

Fixed point theorem in psedo compact Tichonov space

Rajesh Shrivastava*, Animesh Gupta*, R.N. Yadava** and S.S Rajput***

*Department of Mathematics, Govt. Science and Commerce Benazir College Bhopal, (M.P.)

** Ex-Director Gr. Scientist and Head, Resource Development Centre, AMPRI, Bhopal, (M.P.)

***Department of Mathematics, Govt. P.G. College, Gadarwara, (M.P.) India

(Received 28 Dec., 2010, Accepted 12 Jan., 2011)

ABSTRACT : In this paper, the concepts of compact metric space and psedo compact tichnov space has been introduced. We have proved some fixed point theorems for the self mapping satisfying a new contractive conditions in compact metric spaces and pseudo compact metric spaces.

Keywords : Fixed point, Compact Metric space, psedo compact Tichnov space, self mapping.

AMS Classification: 47H10.

I. INTRODUCTION

There are several generalizations of classical contraction mapping theorem in Bansch space [1]. In 196 Edelstein [2] established the existence of a unique fixed point of a self map T of a compact metric space satisfying the inequality d(Tx,Ty) < d(x,y). Which is generalization of Banach. In the past few years a number of authors such as Iseki [3], fisher [4] Bhardwaj [5] have proved the number of interesting result on compact metric space. We are finding some fixed point theorems in psedo compact tichonov spaces.

Recently, Park [8] introduced the notion of intuitionistic fuzzy metric spaces as a generalization of fuzzy metric spaces. Kutukcu *et. al.* [2] introduced the notion of intuitionistic Menger spaces with the help of t-norms and t-conorms as a generalization of Menger space due to Menger [3]. Recently in 2009, using the concept of subcompatible maps, Bouhadjera et. al. [1] proved common fixed point theorems in metric space. Using the concept of weakly compatible maps in intuitionistic Menger space, Pant et. al. [7] proved a common fixed point theorem for six self maps without appeal to continuity.

II. PRELIMINARIES

Definition A. Let T be a self continuous mapping. A space X is called a fixed point space, if every continuous mapping T of X into itself, has a fixed point.

Definition B. Pseudo-compact tichonov space : A topological space X is said to be Pseudo-compact space, if every real valued continuous function on X is bounded. It may be noted that every compact space is psedo compact, but converges may not be true. Tichonov space, we mean a completely regular Housdroff space.

Now we prove, following theorems.

Theorem 1. Let *P* be a Psedo compact Tichonov space and *d* be a non negative real valued continuous function such that *d* : $P \times P \rightarrow R^+$, satisfying the condition,

- (i) $d(x, x) = 0 \forall x \in X$
- (*ii*) $d(x, z) \le d(x, y) + d(y, z) \forall x, y, z \in X$
- (*iii*) $d(Tx, Ty) \le \alpha \{ d(x, Tx) \} + d(y, Ty) + \beta \{ d(x, Ty) + d(y, Tx) + \gamma d(x, y) \}$

where α , β , $\gamma \ge 0$ such that $0 \le \alpha + \beta + \gamma < 1$ and

$$0 \le \frac{\alpha + \beta + \gamma}{1 - \alpha - \beta} < 1$$

Then *T* has unique fixed point in *P*.

Proof. We define a function $\varphi : P \to R^+$ by $\varphi(P) = d(p, Tp)$, for all $p \in P$, where R^+ is the set of positive real numbers. It is clear that φ is continuous generated by the composition of two continuous function *T* and *d*. Since *P* is psedocompact Tichonove space. Every real valued continuous function over *P* is bounded and attend its bounds.

Thus there exists a point $u \in P$ such that $\varphi(u) = \inf[\varphi(p) : p \in P]$. Now we suppose that *u* is a fixed point for *T*, if not;

Let us
$$\varphi(Tu) = d(Tu, T^2u)$$

From above

$$\begin{aligned} &d(Tu, T^{2}u) \leq \alpha \{ d(u, Tu) + d(Tu, T^{2}u) \} + \beta \{ d(u, T^{2}u) + d(Tu, Tu) \} \\ &+ \gamma d(u, Tu) \\ &d(Tu, T^{2}u) < \alpha \{ d(u, Tu) + d(Tu, T^{2}u) \} + \beta \{ d(u, Tu) + d(Tu, T^{2}u) \} \\ &+ \gamma d(u, Tu) \end{aligned}$$

 $(1 - \alpha - \beta) d(Tu, T^2u) \le (\alpha + \beta + \gamma) d(u, Tu)$

$$d(Tu, T^{2}u) < \frac{\alpha + \beta + \gamma}{(1 - \alpha - \beta)} d(u, Tu)$$

 $\varphi(Tu) \leq \varphi(u)$ u is a fixed point of T in P.

Uniqueness. Let us assume that *w* is another fixed point different from *u* in *P*, so that

d(u, w) = d(Tu, Tw).

From (3),

$$d(Tu, Tw) \le \alpha \{ d(u, Tu) + d(w, Tw) \} + \beta \{ d(u, Tw) + d(w, Tu) \} + \gamma d(u, w)$$

$$d(Tu, Tw) \le (2\beta + \gamma) d(u, w)$$

which contradiction;

u is unique fixed point of *T*

Theorem 2. Let *T* be a continuous mapping of a compact metric space *X* into itself, satisfying the condition;

$$d(Tx, Ty) \le \alpha \frac{d(x, y) \left[d(x, Tx) + d(y, Ty) \right]}{d(x, Ty) + d(y, Tx)}$$

For all $x, y \in X$, $x \neq y$ and $0 \le \alpha < 1$. then *T* has unique fixed point.

Proof. We define a function $\varphi : X \to R^+$ by $\varphi(x) = d(x, Tx)$, for all $p \in X$, where R^+ is the set of positive real numbe. It is clear that φ is continuous generated by the composition of two continuous function *T* and *d*. Since *X* is compact space. Every real valued continuous function over *X* is bounded and attend its bounds.

Thus there exists a point $u \in X$ such that $\varphi(x) = \inf[\varphi(x) : x \in X]$. Now we suppose that *u* is a fixed point for *T*, if not;

Let us
$$\varphi(Tu) = d(Tu, T^2u)$$

From (4),

$$d(Tu, T^{2}u) \le \alpha \ \frac{d(u, Tu) \left[d(u, Tu) + d(Tu, Tu) \right]}{d(u, T^{2}u) + d(Tu, Tu)}$$

$$d(Tu, T^{2}u) \leq \alpha \frac{d(u, Tu) [d(u, Tu) + d(Tu, T^{2}u)]}{d(u, T^{2}u) + d(Tu, Tu)}$$

$$d(Tu, T^{2}u) \leq \alpha \ d(u, Tu)$$

which contradiction;
u is fixed point of *T* in *X*

Uniqueness. Let us assume that *w* is another fixed point different from *u* in *P*, so that

$$d(u, w) = d(Tu, Tw)$$

$$d(Tu, Tw) \le \alpha \frac{d(u, w) [d(u, Tu) + d(w, Tw)]}{d(u, Tw) + d(w, Tu)}$$

$$d(Tu, Tw) \le 0$$

Which contradiction; u is unique fixed point of T in ZX.

REFERENCES

- [1] Banach: Surles operation dansles ensembles abstraites etleur application integrals. *Fund. Math.*, **3**: 133-181 (1922).
- [2] Edekstgein M: an extension of Banach's Construction principal, Proc. Amer, math, soc., 12: 7-10 (1961).
- [3] Iseki K: simple application of Reich's fixed point theorem. *Math. Notes kobe university*, **5:** (1997).
- [4] B.Fisher: on three fixed point mappings for compact metric space, *IJPAM* **8**(4): 479-481(1977).
- [5] R.Bhardwaj, some fixed point theorems in compact space and Pseudo-compact Tichonov space, *IJMA*, 2: 543-550 (2008).
- [6] Pathak J.K, some theorems on fixed points in Pseudo compact Tichonov space. *Indian J. Pure and Applied Math.j* 15(5): 180-186 (1986).