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ABSTRACT: Image compression is one of the major image processing techniques that is widely used in medical,
automotive, consumer and military applications. Discrete wavelet transforms is the most popular transformation
technique adopted for image compression. Complexity of DWT is always high due to large number of arithmetic
operations. In this work a modified Distributive Arithmetic based DWT architecture is proposed and is implemented on
FPGA. The modified approach consumes area of 6% on Virtex-II pro FPGA and operates at 134 MHz. The modified DA-
DWT architecture has a latency of 44 clock cycles and a throughput of 4 clock cycles. This design is twice faster than the
reference design and is thus suitable for applications that require high speed image processing algorithms.
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I. INTRODUCTION

During last decade there has been enormous increase in digital
images. This type of information gives rise to high
transmission and storage cost. To store these images or make
them available over networks, compression techniques are
needed. To illustrate the need for compression, some examples
are given:
• To store a color image of moderate size, e.g. 512x512 pixels,
one needs 0.75 MB of disk space.
• A 35 mm slide digitized with a resolution of 12 μm requires
18 MB disk space.
• One second of digital PAL video requires 27 MB.

Digital images can be compressed by eliminating
redundant information. There are three types of Redundancy
that can be exploited by image compression systems.
• Spatial redundancy: in almost all natural images the values
of neighboring pixels are strongly correlated.
• Spectral redundancy: in images composed of more than one
spectral band the spectral values for the same pixel location
are often correlated.
• Temporal redundancy: adjacent frames in video sequence
often show very little change.
Therefore, the development of reliable and fast compression
techniques for several quality levels has become an important
research topic. Many algorithm have been proposed in
literature and some of them have been standardized. Mainly
compression methods can be divided into two classes; lossless
and lossy compression techniques:
• Lossless compression guarantees that the original signal can
be reconstructed without any errors. This is important for
application like compression of text or medical images.
• Lossy compression gives higher compression rates. But
exact data cannot be reconstructed. Human visual system is
not sensitive or has low sensitivity to some kind of errors.

That’s why the compression potential is much higher when
small reconstruction errors are allowed.
Compressing an image is significantly different from
compressing raw binary data. Of course, general purpose
compression programs can be used to compress images, but
the result is less than optimal. This is because images have
certain statistical properties which can be exploited by
encoders specifically designed for them. Also, some of the
finer details in the image can be sacrificed for the sake of
saving a little more bandwidth or storage space. This also
means that lossy compression techniques can be used in this
area.
Methods for lossy compression:

• Reducing the color space to the most common colors
in the image. The selected colors are specified in the
color palette in the header of the compressed image.
Each pixel just references the index of a color in the
color palette. This method can be combined with
dithering to avoid posterization.

Chroma sub sampling. This takes advantage of the fact that the
human eye perceives spatial changes of brightness more
sharply than those of color, by averaging or dropping some of
the chrominance information in the image.
Transform coding. This is the most commonly used method.
In particular, a Fourier-related transform such as the Discrete
Cosine Transform (DCT) is widely used. The more recently
developed wavelet transform is also used extensively,
followed by quantization and entropy coding.
Although the Fourier transform has been the mainstay of
transform-based digital signal processing since time
immemorial, a more recent transformation, called the wavelet
transform, is making strides in DSP applications following
some of its unique advantages.
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Wavelets have their energy concentrated in time. Sinusoids
(Fourier Transform) are useful in analyzing periodic and time-
invariant phenomena, while wavelets are well suited for the
analysis of transient, time-varying signals. Since most of the
real-life signals encountered are time varying in nature, the
Wavelet Transform suits very well for many applications.

II. EXPERIMENTAL SETUP

The project execution is done in 3 phases as shown in fig. 1.
Where MATLAB model in which we simulate using Simulink
and check for results, after that we design the same using
Xilinx HDL model and results are verified. The operation is
also verified on FPGA by dumping the code to it and viewing
the result on monitor.

Fig. 1.

III. WAVELET TRANSFORM

The Continuous Wavelet Transform (CWT) is provided by equation ,
where x(t) is the signal to be analyzed. ψ(t) is the mother
wavelet or the basis function. All the wavelet functions used in
the transformation are derived from the mother wavelet
through translation (shifting) and scaling (dilation or
compression).

The mother wavelet used to generate all the basis functions is designed based
on some desired characteristics associated with that function.
The translation parameter τ relates to the location of the
wavelet function as it is shifted through the signal. Thus, it
corresponds to the time information in the Wavelet Transform.
The scale parameter is defined as |1/frequency| and
corresponds to frequency information. Scaling either dilates
(expands) or compresses a signal. Large scales (low
frequencies) dilate the signal and provide detailed information
hidden in the signal, while small scales (high frequencies)
compress the signal and provide global information about the
signal. Notice that the Wavelet Transform merely performs the
convolution operation of the signal and the basis function. The above
analysis becomes very useful as in most practical applications, high
frequencies (low scales) do not last for a long duration, but
instead, appear as short bursts, while low frequencies (high scales)
usually last for entire duration of the signal.

The Wavelet Series is obtained by discretizing CWT. This aids in
computation ofCWT using computers and is obtained by
sampling the time-scale plane. The sampling rate can be changed
accordingly with scale change without violating the Nyquist criterion.
Nyquist criterion states that, the minimum sampling rate that
allows reconstruction of the original signal is 2ω radians,
where ω is the highest frequency in the signal. Therefore, as the
scale goes higher (lower frequencies), the sampling rate can be decreased
thus reducing the number of computations.

The mother wavelet used to generate all the basis functions is designed based
on some desired characteristics associated with that function.
The translation parameter τ relates to the location of the
wavelet function as it is shifted through the signal. Thus, it
corresponds to the time information in the Wavelet Transform.
The scale parameter is defined as |1/frequency| and
corresponds to frequency information. Scaling either dilates
(expands) or compresses a signal. Large scales (low
frequencies) dilate the signal and provide detailed information
hidden in the signal, while small scales (high frequencies)
compress the signal and provide global information about the
signal. Notice that the Wavelet Transform merely performs the
convolution operation of the signal and the basis function. The above
analysis becomes very useful as in most practical applications, high
frequencies (low scales) do not last for a long duration, but
instead, appear as short bursts, while low frequencies (high scales)
usually last for entire duration of the signal.

The Wavelet Series is obtained by discretizing CWT. This aids in
computation ofCWT using computers and is obtained by
sampling the time-scale plane. The sampling rate can be changed
accordingly with scale change without violating the Nyquist criterion.
Nyquist criterion states that, the minimum sampling rate that
allows reconstruction of the original signal is 2ω radians,
where ω is the highest frequency in the signal. Therefore, as the
scale goes higher (lower frequencies), the sampling rate can be decreased
thus reducing the number of computations

IV. DECOMPOSITION

The DWT represents the signal in dynamic sub-band
decomposition. Generation of the DWT in a wavelet packet
allows sub-band analysis without the constraint of dynamic
decomposition. The discrete wavelet packet transform
(DWPT) performs an adaptive decomposition of frequency
axis. The specific decomposition will be selected according to
an optimization criterion. The Discrete Wavelet Transform
(DWT), based on time-scale representation, provides efficient
multi-resolution sub-band decomposition of signals. It has
become a powerful tool for signal processing and finds
numerous applications in various fields such as audio
compression, pattern recognition, texture discrimination,
computer graphics etc. Specifically the 2-D DWT and its
counterpart 2-D Inverse DWT (IDWT) play a significant role
in many image/video coding applications. Lossless image
compression plays a vital role in medical applications.
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DWT schemes had been widely used for medical image
coding due to the fact that DWT supports features like
progressive image transmission, ease of compressed image
manipulation, region of interest of coding, etc. Lifting based
DWT scheme that reduces memory requirements and
communications between processors has been proposed in this
project.
The DWT has several different hardware implementations, of
which the lifting-based architecture is providing to be most
popular – due to its efficient use of resources. The lifting-
based DWT algorithms are implemented and analysed  in
terms of area, speed and power consumptions.
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V. EFFECT OF BLOCK ERRORS

Partitioning the set of blocks into segments that are
independently compressed allows for more efficient memory
use and provides robustness to data loss or errors.  These
benefits could also be achieved by simply partitioning the
original image into separate smaller images that are
compressed independently.  However, such an image-domain
partitioning strategy can lead to noticeable boundaries
between adjacent segments when lossy compression is used,
even when adjacent segments are compressed to the same
quality level and no data loss or corruption occurs.  Figure
illustrates this effect.  reconstruction (b) was produced using
segments defined in the DWT domain, as in the present
Recommendation.

Reconstruction (c), produced by partitioning the original
image into two smaller images that were separately
compressed, has a noticeable horizontal seam between the
upper and lower halves.  All segments were compressed to the
same quality level.
A block is identified by the coordinates
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(r,c) of the DC
coefficient (at row

€ 

r and column

€ 

c ) within the LL3 subband,
with the upper left DWT coefficient in the subband having
coordinates

€ 

(0,0).  In an image with width

€ 

w and height h,
the pixels that may be affected by the values of DWT
coefficients in block

€ 

(r,c) are confined to a rectangular
region of the reconstructed image with upper left corner

€ 

(max{8r − 21,0},max{8c − 21,0}) and lower right

corner

€ 

(min{8r + 29,h −1},min{8c + 29,w −1}) .  For
example, figure Error! Reference source not found.
illustrates the set of pixels that may be affected by corruptions
to block (3,3). In figure Error! Reference source not found.,
the shaded square bounds the region of pixels that may be
affected by the values of DWT coefficients in the (3,3) block.
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VII. CONCLUSION

Comparing the 9/7M and 9/7F filters, the 9/7M filter provides
better compression performance, especially for lossless
compression and at high bit rates.  At low bit rates, i.e., high
compression ratios, the 9/7F tends to perform somewhat
better, but this does not justify a preference over the 9/7M,
especially since users who are primarily interested in low rate
compression might be inclined to use the float DWT.
The 5/3 filter has the lowest computational complexity.
However, the 9/7M has moderately higher complexity and
provides significantly better lossy compression effectiveness.
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For these reasons, the 9/7M was considered the best
compromise in terms of complexity and performance and was
therefore selected as the integer DWT for the
Recommendation. The formulation of the recommended 9/7M
filter described in reference [1] has a slight difference in the
rounding operations than what is in reference Error!
Reference source not found.. The formulation in reference
[1] reduces mean-error bias during reconstruction.
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