

A fixed point theorem for expansive type mapping in dislocated Quasi-metric space

S.S Pagey* and Rituja Nighojkar**

*Institute for Excellence in Higher Education, Bhopal (MP) **Department of Engg. Mathematics L.N.C.T. College, Bhopal, (MP) (Received 12 Jan., 2011, Accepted 10 March, 2011)

ABSTRACT : In this paper we have proved a fixed point theorem for continuous surjective mapping in dislocated quasi metric space.

Mathematics Subject Classification: 47H10

Keywords : Dislocated Quasi-metric, fixed point, Surjective map.

I. INTRODUCTION AND PRELIMINARIES

The studies of fixed point on dislocated metric space have attracted much attention, some of the literatures may be noted in [1, 2, 3, 4, 5, 6]. In this paper we construct a sequence and consider its convergence to the unique fixed point of a self map.

Definition 1. [5] Let *X* be a nonempty set and let $d: X \times X \rightarrow (0, \infty)$ be a function satisfying following conditions:

(*i*) d(x, y) = d(y, x) =implies x = y,

(*ii*) $d(x, y) \le d(x, z) + d(z, y)$ For all $x, y, z \in X$,

Then *d* is called a dislocated quasi-metric on *X*. If *d* satisfies d(x, y) = d(y, x), then it is called dislocated metric.

Definition 2. [5] A sequence $\{x_n\}$ in dq-metric space (dislocated quasi-metric space) (X, d) is called Cauchy sequence if for given $\varepsilon > 0$, $\exists n_0 \in N$, such that $\forall m, n \ge n_0$, implies $d(x_m, x_n) < \varepsilon$ or $d(x_n, x_m) < \varepsilon$ i.e. $\min\{d(x_m, x_n), d(x_n, x_m)\} < \varepsilon$.

Definition 3. [5] A sequence $\{x_n\}$ dislocated quasi-converges to *x* if

$$\lim_{n \to \infty} (x_n, x) = \lim_{n \to \infty} (x, x_n) = 0$$

In this case x is called a dq-limit of $\{x_n\}$ and we write $x_n \rightarrow x$. Leema 4. [5] dq-limits in a dq-metric space are unique.

Definition 5. [5] A dq-metric space (X, d) is called complete if every Cauchy sequence in it is dq-convergent.

Definition 6. [5] Let (X, d_1) and (Y, d_2) be a dq-metric spaces and let $f: X \to Y$ be a function. Then f is continuous to $x_0 \in X$, if for each sequence $\{x_n\}$ which is $d_1 - q$ convergent to x_0 , the sequence $\{f(x_n)\}$ is $d_2 - q$ convergent to $f(x_0)$ in Y.

Definition 7. [5] Let (X, d) be a *dq*-metric space. A map $T: X \to X$ is called contraction if therese exists $0 \le K < 1$ such that

$$d(Tx, Ty) \le Kd(x, y)$$
 for all $x, y \in X$

Definition 8. A function $f: X \rightarrow Y$ is surjective if and only if for every *y* in the co domain of *Y*. There is at least one *x* in domain

X such that f(x) = y.

Theorem 9. [5] Let (X, d) be a *dq*-metric space and let $T: X \to X$ be a continuous. Then *T* has unique fixed point.

II. MAIN RESULT

Theorem 1. Let (X, d) be a complete dq-metric space and let $T: X \rightarrow X$ be a surjective continuous mappings satisfying the follows condition.

$$d(Tx, Ty) \ge \frac{\alpha [1 + d(Ty, y)] d(Tx, x)}{1 + d(x, y)} + \beta d(x, y)$$

...(3.1)

for all *x*, $y \in X$, α , $\beta > 0$ and $\alpha + \beta > 1$. Then *T* has a unique fixed point. If further $\beta > 1$ then this fixed be unique.

Proof. Let $\{x_n\}$ be a sequence in *X* defined as follows. Let $x_0 \in X$, $T(x_1) = x_0$, $T(x_2) = x_1$,, $T(x_{n+1}) = x_n$ Consider

$$d(x_{n-1}, x_n) = d(Tx_n, Tx_{n+1}) \ge \frac{\alpha[1 + d(Tx_{n+1}, x_{n+1})] d(Tx_n, x_n)}{1 + d(x_n, x_{n+1})} + \beta d(x_n, x_{n+1})$$
$$= \frac{\alpha[1 + d(x_n, x_{n+1})] d(x_{n-1}, x_n)}{1 + d(x_n, x_{n+1})} + \beta d(x_n, x_{n+1})$$
$$\ge \alpha d(x_{n-1}, x_n) + \beta d(x_n, x_{n+1})$$
Therefore

Therefore,

$$d(x_n, x_{n+1}) \le \frac{1 - \alpha}{\beta} \ d(x_{n-1}, x_n) = Kd(x_{n-1}, x_n)$$

where
$$K = \frac{1-\alpha}{\beta}$$
 with $0 \le K \le 1$. Similarly, we show that $d((x_{n-1}, x_n) \le Kd(x_{n-2}, x_{n-1}))$

and Thus

$$d((x_n, x_{n+1}) \le K^2 d(x_{n-2}, x_{n-1}))$$

$$d(x_n, x_{n+1}) \le Kd((x_n, x_n))$$

$$\begin{aligned} &d(x, x_{n+1}) \leq Kd((x_1, x_0) & \dots(3.2) \\ &d(x, x_{n+1}) < K^n d(x_1, x_0) \end{aligned}$$

Since $0 \le K < 1$, as $n \to \infty$, $K^n \to 0$. Hence $\{x_n\}$ is a *dq*-sequence in the complete *dq*-metric space *X*. Thus $\{x_n\}$ dislocated quasi converges to some $x \in X$.

Existence of a fixed point

Since T is a surjective map then there exist a point y in X such that

x = Ty. ...(3.3)

Consider

$$d(x_n, x) = d(Tx_{n+1}, Ty) \ge \frac{\alpha[1 + d(Ty, y)] d(Tx_{n+1}, x_{n+1})}{1 + d(x_{n+1}, y)} + \beta d(x_{n+1}, y)$$
$$= \frac{\alpha[1 + d(x, y)] d(x_n, x_{n+1})}{1 + d(x_{n+1}, y)} + \beta d(x_{n+1}, y)$$

Since $\{x_{n+1}\}$ is a subsequence of $\{x_n\}$ and $\{x_n\}$ dislocated quasi convergs to *x*.

$$\Rightarrow \{x_{n+1}\} \rightarrow x \text{ when } n \rightarrow \infty$$

$$d(x, x) \ge \frac{\alpha[1 + d(x, y)] d(x, x)}{1 + d(x, y)} + \beta d(x, y)$$

$$\Rightarrow 0 \ge 0 + \beta d(x, y)$$

$$\Rightarrow \beta d(x, y) \le 0 \qquad [As \ \beta > 0]$$

$$\Rightarrow d(x, y) = 0$$

$$\Rightarrow x = y$$

 \therefore From equation (3.3) we have x = Tx

Thus *T* has a fixed point.

Uniqueness. Let *u* be another fixed point of T in X *i.e.* Tu = u

Now

$$d(x, u) = d(Tx, Tu) \ge \frac{\alpha[1 + d(Tu, u)] d(Tx, x)}{1 + d(x, u)} + \beta d(x, u)$$
$$= \frac{\alpha[1 + d(u, u)] d(x, x)}{1 + d(x, u)} + \beta d(x, u)$$
$$\Rightarrow d(x, u) \ge \beta d(x, u)$$
$$\Rightarrow (1 - \beta) d(x, u) \ge 0$$
$$\Rightarrow d(x, u) = 0 \qquad [As \beta > 1.]$$
$$\Rightarrow x = u$$

Thus fixed point of *T* is unique.

REFERENCES

- C.T. Aage, J.N. Salunke, The Result on Fixed Points in Dislocated and Dislocated Quasi-Metric Space, *Applied Mathematical Science*, 2(59): 2941-2948 (2008).
- [2] B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, *Indian J.Pure* appl.Math., 6: 1455-1458 (1975).
- [3] P. Hitzler, A.K. Seda, Dislocated Topologies, Journal of Electrical Engineering, 51(12/s): 3-7 (2000).
- [4] B.E. Rhoades, A comparison of various definitions of contractive mappings, *Trans. Amer. Soc.*, 226: 257-290(1977).
- [5] F.M. Zeyada, G.H. Hassan, M.A. Ahmed, A genralization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, *The Arabian journal for Science and Engineering*, **31**(IA): 111-114 (2005).
- [6] A. Isufati, Fixed Point Theorems in Dislocated Quasi-Metric Space, Applid Mathematical Sciences, 4(5): 217-223 (2010).