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ABSTRACT: This paper describes various methods of generation of microwave  chaos signal spectrum origin from
certain continuous dynamical systems – that may exhibit dynamics  of signals that are highly sensitive to initial
conditions. Many side lobes in chaos signal  spectrum which makes the unambiguous detection difficult because of the
spectrum of the chaotic signal is not very fat and smooth, with pulsation peaks in it, has been reduced and hence
spectrum is improved  in some extent using optimum algorithm for parameter selection of microwave  colpitts
oscillator, and adjusting them for getting  more flat spectrum. This happens even though these systems are
deterministic, meaning that their future dynamics are fully defined by their initial conditions, with no random
elements involved. This paper also describe whole scenario of chaotic signals and system generates these signals.
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I. INTRODUCTION

Although there may be some variance, as to the correct
definition of chaos, it is generally characterized as a
nonlinear, deterministic phenomenon. For a class of
common chaotic systems, this paper introduces equivalent
analysis of various systems generating chaos . Such models
have many advantages as they are much better matched to
traditional signal and system theory.
Chaos signals are aperiodic oscillations - that do not repeat
values after some period it is known as chaotic
oscillations or chaos.

It is a kind of phenomena in deterministic nonlinear
continuous dynamical system, which is periodic and
sensitively depends on its initial value.

Chaos signal  theory attempts to explain the fact that
complex and unpredictable results can and will occur in
systems that are sensitive to their initial conditions. A
common example of this is known as the Butterfly Effect. It
states that, in theory, the flutter of a butterfly's wings in any
one country could, in fact, actually effect weather patterns
in another City, thousands of miles away. In other words, it
is possible that a very small occurrence can produce
unpredictable and sometimes drastic results by triggering a
series of increasingly significant events. In tests, the chaotic
signal produced better results than the other approaches.
"Chaos theory, is also known as sensitive dependence on

initial conditions. Just a small change in the initial
conditions can drastically change the long-term behavior of
a system. Such a small amount of difference in a
measurement might be considered experimental noise,
background noise, or an inaccuracy of the equipment. Such
things are impossible to avoid in even the most isolated lab.
With a starting number of 2, the final result can be entirely
different from the same system with a starting value of
2.000001. It is simply impossible to achieve this level of
accuracy - From this idea, Lorenz stated that it is impossible
to predict the weather accurately. However, this discovery
led Lorenz on to other aspects of what eventually came to
be known as chaos theory.

II. HISTORY

Edward Lorenz, a meteorologist who first discovered
evidence supporting chaos signal theory in 1960.Lorenz's
work cultivated with the publishing of the now-famous
image, the Lorenz Attractor.

Despite an appearance of randomness, chaotic dynamics
are in fact deterministic. The appearance of randomness is
caused by a high dependence on initial conditions
exhibited in chaotic regimes. The visual appearance of
these dynamics, when plotted against the oscillating input
voltage, is of a system whose state “hovers” around a limit-
cycle, but whose state never quite passes through the same
trajectory twice.
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Consequently, plots of chaotic dynamics generally display a
thick band of activity indicating the multiple trajectories
through phase space, rather than a thin line that would
suggest a single stable trajectory. The key features are  Self-
similarity and No characteristic length-scale.

III. APPLICATION AREAS

Examples of these complex systems that Chaos Theory
helped fathom are earth's weather system, the behavior of
water boiling on a stove, migratory patterns of birds, or the
spread of vegetation across a continent. Chaos is everywhere,
from nature's most intimate considerations to art of any kind.
RADAR for improving rang ambuiguity amd in SAR.  A
NEW type of radar which harnesses chaos theory can see
clearly through walls and could help find survivors in
disasters. The technology could also make on-board radar a
practical proposition for cars.
Secure Communication.its wide band property is used and
unique synchronization property is very usefull in that area.
Bio-Medical field , its propery of unique independence on
initial condition is used for early detection of cancer and
tumer in human body . It has even been speculated that the
brain itself might be organized somehow according to the
laws of chaos. Chaos even has applications outside of
science. Computer art has become more realistic through the
use of chaos signals and fractals. Now, with a simple
formula, a computer can create a beautiful, and realistic tree.
Instead of following a regular pattern, the bark of a tree can
be created according to a formula that almost, but not quite,
repeats itself. Music can be created using fractals as well
believe that the variations are very musical and creative.

IV. ORIGIN

Dynamical systems theory deals with the long-term
qualitative behavior of continuous dynamical systems, and
the studies of the solutions to the equations of continuous
dynamical systems that are partial differential equations
Here, the focus is not on finding precise solutions to the
equations defining the dynamical system (which is often
hopeless), but rather to answer questions like "Will the
system settle down to a steady state in the long term, and if
so, what are the possible steady states?", or "Does the long-
term behavior of the system depend on its initial
condition?".
An important goal is to describe the fixed points, or steady
states of a given dynamical system; these are values of the
variable which won't change over time. Some of these fixed
points are attractive, meaning that if the system starts out in
a nearby state, it will converge towards the fixed point.

Similarly, one is interested in periodic points, states of the
system which repeat themselves after several time steps.

V. AN  APPROACH TO CHAOS

1. Derive a  state sate equation for a system: At any given
time a dynamical system has a state given by a set of real
numbers (a vector) that can be represented by a point in an
appropriate state space (a geometrical manifold). Small
changes in the state of the system create small changes in
the numbers. The evolution rule of the dynamical system is
a fixed rule that describes what future states follow from the
current state. The rule is deterministic; in other words, for a
given time interval only one future state follows from the
current state

To determine the state for all future times requires
iterating the relation many times—each advancing time a
small step. The iteration procedure is referred to as solving
the system or integrating the system. Once the system can be
solved, given an initial point it is possible to determine all its
future positions, a collection of points known as a trajectory
or orbit.”.
The behavior of trajectories as a function of a parameter
may be what is needed for an application. As a parameter is
varied, the dynamical systems may have bifurcation points
where the qualitative behavior of the dynamical system
changes.

2. Bifurcation point: Bifurcation theory is the
mathematical study of changes in the qualitative or
topological structure of a given family, the solutions of a
family of differential equations. a bifurcation occurs when a
small smooth change made to the parameter values (the
bifurcation parameters) of a system causes a sudden
'qualitative' or topological change in its behavior.[1]

Bifurcations occur in both continuous systems (described by
ODEs, DDEs or PDEs), and discrete systems (described by
maps).

It is useful to divide bifurcations into two principal classes:
• Local bifurcations, which can be analyzed entirely

through changes in the local stability properties of
equilibrium, periodic orbits or other invariant sets
as parameters cross through critical thresholds; and

• Global bifurcations, which often occur when larger
invariant sets of the system 'collide' with each
other, or with equilibrium of the system. They
cannot be detected purely by a stability analysis of
the equilibrium (fixed points).
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A local bifurcation occurs when a parameter change causes
the stability of an equilibrium (or fixed point) to change. In
continuous systems, this corresponds to the real part of an
Eigen value of an equilibrium passing through zero. The
equilibrium is non-hyperbolic at the bifurcation point. The
topological changes in the phase portrait of the system can
be confined to arbitrarily small neighborhoods of the
bifurcating fixed points by moving the bifurcation parameter
close to the bifurcation point (hence 'local').
Global bifurcations occur when 'larger' invariant sets, such
as periodic orbits, collide with equilibrium. This causes
changes in the topology of the trajectories in the phase space
which cannot be confined to a small neighborhood, as is the
case with local bifurcations. In fact, the changes in topology
extend out to an arbitrarily large distance (hence 'global').
Global bifurcations can also involve more complicated sets
such as chaotic attractors (e.g. crises).

3 Attractor: Complex systems often seem to run through
some kind of cycle, even though situations are rarely exactly
duplicated and repeated. Plotting many systems in simple
graphs revealed that often there seems to be some kind of
situation that the system tries to achieve, an equilibrium of
some sort. That equilibrium is called an attractor. A
dynamic kind-of-equilibrium is called a Strange Attractor.
The difference between an Attractor and a Strange Attractor
is that an Attractor represents a state to which a system
finally settles, while a Strange Attractor represents some
kind of trajectory upon which a system runs from situation
to situation without ever settling down

4. Fractals: A fractal is a geometric shape that is similar to
itself at different scales. More clearly, a fractal shape will
look almost, or even exactly, the same no matter what size it
is viewed at.  Fractal objects have several interesting
properties. One of the most interesting is self-similarity. The
Sierpenski triangle is a good example of this. Sierpenski's is
composed of four smaller triangles, each of which are
composed of four even smaller triangles, and so on. A
fractal t object such as this exhibit self-similarity over many
scales of observation. Another property of a fractal object is
a lack of well defined scale., and the bronchial tree all show
some type of organization the eigen values of a matrix
determine the structure of the phase space. From the eigen
values and the eigenvectors of a matrix it is possible to
determine if an initial point will converge or diverge to the
equilibrium point at the origin. The distance between two
different initial conditions in the case matrix ≠ 0 will
change exponentially in most cases, either converging
exponentially fast towards a point, or diverging
exponentially fast. Linear systems display sensitive
dependence on initial conditions in the case of divergence.
For nonlinear systems this is one of the (necessary but not
sufficient) conditions for chaotic behavior.

An example:-
A model of three ordinary differential equations proposed
by Lorenz now known as the Lorenz equations:

Here , , and make up the system state, is time, and
, , are the system parameters. The Lorenz equations

also arise in simplified models for lasers (Haken 1975) and
dynamos (Knobloch 1981).
A trajectory of Lorenz's equations, rendered as a metal wire
to show direction and 3D structure.
From a technical standpoint, the Lorenz system is nonlinear,
three-dimensional and deterministic
For small values of ρ, the system is stable and evolves to
one of two fixed point attractors. When ρ is larger than
24.28, the fixed points become repulses and the trajectory is
repelled by them in a very complex way, evolving without
ever crossing itself.

VI. VARIOUS METHODS

Chaotic dynamics in electronic systems have been a subject
of interest since Linsay's seminal paper in 1981 that
demonstrated a simple RLD circuit was capable of
producing them . There are many types of chaotic oscillators
such as Chua's circuit, Colpitts oscillator [5] and Duffing
oscillator [6].
Chaotic carrier generator operating in RF/microwave band
and modulate the information directly onto the carrier,
resulting in a direct chaotic communication (DCC) system.
The heart of the DCC approach is to design a chaotic carrier
generator with a sufficiently high fundamental frequency.
There are many types of chaotic oscillators such as Chua's
circuit, Colpitts oscillator [5] and Duffing oscillator [6].
Chua’s circuit [2] is probably the most well-known and
commonly used chaotic oscillator in this field. many
generalizations of Chua’s circuit, as complicated attractors
have been proposed by Suykens & Vandewalle [3] by
introducing additional breakpoints in the nonlinearity of
Chua’s circuit, leading to so-called-double n-scroll
attractors. The Colpitts oscillator has becomes a hot topic in
recent years. Unlike the famous Chua's circuit [7], whose
bandwidth was greatly limited by the nonlinear negative
resistance commonly built with operational amplifiers [8],
The upper limit fundamental frequency of a Colpitts circuit
is generally determined by the threshold frequencies of the
bipolar junction transistors (BJTs) employed in the circuit
[9].
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Fig. 1. Simple non linear RLC circuit.

Because microwave BJTs are easily available and the
threshold frequencies can be very high, Colpitts oscillator
is therefore more suitable for the design and
implementation of microwave chaotic carrier generator
[10]. In 1995 chaotic oscillation was reported
experimentally in the high frequency (HF) range at a
fundamental frequency of 25 MHz using a general
purpose type BJT 2N2222A with a threshold frequency of

300 MHz [13]. In 2001, chaos was predicted by PSpice
simulation in the Colpitts oscillator at fundamental
frequency of 950 MHz,  employing the simulation
parameters of Philips' broadband type BJT BFG520 with
a threshold frequency of 9 GHz [12]. In the latest report in
year 2004, G. Mykolaitis et al. [13] verified the
simulation results in [14], where the highest fundamental
frequency is about 1 GHz.

Fig. 2. Schematic of the Colpitts oscillator.

VII. PROPOSED WORK

The highest fundamental frequency of the chaotic
oscillator using BFG425W reaches 1.6 GHz. Based on the
experimental work, we package the oscillator into a
simple module, which could be used directly as a "plug
and play" device on a motherboard, for convenient uses in
applications. chaotic circuits with fundamental frequency
more than 1 GHz were implemented [14–15], where the
Colpitts oscillator is the major candidate due to its simple

circuit structure. The transistor is modelled with a
voltage-controlled nonlinear resistor RE and a linear
current-controlled current source, neglecting the base
current. The driving-point  characteristics of the nonlinear
resistor RE can be expressed as:
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Fig. 2(a). Equivalent circuit model of fig 2.

where Is is the inverse saturation current and VT _ 26mV
at room temperature. The state equations for the Colpitts
oscillator shown in Fig.  are:

The
inductance L, the capacitance C1, C2, the voltage source

V cc and V ee, are critical because they determine whether
the chaotic oscillation can be achieved and the
fundamental frequency of the oscillation. These
parameters can be selected using geneting alorithms for
optimum parameters selection which give fundamental
frequency about 2 Ghz. In our simulations, the circuit
parameters  are listed as follows: V cc = 12 V, V ee = -
12V, R = 23 Ohm, Re = 1.2 kOhm, L = 5.5 nH, C1 = 8 pF,
C2 = 8 pF. Simulations of circuit by using MATLAB are
plotted.

Fig. 3. (a)
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Fig. 3. (b)

Fig. 3. (c)

Fig. 3(a) shows the time-domain waveform of one of the
voltage node VC2 , which is a noise-like signal. Fig. 3(b)
plots the projection of the attractor in the phase space into
the VC2 -VC1 plane. This is a typical chaotic attractor of
Colpitts oscillator. Fig. 3(c) shows the broadband
continuous spectrum of the signal VC2. Now we adjust the
circuit parameters of the microwave Colpitts oscillator. In
the different parts of the bifurcation diagram, using genetic
algorithm of optimum selection of parameters, the dynamic
characteristics are deferent, especially when they belong to
difrent types of chaos region, namely the Feigenbaum
chaos or the Shilnikov chaos region [11]. Finding operating
condition with more abound dynamic characteristics can
help improve the signal spectrum.

VIII. CONCLUSIONS AND DISCUSSIONS

It can be seen from the waveforms  that only very small
ripples appear on the surfaces are no discernible peaks. It

indicate that the chaotic signals generated by same circuits
with parameters selected from genetic algorithm for
optimum performance of the circuit in terms of large
bandwidth by optimizing SNR and autocorrelation function
for given waveform. The waveform has non-repetitive
random features. Since they are not repetitive, they scarcely
correlated with each other . In previous work [13] signal
from the Colpitts oscillator shows many sidelobes which is
undesirable for many applications. It is because that the
spectrum of the chaotic signals was  not very flat and
smooth, with pulsation peaks in it. From the time-domain
view, the chaotic signals with time distance of τ0, 2τ0, ...,
nτ0 (n is small) have similarities which result in the side
lobes. Using genetic algorithm for parameter selection of
Colpitts oscillator introduced in this paper improves the
spectrum, The spectrum of chaotic signal from the
microwave Colpitts oscillator is   optimized, that is, the
randomness characteristics of the microwave chaotic signal
is improved.
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