International Journal of Theoretical and Applied Science 3(1): 28-30(2011)
ISSN : 0975-1718

Common Fixed Point Theorems in Fuzzy Normed Spaces

M.S. Chauhan*, V.H. Badshah** and Deepti Sharma***
*Govt. Nehru P.G. College, Agar (Malwa), District Shajapur (MP) India
**School of Studies in Mathematics, Vikram University, Ujjain (MP) India
***Department of Mathematics, Ujjain Engg. College, Ujjain (MP) India

(Received 12 Jan., 2011, Accepted 10 Feb., 2011)

Abstract

In this paper, we prove a common fixed point theorem for four self-maps in fuzzy normed space using the concept of compatibility, which generalizes the result of Singh et. al. [5].

AMS (2000) Subject Classification. 54H25, 47H10.
Keywords : Common fixed points, fuzzy normed space, compatible mappings.

I. INTRODUCTION AND PRELIMINARY CONCEPTS

Zadeh [6] introduced the concept of fuzzy sets in 1965. Many researches have been done using this concept in different spaces. In 1999, Jose and Santiago [2] introduced the concept of Fuzzy norm on a real or complex vector space and defined Fuzzy normed space (called F-normed space) by modifying the definition of Fnormed spaces given by George [1] in 1995. Jungck [3] introduced the concept of compatible mappings for a pair of self-maps. The concept of compatibility in fuzzy metric space was introduced by Mishra et. al. [4].
Definition 1. [2]A3-tuple, $\left(X, N^{*}\right)$ is said to be a F-normed space if X is a real or complex vector space, $*$ is a continuous t-norm and N is function on $X \times(0, \infty)$ satisfying the following conditions :

$$
\begin{aligned}
& (5.1 .1) N(x, t)>0 \\
& (5.1 .2) N(x, t)=1 \text { if and only if } x=0 \\
& (5.1 .3) N(k x, t)=N(x, t|k| \\
& (5.1 .4) N(x, t) * N(y, s) \leq N(x+y, t+\mathrm{s}) \\
& (5.1 .5) N(x, .):(0 . \infty) \rightarrow[0,1] \text { is continuous, } \\
& \text { for all } x, y \in X \text { and } t, s>0
\end{aligned}
$$

Remark 1. [2] Let $(X, N, *)$ be a F-normed space. For $x, y \in X, t>$ 0 , define $M(x, y, t)=N(x-y, t)$. Then $(X, M, *)$ is a fuzzy metric space.
Definition 2. [2] A sequence $\left\{x_{n}\right\}$ in aF-normed space $(X, N, *)$ is said to be convergent to an element $x \in X$ if and only if given $t>$ $0,0<r<1$, there exists an $n_{0} \in J$ such that

$$
N\left(x_{n}-x, t\right)>1-r \text {, for every } n \geq n_{0}
$$

Definition 3. [2] A sequence $\left\{x_{n}\right\}$ in a F-normed space $(X, N, *)$ is said to be F-Cauchy sequence if and only if for every ε such that $0<\varepsilon<1, t>0$, there exists an $n_{0} \in J$ such that

$$
N\left(x_{n}-x_{m}, t\right)>1-\varepsilon, \text { for every } n, m \geq n_{0}
$$

Definition 4. [2]AF-normed space ($X, N, *$) is said to be complete if every F-Cauchy sequence in X converges to an element in X.

Lemma 1. [5] A sequence $\left\{y_{n}\right\}$ in aF-normed space $(X, N, *)$ isFCauchy if there exists a constant $k \in(0,1)$ such that

$$
N\left(y_{n}-y_{n+1}, k t\right) \geq N\left(y_{n-1}-y_{n}, t\right) \text { for all } n \in N, t>0
$$

Definition 5. Let A and B be self-mappings in a F-normed space $(X, N, *)$. The pair (A, B) is said to be compatible if

$$
\lim _{n \rightarrow \infty} N\left(A B x_{n}-B A x_{n}, t\right)=1 \text { for all } t>0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} B x_{n}=x \text {, for some } x \in \mathrm{X}
$$

II. MAIN RESULT

Singh et. al. [5] established a result regarding fixed points in fuzzy normed space, which is as follows :

Theorem 1. [5] Let f and g be self-maps of a complete F-normed space (X, N, \min) such that, for $k \in(0,1)$
$N(f u-g v, k t) \geq \min \{N(u-f u, t), N(v-g v, t), N(u-g v, 2 t)$, $N(v-f u, t)\}$, holds for all u, v in $X, t>0$,

$$
f(X) \subseteq g(X)
$$

Then f and g have a unique common fixed point.
In this paper, a common fixed point theorem for four selfmappings in F-normed space is proved which generalizes the result of Singh et. al. [5] as our result is proved for four selfmappings by using compatibility and different functional inequality.
Theorem 2. Let A, B, S and T be self-maps of a complete F-normed space (X, N, \min) satisfying the following conditions: (2.2.1) for all x, y in $X, k \in(0,1), t>0$
$N(A x-B y, k t) \geq \min \{N(S x-T y, t), N(A x-S x, t)$, $N(B y-T y, t), N(A x-T y, t), N(S x-B y, 2 t)\} ;$
(2.2.2) $\quad A(X) \subseteq T(X), B(X) \subseteq S(X)$;
(2.2.3) one of $A, \mathrm{~B}, S$ or T is continuous;
(2.2.4) the pairs $[A, S]$ and $[B, T]$ are compatible;

Then A, B, S and T have a unique common fixed point in X .
Proof. Let x_{0} be an arbitrary point in X. As $A(X) \subseteq T(X)$ and $B(X) \subseteq S(\mathrm{X})$ then there exists $x_{1}, x_{2} \in X$ such that $A x_{0}=T x_{1}, B x_{1}=S x_{2}$. Construct a sequence $\left\{y_{n}\right\}$ in X such that (2.2.5) $y_{2 n+1}=T x_{2 n+1}=A x_{2 n}$ and $y_{2 n}=S x_{2 n}=B x_{2 n-1}$ for $n=1,2,3, \ldots$.

Now to prove $\left\{y_{n}\right\}$ is a Cauchy sequence, we shall prove that (2.2.6) $N\left(y_{2 n+1}-y_{2 n+2}, k t\right) \geq N\left(y_{2 n}-y_{2 n+1}, t\right) \forall t>0$

Suppose this is not true, then we get
(2.2.7) $N\left(y_{2 n+1}-y_{2 n+2}, k t\right)<N\left(y_{2 n}-y_{2 n+1}, t\right) \forall t>0$.

From (2.2.1) and (2.2.5), we have

$$
\begin{aligned}
& N\left(y_{2 n+1}-y_{2 n+2}, k t\right) \\
& \quad=N\left(A x_{2 n}-B x_{2 n+1}, k t\right) \\
& \geq \min \left\{N\left(S x_{2 n}-T x_{2 n+1}, t\right), N\left(A x_{2 n}-S x_{2 n}, t\right),\right. \\
& \left.N\left(B x_{2 n+1}-T x_{2 n+1}, t\right), N\left(A x_{2 n}-T x_{2 n+1}, t\right), N\left(S x_{2 n}-B x_{2 n+1}, 2 t\right)\right\} . \\
& =\min \left\{N\left(y_{2 n}-y_{2 n+1}, t\right), N\left(y_{2 n+1}-y_{2 n}, t\right),\right. \\
& \left.N\left(y_{2 n+2}-y_{2 n+1}, t\right), N\left(y_{2 n+1}-y_{2 n+1}, t\right), N\left(y_{2 n}-y_{2 n+2}, 2 t\right)\right\} . \\
& \quad=\min \left\{N\left(y_{2 n}-y_{2 n+1}, t\right), N\left(y_{2 n+2}-y_{2 n+1}, t\right), 1\right. \\
& N\left(y_{2 n}-y_{2 n+1}, t\right), N\left(y_{2 n+1}-y_{2 n+2}, t\right) . \\
& \quad\left(N\left(y_{2 n+1}-y_{2 n+2}, k t\right) \geq \min \left\{N\left(y_{2 n}-y_{2 n+1}, t\right),\right.\right. \\
& \left.N\left(y_{2 n+2}-y_{2 n+1}, t\right), 1\right\} . \\
& \quad \text { Using }(2.2 .7), \text { we get }) \\
& N\left(y_{2 n+1}-y_{2 n+2}, k t\right)>\min \left\{N\left(y_{2 n+1}-y_{2 n+2}, k t\right),\right. \\
& \left.N\left(y_{2 n+1}-y_{2 n+2}, t\right)\right\} .
\end{aligned} \quad \text { which is a contradiction. Hence (2.6) is true. } .
$$

In general

$$
N\left(y_{n}-y_{n+1}, k t\right) \geq N\left(y_{n-1}-y_{n}, t\right) \forall t>0, \forall n \in N .
$$

Therefore, by lemma 1.1, $\left\{y_{n}\right\}$ is a Cauchy sequence and by completeness of F-normed space, it converges to some point z in X. Thus the subsequences $\left\{A x_{2 n}\right\},\left\{B x_{2 n-1}\right\},\left\{S x_{2 n}\right\}$ and $\left\{T x_{2 n+1}\right\}$ of sequence $\left\{y_{n}\right\}$ also converges to z in X.

Suppose S is continuous and the pair (A, S) is compatible, we have

$$
S A x_{2 n} \rightarrow S z, S^{2} x_{2 n} \rightarrow S z \text { and } A S x_{2 n} \rightarrow S z
$$

Step 1. Putting $x=S x_{2 n}$ and $y=x_{2 n-1}$ in (2.2.1), we have $N\left(A S x_{2 n}-B x_{2 n-1}, k t\right) \geq \min \left\{N\left(S S x_{2 n}-T x_{2 n-1}, t\right)\right.$,
$N\left(A S x_{2 n}-S S x_{2 n}, t\right), N\left(B x_{2 n-1}-T x_{2 n-1}, t\right), N$
$\left.\left(A S x_{2 n-1}-T x_{2 n-1}, t\right), N\left(S S x_{2 n}-B x_{2 n-1} 2 t\right)\right\}$.
Letting $n \rightarrow \infty$ and using above results, we get

$$
\begin{aligned}
& N(S z-z, k t) \geq \min \{N(S z-z, t), 1\} . \\
& N(S z-z, k t) \geq 1
\end{aligned}
$$

which implies that

$$
\mathrm{Sz}=z
$$

Step 2. Putting $x=z$ and $y=x_{2 n-1}$ in (2.2.1), we have $N\left(A z-B x_{2 n-1}, k t\right) \geq \min \left\{N\left(S z-T x_{2 n-1}, t\right), N(A z-S z, t)\right.$, $\left.N\left(B x_{2 n-1}-T x_{2 \mathrm{n}-1}, t\right), N\left(A z-T x_{2 n-1}, t\right), N\left(S z-B x_{2 n-1}, 2 t\right)\right\}$.

Letting $n \rightarrow \infty$ and using above results, we get

$$
\begin{aligned}
& N(A z-z, k t) \geq \min \{N(A z-z, t), 1\} \\
& N(A z-z, k t) \geq 1
\end{aligned}
$$

which implies that $A z=\mathrm{z}$.
Step 3. Since $A(X) \subseteq T(\mathrm{X})$, there exists $u \in X$ such that $z=A z=T u$. Putting $x=z$ and $y=u$ in (2.2.1), we have $N(A z-B u$, $k t) \geq \min \{N(S z-T u, t), N(A z-S z, t), N(B u-T u, t), N(A z-T u, t)$, $N(S z-B u, 2 t)\}$.

Using above results, we get

$$
\begin{aligned}
& N(z-B u, k t) \geq \min \{1, N(z-B u, t)\} . \\
& N(z-B u, k t) \geq 1
\end{aligned}
$$

which implies that $z=B u$.
Since B ant T are compatible and $B u=T u$ implies

$$
N(B T u-T B u, t)=1
$$

Therefore

$$
B z=B T u=T B u=T z .
$$

Step 4. Putting $x=z$ and $y=z$ in (2.2.1), we have $N(A z-B z, k t) \geq \min \{N(S z-T z, t), N(A z-S z, t), N(B z-T z, t)$, $N(A z-T z, t), N(S z-B z, 2 t)\}$.

Letting $n \rightarrow \infty$ and using above results, we get
$N(z-B z, k t) \geq \min \{1, N(z-B z, t)\}$.
$N(z-B z, k t) \geq 1$
which implies that

$$
z=B z .
$$

Hence

$$
A z=B z=S z=T z=z
$$

Thus, z is a common fixed point of A, B, S and T.
Similarly, we can prove the theorem when T is continuous.
Now, suppose A is continuous and the pair (A, S) is compatible, we have

$$
A S x_{2 n} \rightarrow A z, A^{2} x_{2 n} \rightarrow A z \text { and } S A x_{2 n} \rightarrow A z
$$

Step 5. Putting $x=A x_{2 n}$ and $y=x_{2 n-1}$ in (2.2.1), we have
$N\left(A^{2} x_{2 n}-B x_{2 n-1}, k t\right) \geq \min \left\{N\left(S A x_{2 n}-T x_{2 n-1}, t\right)\right.$, $N\left(A^{2} x_{2 n}-S A x_{2 n}, t\right), N\left(B x_{2 n-1}-T x_{2 n-1}, t\right), N\left(A^{2} x_{2 n}-T x_{2 n-1}, t\right)$, $\left.N\left(S A x_{2 n}-B x_{2 n-1}, 2 t\right)\right\}$.

Letting $n \rightarrow \infty$ and using above results, we get

$$
\begin{aligned}
& N(A z-z, k t) \geq \min \{N(A z-\mathrm{z}, \mathrm{t}), 1\} \\
& N(A z-z, k t) \geq 1
\end{aligned}
$$

implies that

$$
A z=z
$$

Step 6. Since $A(X) \subseteq T(X)$, there exists $v \in X$ such that $z=A z=T v$. Putting $x=A x_{2 n}$ and $y=v$ in (2.2.1), we have $N\left(A^{2} x_{2 n}-B v, k t\right) \geq \min \left\{N\left(S A x_{2 n}-T v, t\right), N\left(A^{2} x_{2 n}-S A x_{2 n}, t\right)\right.$, $N\left(B v-T v, t, N\left(\mathrm{~A}^{2} x_{2 n}-T v, t\right), N\left(S A x_{2 n}-B v, 2 t\right)\right\}$.

Letting $n \rightarrow \infty$ and using above results, we get

$$
\begin{aligned}
& N(z-B v, k t) \geq \min \{N(z-B v, t), 1\} \\
& N(z-B v, k t) \geq 1
\end{aligned}
$$

which implies that

$$
z=B v
$$

Since B ant T are compatible and $B v=T v$ implies that

$$
N(B T v-T B v, t)=1
$$

Therefore

$$
B z=B T v=T B v=T z .
$$

Step 7. Putting $x=x_{2 n}$ and $y=z$ in (2.2.1), we have $N\left(A x_{2 n}-B z, k t\right) \geq \min \left\{N\left(S x_{2 n}-T z, t\right), N\left(A x_{2 n}-S x_{2 n}, t\right), N(B z-\right.$ $\left.T z, t), N\left(A x_{2 n}-T z, t\right), N\left(S x_{2 n}-B z, 2 t\right)\right\}$.

Letting $n \rightarrow \infty$ and using above results, we get

$$
\begin{aligned}
& N(z-B z, k t) \geq \min \{1, N(z-B z, t)\} . \\
& N(z-B z, k t) \geq 1
\end{aligned}
$$

which implies that

$$
z=B z
$$

Step 8. Since $B(X) \subseteq S(X)$, there exists $w \in X$ such that $z=B z=S w$.

Putting $x=w$ and $\mathrm{y}=z$ in (2.2.1), we have
$N(A w-B z, k t) \geq \min \{N(S w-T z, t), N(A w-S w, t)$, $N(B z-T z, t), N(A w-T z, t), N(S w-B z, 2 t)\}$.

Using above results, we get

$$
\begin{aligned}
& N(A w-z, k t) \geq \min \{1, N(A w-z, t)\} . \\
& N(A w-z, k t) \geq 1
\end{aligned}
$$

which implies that $z=A w$.
Since A and S are compatible and $A w=S w$ implies that $N(A S w-S A w, t)=1$.

Therefore

$$
A z=A S w=S A w=S z
$$

Hence

$$
A z=B z=S z=T z=z
$$

Thus z is a common fixed point of A, B, S and T.
Similarly, we can prove the theorem when B is continuous.

Uniqueness.

Let w be another common fixed point of A, B, S and T, then

$$
\omega=A \omega=B \omega=S \omega=T \omega \text {. }
$$

Putting $x=z$ and $y=\omega$ in (2.2.1), we have
$N(A z-B \omega, k t) \geq \min \{N(S z-T \omega, t), N(A z-S z, t)$,
$N(B \omega-T \omega, t), N(A z-T \omega, t), N(S z-B \omega, 2 t)\}$.
Using above results, we get

$$
\begin{aligned}
& N(z-\omega, k t) \geq \min \{N(z-\omega, t), 1\} \\
& N(z-\omega, k t) \geq 1
\end{aligned}
$$

which implies that $z=\omega$.
Therefore, z is unique common fixed point of A, B, S and
T.

REFERENCES

[1] George, A., Studies in fuzzy metric spaces, Ph.D. Thesis, Indian Institute of Technology. Madras.
[2] Jose, M. and Santiago, M. L., Closed graph theorem in fuzzy normed spaces, Bull. Cal. Math. Soc., 91(5): 375-378 (1999).
[3] Jungck, G., Compatible mappings and common fixed points, Intl. Jour. Math. and Math. Sci., 9(4): 771-779 (1986).
[4] Mishra, S.N. Sharma, S.N. and Singh, S.L., Common fixed point of maps in fuzzy metric spaces, Intl. Jour. of Math. and Math. Sci., 17: 253-258 (1994).
[5] Singh, B., Chauhan, M. S. and Gujetiya, R., Common fixed point theorems in fuzzy normed space, Indian Jour. of Math. and Math. Sci., 3(2): 181-186 (2007).
[6] Zadeh, L.A., Fuzzy sets, Inform. and control, 8: 338-353 (1965).

