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ABSTRACT: Statistical Signal processing may broadly be considered to involve the recovery of information
from physical observations. Due to the random nature of the signal, statistical techniques play an important
role in signal processing. Statistics is used in the formulation of appropriate models to describe the behavior of
the system, the development of appropriate techniques for estimation of model parameters, and the assessment
of model performances. This paper evaluates and compares the performance of Ways needed in fast ICA
algorithm for decorrelation of the separating matrix can be deflationary or symmetric orthogonalization.
Simulation studies reveal that symmetric approach has a better performance as compared to deflation
approach, in terms of CPU time. The performance of the real-time applications such as speech signal
enhancement and EEG/MEG essential features extraction for brain computer interface (BCI) based on
MATLAB (R 2011a) process models.

KEYWORDS: Independent Component Analysis (ICA), Non-Gaussianity, Principal Component Analysis,
Orthonormalization Kurtosis, Centering.

I. INTRODUCTION

Statistical Signal Processing basically refers to the analysis of
random signals using appropriate statistical techniques. The
main purpose of this Paper is to introduce different signal
processing models and different statistical and computational
issues involved in solving them for Latent variable. statistical
signal processing technique having emerging new practical
application areas, such as latent signal separation such as mixed
voices, identify aircrafts and interference from their mixtures
such as Electroencephalogram (EEG), Magneto
encephalography (MEG), and Electrocardiogram (ECG) or
images, analysis of several types of data or feature extraction.
Independent Component Analysis (ICA) is a statistical signal
processing technique separates the independent sources from
their mixtures by measuring non-gaussian. A random or
stochastic process is a mathematical model for a phenomenon
that evolves in time in an unpredictable manner from the
viewpoint of the observer. It may be unpredictable because of
such effects as interference or noise in a communication link or
storage medium, or it may be an information-bearing signal.
Deterministic from the viewpoint of an observer at the
transmitter but random to an observer at the receiver [1-6]. The
theory of random processes quantifies the above notions so that
one can construct mathematical models of real phenomena that
are both tractable and meaningful in the sense of yielding
useful predictions of future behavior.

II. LITERATURE REVIEW

Two array signal processing techniques are combined with
independent component analysis to enhance the performance of
blind separation of acoustic signals in a reflective environment
such as rooms. The first technique is the subspace method
which reduces the effect of room reflection. The second
technique is a method of solving permutation, in which the
coherency of the mixing matrix in adjacent frequencies is
utilized [1].
Address the imminent problem which arises when researchers

injudiciously use a linear and instantaneous (memory less)
model for the source mixing structures of independent
component analysis (ICA), also known as blind source
separation (BSS), in pursuit of separating noisy and frequently
no stationary combined mother and fatal electrocardiogram
(ECG) signals from cutaneous measurements under the
following false assumptions. (1) Sensors (electrodes) are
instantaneous linear mixtures of mother and fatal source
signals. (2) Noise is an additive Gaussian perturbation. (3)
Mother and fetal ECG signals\ are assumed to be stationary and
linear, mutually statistically independent and statistically
independent from noise. (4) Most of the second-order (SO) and
fourth-order (FO) blind source separation (BSS) methods
developed this last decade assume that third-order cumulants
vanish hence the need to use FO. All these assumptions are not
valid and will be challenged. We will expose these vices
without providing any significant contributions for overcoming
them.
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Rather, we provide a framework for investigations which are
based on conformal mapping of nonlinear mixtures and novel
dynamic nonlinear structures with time-variant memory to cater
for quadratic coupling between mothers and fatal which is
quasi-periodical and the concomitant (quasi) cyclostationarity
[2]. Results given here show linear ICA shortfalls in non
stationary environment which is precipitated by quadratic
coupling between mother and fatal ECGs during events of
synchronized QRS complexes and P-waves and account for
more than 20% of the 100,000 maternal cardiac cycles obtained
from several clinical trials.

Blind  Source Separation of acoustic mixtures aims at
providing a solution to the classical cocktail-party problem.
The inherent delays and convolutions in microphone
recordings, entails a modification in the Independent
Component Analysis (ICA), which achieves separation by
making the assumption of statistical independence of source
signals that are linearly combined. The Proposed Algorithm
provides a solution for the blind source separation problem by
shifting he domain of the problem to Time-Frequency domain
and applying ICA to each of the Frequency components
individually[3]. Satisfactory results were achieved for Speech-
Music as well as Speech-Speech Separation by adopting the
Time- Frequency domain ICA.

The first technique is the subspace method which
reduces the effect of room reflection when the system is used in
a room. Room reflection is one of the biggest problems in blind
source separation (BSS) in acoustic environments. The second
technique is a method of solving permutation. For employing
the subspace method, ICA must be used in the frequency
domain, and precise permutation is necessary for all
frequencies [1].

In this method, a physical property of the mixing
matrix, i.e., the coherency in adjacent frequencies, is utilized to
solve the permutation. The experiments in a meeting room
showed that the subspace method improved the rate of
automatic speech recognition from 50% to 68% and that the
method of solving permutation achieves performance that
closely approaches that of the correct permutation, differing by
only 4% in recognition rate [4].

Independent component analysis (ICA) is usually used
for blind source separation (BSS), and the FastICA algorithm
separates the independent sources from their mixtures by
measuring nongaussianity using Kurtosis. In this paper, the
field programmable gate array (FPGA) implementation of
FastICA for real-time signal process is proposed and the
sample rate of 192 kHz is reached under the presented
architecture [5]. The floating-point arithmetic design provides
better accuracy and higher dynamic performance than fixed-
point design for implementation of digital signal processing
algorithm. The FPGA design is based on a hierarchical concept,
and the experimental results of the design are presented.

III. METHODOLOGY

Observe N linear mixtures x1,…,xn of n independent
components xj = aj1s1 + aj2s2 + … + ajnsn, for all j, aj is the
column of the mixing matrix A. Assume each mixture xj and
each sk is a random variable Time difference between mixes
dropped Independent components are latent variables. Cannot
be directly observed [5-7].

Independent component analysis (ICA) is a well-
known method of finding latent structure in data. ICA is a
statistical method that expresses a set of multidimensional
observations as a combination of unknown latent variables.
These underlying latent variables are called sources or
independent components and they are assumed to be
statistically independent of each other [8].

The ICA model is x = f (θ, s) Where x = (x1, . . . , xm)
is an observed vector and f is a general unknown function

with parameters θ that operates on statistically independent
latent variables listed in the vector s = (s1, . . . , sn ).
A special case is obtained when the function is linear, And
we can write x = As, Where A is an unknown m × n mixing
matrix. consider x and s as random vectors. When a sample
of observations X = (x1, . . . , xN) becomes available, X =
AS where the matrix X has observations x as its columns and
similarly the matrix S has latent variable vectors s as its
columns. The mixing matrix A is constant for all
observations. If both the original sources S and the way the
sources were mixed are all unknown, and only mixed signals
or mixtures X can be measured and observed, then the
estimation of A and S is known as blind source separation
(BSS) problem [6,7].

ICA Mixture model: x = As,A is mixing matrix; s
is matrix of source signals. Goal: Find some matrix W, so
that, s = Wx
W = inverse of A. Non gaussianity estimates independent
Estimation of y = wT x, let z = AT w, so y = wTAs = zTs
y is a linear combination of si, therefore zTs is more gaussian
than any of si,z

Ts becomes least gaussian when it is equal to
one of the si .wTx = zTs equals an independent component
[11] Kurtosis Fourth order cumulant. Classical measure of
nongaussianity. kurt(y) = E{y4} – 3(E{y2})2. For gaussian y,
fourth moment = 3(E{y2})2.Kurtosis for gaussian random
variables is 0[14].Entropy (H) degree of information that an
observation gives. A Gaussian variable has the largest
entropy among all random variables of equal variance.
Negentropy J: Based on the information theoretic quantity of
differential entropy [5].

(a) Data Preprocessing For ICA
It is often beneficial to reduce the dimensionality of the data
before performing ICA. It might be well that there are only a
few latent components in the high-dimensional observed
data, and the structure of the data can be presented in a
compressed format. Estimating ICA in the original, high-
dimensional space may lead to poor results.
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For example, several of the original dimensions may contain
only noise. Also, over learning is likely to take place in ICA
if the number of the model parameters (i.e., the size of the
mixing matrix) is large compared to the number of observed
data points. Care must be taken, though, so that only the
redundant dimensions are removed and the structure of the
data is not flattened as the data are projected to a lower
dimensional space. In this section two methods of
dimensionality reduction are discussed: principal component
analysis and random projection [10].

In addition to dimensionality reduction, another
often used preprocessing step in ICA is to make the observed
signals zero mean and decor relate them. The decor relation
removes the second-order dependencies between the
observed signals. It is often accomplished by principal [10-
11].

IV. SIMULATION AND RESULTS

Simulation is based on MATLAB (R2011a) process models.
(a) Simulation 1.
In the Simulation1Generate Information Signal adaptive
cancellation using the MATLAB functions ANFIS and
GENFIS1.shown in fig.1

Fig. 1. Information Signal.

Unfortunately, the information signal x cannot be measured
without an interference signal n2, which is generated from
another noise source n1 shown in fig.2 via a certain unknown

nonlinear process.

Fig. 2. Noise Source (n1)
The interference signal n2 that appears in the measured signal
is assumed to be generated via an unknown nonlinear
equation: n2(k) = 4*sin(n1(k))*n1(k-1)/(1+n1(k-1)^2),shown
in fig.3.

Fig. 3. n2(k) = 4*sin(n1(k))*n1(k-1)/(1+n1(k-1)^2).

The measured signal m is the sum of the original information
signal x and the interference n2. However, we do not  know
n2. The only signals available to us are the noise signal n1

and the measured signal m, and our task is to recover the
original information signal x. In the measured signal m that
combines x and n2.shown in fig.4.
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Fig. 4. Measured Signal.
(b) Simulation 2.
In the simulation 2, the problem of signal recovery from latent
noisy data. The general de-noising procedure involves three
steps. The basic version of the procedure follows the steps
Decompose: Choose a level N. Compute decomposition of the
signal at level N.
Threshold detail coefficients: For each level from 1 to N,
select a threshold and apply soft  thresholding to the detail
coefficients.
Reconstruct: Compute reconstruction using the original

approximation coefficients of level N and the modified detail
coefficients of levels from 1 to N.
Thresholding can be done using the function WTHRESH
which returns soft or hard thresholding of the input signal.
Hard thresholding is the simplest method but soft thresholding
has nice mathematical properties shown in fig.5.

Fig. 5. Original Signal, Noisy Signal, De-noised Signal.

(c) Simulation 3. (Real Time Signal Processing)
Biomedical signals such as electroencephalogram (EEG),
magneto encephalography (MEG), and electrocardiogram
(ECG) are generally measured from clinical sensors or
instruments; however measured signals are polluted by the
aircrafts and other unknown noise signals, such as eye
movements, muscle noise, and power noise from instruments.
This problem can be solved by independent component
analysis(ICA) algorithm, which identifies aircrafts from the
measured signals, shown in fig.6.

Fig. 6. Noiseless ECG.

(d) Simulation 4. (Acoustic echo cancellation)
In the simulation 4 application of adaptive filters to acoustic
echo cancellation (AEC).Acoustic echo cancellation is
important for audio teleconferencing when simultaneous
communication (or full-duplex transmission) of speech is
necessary. In acoustic echo cancellation, a measured

microphone signal contains two  signals:

- the near-end speech signal v(n)
- the far-end echoed speech signal dhat (n)

The goal is to remove the far-end echoed speech signal from
the microphone signal so that only the near-end speech signal is
transmitted. First describe the acoustics of the loudspeaker-to-

microphone signal path where the speakerphone is located .The
following sequence of commands generates a random impulse
response that  is not unlike what a conference room would
exhibit a system sampling rate of fs = 8000 Hz shown in fig.7
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Fig. 7. Room Impulse Response.

Now we describe the path of the far-end speech signal.  A male
voice travels out the loudspeaker, bounces around in the room,
and then is picked up by the system's microphone.  Let's listen
to what his speech sounds like if it is picked up at the
microphone without the near-end speech present.(shown in
fig.8)

Fig. 8. Far-End Echoed Speech Signal.

The Near-End Speech Signal: The teleconferencing system's
user is typically located near the system's microphone.  Here is
what a male speech sounds like at the microphone (shown in
fig.9).

Fig. 9. Near-End Speech Signal.

The signal at the microphone contains both the near-end speech
and the far-end speech that has been echoed throughout the

room. The goal of the acoustic echo canceler is to cancel out
the far-end speech, such that only the near-end speech is
transmitted back to the far-end listener (shown in fig.10).

Fig. 10. Microphone Signal.

The FDAF uses a fast convolution technique to compute the
output signal and filter updates. This computation executes
quickly in MATLAB (R2011a). It also has  improved
convergence performance through frequency-bin step size
normalization. Pick some initial parameters for the filter and
see how well the far-end speech is cancelled in the error signal
(shown in fig.11).



Khan and Gupta 33

Fig. 11. Output of Acoustic Echo Canceller.

V. CONCLUSION

In this research, Statistical  signal  Processing for latent
variable decorrelates the separating matrix can be deflationary
or symmetric orthogonalization. In some applications, it may
be preferable to use the fast ICA algorithm with symmetric
orthonormalization, in which every vector is impartially treated
and the parallel computation of independent components is
enabled. Fast ICA algorithm improves the efficiency of
independent component analysis. Extensive simulation studies
reveal that symmetric approach has a better performance as
compared to deflation approach. Source signals are statistically
independent, Knowing the value of one of the components does
not give any information about the others. ICA algorithm offers
many features such as high processing speed, which is
extremely desired in many applications. In order to reduce the
complexity.
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