H[F_i(x_{nk}), F_i(z)]$$

Therefore as earlier the continuity of F_i and T implies $d\{Tz, F(z)\} \le 0$ yielding thereby $Tz \in F_i(z)$, for any odd

integer $i \in I$ as $k \to \infty$.

If we assume that there exists a subsequence $\{Sx_{nk+1}\}\$ contained in B_0 , then above inequalities establish the earlier conclusions.

Remark

If we put c = 0 in theorem A then we get theorem B.

AKNOWLEDGEMENT

I am thankful to Dr. K. Qureshi, Additional Director, Higher Education Department, Govt. of M. P., Bhopal for his valuable suggestions and guidance during the preparation of my paper.

REFERENCES

- Amit singh. On common fixed point of mappings and multi valued map-pings volume 2, number 4, 2009, 135-145.
- [2] A. Ahmad and M. Imdad. Some common fixed point theorems for mappings and multi valued mappings. J. Math. Anal. Appl., 218(2): (1998), pp. 546-560.
- [3] A. Ahmad and A.R. Khan. Some common fixed point theorems foe non-self hybrid contractions. J. Math. Anal. Appl., 213(1): 1997, pp. 275-286.
- [4] N.A. Assad and W.A. Kirk. Fixed point theorems for setvalued mappings of contractive type. J. Math., 43(3): (1972), pp. 553-562, (1972).
- U.P. Dolhare and A. Petrusel. Some common fixed point theorems for sequence of nonself multi valued operators in metrically convex metric spaces. Fixed Point Theorey, 4(2): pp. 143-158, (2003).
- [6] Lj. Gajic. Coincidence points for set-valued mappings in convex metric spaces. Univ. u Novom Sadu Zb. Rad. Prirod. *Mat. Fak. Ser. Mat.*, 16(1): pp.13-25, (1986).
- [7] M.S. Khan. Common fixed point theorems for multi valued mappings. J. Math., 95(2), pp. 337-347, (1981).
- [8] M.S. Khan and M.D. Khan. Some fixed point theorems in metrically convex spaces. *Georgian Math. J.*, 7(3): 2000, pp. 523-530.
- [9] M. Imdad and A. Ahmad, On common fixed point of mappings and set-valued mappings with some weak conditions of commutatively, Pub 1. *Math. Debrecen* 44(1994): number 1-2, 105-114.
- [10] M. Imdad, A. Ahmad, and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat. 10 (2001), number 2, 233-244.
- [11] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30(1969): number 2, 475-488.
- [12] O. Hadzic, On coincidence points in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod. *Mat. Fak. Ser. Mat.* 19(1986), no. 2, 233-240.
- [13] O. Hadzic and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod. *Mat. Fak. Ser. Mat.* 16(1986): number 1, 13-25.