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abstract:
This work provides an exact solution to a cubic Duffing oscillator equa-
tion with initial conditions and bounded periodic solutions. This solution 
is expressed in terms of the Jacobi elliptic function (cn). This exact solu-
tion is used as a seed to give a good analytic approximate solution to a 
nonlinear equation that describes a nonlinear electrical circuit. This last 
equation is solved numerically and compared with the analytic solution 
obtained from solving the cubic Duffing equation. It is suggested that the 
methodology used herein may be useful in the study of other nonlinear 
problems described by differential equations of the form ( )z F z′′ = , 

( )F z  being  an odd function in the sense that ( )F z  may be approximated 
by an appropriate solution to a cubic Duffing oscillator equation. In par-
ticular, the exact solution may be applied in the study of the cubic nonlin-
ear Schrodinger equation, which is reduced to a cubic Duffing oscillator 
equation by means of a travelling wave transformation.

Key words
Duffing equation, cubic Duffing oscillator equation, third-order Duffing 
model, analytic solution, Jacobi elliptic functions.
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introduction

The cubic Duffing equation is a differential 
equation with third-power nonlinearity. The-
re are many problems in physics and engi-
neering that lead to the nonlinear differential 
cubic Duffing equation: from the oscillations 
of a simple pendulum, including nonlinear 
electrical circuits, to various applications 
in image processing [1,2,3]. The search for 
new methods that lead to the solution of the 
Duffing equation of different orders: third, 
fifth, seventh, and higher orders, is of vi-
tal importance since these solutions may 
be applied to a nonlinear cubic Schrodinger 
equation which has various applications in 
nonlinear optics, plasma physics, fluid mecha-
nics and bose-einstein condensates [4,5]. by 
using the gauge transformation, the nonlinear 
cubic Schodinger equation may be reduced to 
a nonlinear ordinary differential cubic Duffing 
oscillator equation.

This work is aimed at finding, by means of 
the Jacobi elliptic functions, the exact perio-
dic solution of the differential cubic Duffing 
equation with initial conditions that describe 
the behaviour of a nonlinear electrical circuit.

1. nonlinear electrical circuit

Let us consider a capacitor of two terminals 
as a dipole in which a functional relationship 
between the electric charge , the voltage and 
the time has the following form:

( , , ) 0f q u t =                         (1)

a nonlinear capacitor is said to be controlled 
by charge when it is possible to express the 
tension as a function of charge:

( )u u q                           (2)

as an example of nonlinear electrical circuit, 
let us consider the circuit shown in Figure 1.

 Figure1. lc circuit

source: own elaboration

This circuit consists of a linear inductor in 
series with a nonlinear capacitor. The rela-
tionship between the charge of the nonlinear 
capacitor and the voltage drop across it may 
be approximated by the following cubic equa-
tions [6,7,8] :

3,cu sq aq= +                     (3)

where cu  is the potential across the plates of 
the nonlinear capacitor, q is the charge , and 
s and a  are constants. The equation of the 
circuit may be written as

3 0,diL sq aq
dt
+ + =

                
(4)

where L is the inductance of the coil. Dividing 
by L and considering that dq

dti = , we obtain the 
cubic Duffing equation in the form

2
3

2 0,d q q q
dt

α β+ + =
                  

(5)

being / 1/s L LCα = =  and 2
0/ 1/a L LCqβ = =  

constants.
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2. a brief introduction to Jacobi 
elliptic functions cn, sn and dn

It is worth remembering that this work provi-
des an exact solution to equation (5) in terms 
of the Jacobi elliptic function cn. This function 
is defined as follows: 

2 2
0

cn( , ) cos , where .
1 sin

dt m t
m

ϕ θϕ
θ

= =
−

∫

(6)

There are other two important elliptic Jacobi 
functions, namely sn and dn, which are defi-
ned by:

2 2sn( , ) sin  and dn( , ) 1 sin .t m t k mϕ ϕ= = −

2 2sn( , ) sin  and dn( , ) 1 sin .t m t k mϕ ϕ= = −                     (7)

The number m ( 0 1m< < ) is called elliptic 
modulus and the number ϕ is called Jacobi am-
plitude, and it is denoted by am (t, m) . Thus,

am( , ), sin( ) sin(am( , )) sn( , )t m t m t mϕ ϕ= = =

am( , ), sin( ) sin(am( , )) sn( , )t m t m t mϕ ϕ= = =

For these equations, the following identities 
hold:

2 2 2 2 2sn ( , ) cn ( , ) 1,  dn ( , ) 1 sn ( , )t m t m t m m t m+ = = −                     (8)

0 0 0
limsn( , ) sin , lim cn( , ) cos , lim dn( , ) 1.
m m m

t m t t m t t m
→ → →

= = =

0 0 0
limsn( , ) sin , lim cn( , ) cos , lim dn( , ) 1.
m m m

t m t t m t t m
→ → →

= = =
                 (9)

1 1 1
limsn( , ) tanh , lim cn( , ) sec h , lim dn( , ) sec h .
m m m

t m t t m t t m t
→ → →

= = =

1 1 1
limsn( , ) tanh , lim cn( , ) sec h , lim dn( , ) sec h .
m m m

t m t t m t t m t
→ → →

= = =
              

(10)

These functions are derivable and so:

(11)

   

2

sn( , ) cn( , )dn( , ), 

cn( , ) sn( , )dn( , ), 

dn( , ) sn( , )cn( , ).

d t m t m t m
dt
d t m t m t m
dt
d t m m t m t m
dt

=

= −

= −
2

sn( , ) cn( , )dn( , ), 

cn( , ) sn( , )dn( , ), 

dn( , ) sn( , )cn( , ).

d t m t m t m
dt
d t m t m t m
dt
d t m m t m t m
dt

=

= −

= −
2

sn( , ) cn( , )dn( , ), 

cn( , ) sn( , )dn( , ), 

dn( , ) sn( , )cn( , ).

d t m t m t m
dt
d t m t m t m
dt
d t m m t m t m
dt

=

= −

= −

The graph of functions sn and cn are shown in 

Figure 2 for 1
4 .m =

Figure 2. Graph of sn=sn ( ,1/ 4)t and cn=cn ( ,1/ 4)t on the interval 0 8.t≤ ≤

                                source: own elaboration

2 2 2 2 2sn ( , ) cn ( , ) 1,  dn ( , ) 1 sn ( , )t m t m t m m t m+ = = −
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From Figure 2, it can be observed that 
functions sn and cn are periodic. They have 
a common period equal to 4 (1/ 4) 4 ( )K K m= , 
where ( )K K m=  is called the elliptic K function 
for modulus m. In our case, (1/ 4) 1.5962422K ≈ .

equations (9) indicate that functions sn and 
cn generalize the sine and cosine functions, 
respectively.

Jacobi elliptic functions cn( mt, ), sn( mt, ) 
and dn( mt, ) may also be calculated for com-
plex values of 1t u v= + −  as follows : 

2 2 2 2

sn( , )dn( , ') cn( , )dn( , )sn( , ') cn( , ')sn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m u m u m v m v mu v m
u m v m u m v m

+ − = + −
− −

2 2 2 2

sn( , )dn( , ') cn( , )dn( , )sn( , ') cn( , ')sn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m u m u m v m v mu v m
u m v m u m v m

+ − = + −
− −

2sn( , ')sn( 1 , ) 1 1sn( , '), ' 1
cn( , ')

v mv m v m m m
v m

− = − = − = −

2sn( , ')sn( 1 , ) 1 1sn( , '), ' 1
cn( , ')

v mv m v m m m
v m

− = − = − = − 0 1.m< <

   

(12)

2 2 2 2

cn( , ) cn( , ') sn( , )dn( , )sn( , ') dn( , ')cn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m u m u m v m v mu v m
u m v m u m v m

+ − = − −
− −

2 2 2 2

cn( , ) cn( , ') sn( , )dn( , )sn( , ') dn( , ')cn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m u m u m v m v mu v m
u m v m u m v m

+ − = − −
− −

21cn( 1 , ) nc( , '), ' 1
cn( , ')

v m v m m m
v m

− = = = −

21cn( 1 , ) nc( , '), ' 1
cn( , ')

v m v m m m
v m

− = = = − 0 1.m< <     (13)

2
2 2 2 2

dn( , ) cn( , ') dn( , ') sn( , ) cn( , )sn( , ')dn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m v m u m u m v mu v m m
u m v m u m v m

+ − = − −
− −

2
2 2 2 2

dn( , ) cn( , ') dn( , ') sn( , ) cn( , )sn( , ')dn( 1 , ) 1
1 dn ( , ) sn ( , ') 1 dn ( , ) sn ( , ')

u m v m v m u m u m v mu v m m
u m v m u m v m

+ − = − −
− −

2dn( , ')dn( 1 , ) dc( , '), ' 1
cn( , ')

v mv m v m m m
v m

− = = = −

2dn( , ')dn( 1 , ) dc( , '), ' 1
cn( , ')

v mv m v m m m
v m

− = = = − 0 1.m< <
     

(14)

When 1m > , these functions are defined by 
the following equations : 

1cn( , )=dn( , )t m mt
m

1 1sn( , )= sn( , )t m mt
m m

1dn( , )=cn( , )t m t m
m

1m >

The following is also defined:

In some cases, it is necessary to deal with a 
function of the form cn ( , )wt k , where w  is 
any number (real or complex) and k  is a pure 
imaginary number, say 1k m= − , where 
m  is a real number. We may define the ex-
pression cn( , ) cn( , 1)wt k wt m= − ) in a 
consistent way by using the formula: 

(15)

(16)

2

22

2

1cn( , )= nd( 1 , )
1dn( 1 , )

1

mt m m t
m mm t

m

−
= −

− −−
−

2

22

2

1cn( , )= nd( 1 , )
1dn( 1 , )

1

mt m m t
m mm t

m

−
= −

− −−
−

1m < −
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2
20

0 02 2
0

cn( 1 , )cn( , 1)= cd( 1 , ), where   
dn( 1 , ) 1

mm wt mwt m m wt m m
m wt m m

+
− = + =

+ +

2
20

0 02 2
0

cn( 1 , )cn( , 1)= cd( 1 , ), where   
dn( 1 , ) 1

mm wt mwt m m wt m m
m wt m m

+
− = + =

+ +

(17)

In the special case when both w  and 
k  are pure imaginary numbers, say 

1w ω= −  and 1k m= −  (ω  and m  
are real numbers), it is possible to define 
cn( , ) cn( 1 , 1)wt k t mω= − −  as follows: 

2

2 2

2

1 1cn( 1 , 1)=nd( 1 , ) 11 dn( 1 , )
1

t m m t
m m t

m

ω ω
ω

− − + =
+ +

+

2

2 2

2

1 1cn( 1 , 1)=nd( 1 , ) 11 dn( 1 , )
1

t m m t
m m t

m

ω ω
ω

− − + =
+ +

+
    (18)

4. exact solutions for 
the nonlinear model

In the linear case, the general solu-
tion to equation ( ) ( ) 0y t y tα′′ + =  is 

1 2( ) cos( ),y t c t cα= +  where c1 and c2 are 
the constants of integration which are 
determined from the initial conditions 

0(0)y y=  and 0(0)y y′′ = . When a cubic term 
is added we obtain the nonlinear equation 

3( ) ( ) ( ) 0y t y t y tα β′′ + + =  and the solution 
cannot be expressed in terms of the cosine 
function. In this case, the Jacobi cn funtion 
solves this nonlinear equation. Indeed, direct 
calculations using equations (11) show that 
function y= c1 cn 2( , )t c mω +  satisfies the fo-
llowing differential equation 

( )
2 2

2 2 3
2

1

2( ) 1 2 ( ) ( ) 0my t m y t y t
c
ωω′′ + − + =

      (19)

for any constants c1 and c2 . Therefore the ge-
neral solution to equation (5) is obtained by 
solving the system

(20)
( )2 2

2 2

2
1

1 2 .
 2 .

m

m
c

α ω

ωβ

 = −



=


which yields:

2
2 1

1 2
1

 and  .
2( )

c
c m

c
β

ω α β
α β

= + =
+      

(21)

The values of c1 and c2 are determined 
from the initial conditions 0(0)q q=  and 

0 0|dq
tdti i== = . If '(0) 0q = , then 1 0c q=  and 

2 0c =  . Thus, the solution to problem: 
2

3
02 0, (0) , (0) 0d q q q q q q

dt
α β ′+ + = = = .

(22)

Is

2
2 20

0 0 02
0

( ) cn( , ) , 0.
2( )

q
q t q q t q

q
β

α β α β
α β

= + + ≠
+

(23)

If 
2
0

2
02( )

1q
q

m β
α β+

= → , then 2
0

2
q
αβ → −  and since 

1limm→ cn( , )t mω =  sech( )tω  the solution to 
(23) results in: 

0( )  sech( )q t q tα=                (24)
        

It is worth noting that solution (19) is boun-
ded and non-periodic. This situation is typical 
for solitons. Some important non-linear diffe-
rential equations admit soliton solutions that 
can be expressed in terms of sech.
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On the other hand, if 
2
0

2
02( )

0q
q

m β
α β+

= →  then 
0β →  and because 0limm→  cn ( , ) cos( )t m tω ω=  

(23) reduces to:

0( )  cos( )q t q tα=                (25)

Which is the solution to linear equation 
( ) ( ) 0.y t y tα′′ + =  This result is consistent with 

the theory already known for the linear case.

The behaviour of solution (16) depends on 
parameters α and b as well as on the initial 
condition 0q . In this paper we will consider 
five cases: 

First Case: 2
0 0qα β+ >  and 0β >  . Let 1α =

, 1β =  and 3
0 10q −= . Formula (23) yields 

( ) 0.001cn(1.00000 0.00004 9999 , 99995)q t t= . This 
function is periodic with period 6.2832T ≈ . 
The corresponding graph in the interval [0, ]T  
is shown in Figure 3. 

Figure 3. Graph of 
( ) 0.001cn(1.00000 0.00004 9999 , 99995)q t t=
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source: own elaboration

Second Case : 2
0 0qα β+ >  and 0β < . Let 

11α = , 33β = −  and 3
0 10q −= . by computing 

formulas (17) and (23), 

This function is periodic with period 
1.894T ≈ . The corresponding graph in the 

interval [0, 2 ]T  is shown in Figure 4.

Figure 4. Graph of
33.3166247( ) 0.001c 9 ,1.732 1d 0( )tq t −×=
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source: own elaboration

Third Case : 2
0 0qα β+ <  and 0β < . Let 

2α = − , 6β = −  and 3
0 10q −= . by computing 

formulas (18) and (23), 
31.414213( ) 0.0 501 ,1.732 10nd( )tq t −×= . This 

function is unbounded and periodic with pe-
riod 16.429T ≈ . The corresponding graph in 
the interval [0, 40]  is shown in Figure 5.

Figure 5. Graph of
31.414213( ) 0.0 501 ,1.732 10nd( )tq t −×=
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source: own elaboration

33.3166247( ) 0.001c 9 ,1.732 1d 0( )tq t −×=
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Fourth Case: 2
0 0qα β+ <  and 0β >  . Let 

2α = − , 13β =  and 3
0 10q −= . by computing 

formulas (18) and (23), 
31.4142135 ,( ) 0.001n 2.5495d 1 )0(q t t −×= . This 

function is bounded and periodic with period 
10.406T ≈ . The corresponding graph in the 

interval [0, 40]  is shown in Figure 6. 

Figure 6. Graph of
31.4142135 ,( ) 0.001n 2.5495d 1 )0(q t t −×=
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source: own elaboration

Fifth Case : 2
0 0qα β+ = . In this case it is 

not possible to apply formula (23). equation 
(22) then reduces to

2
2 3

0 02 0, (0) , (0) 0d q q q q q q q
dt

β β ′− + = = =

(26)

Direct calculations show that function 

0 0
0

1 1( ) 2 sech( ( )), where arcsech( )
2

q q t q q t C C
q

β
β

= = + =

0 0
0

1 1( ) 2 sech( ( )), where arcsech( )
2

q q t q q t C C
q

β
β

= = + =
     

(27)

Finally, let us consider a nonlinear circuit 
consisting of a linear inductor in series with 
a nonlinear capacitor, as shown in Figure 1.

For 2,81L mH= , 9C pF= , 1010oq C−= , 
0 0i = , we 

have that 131/ 4 10LCα = = ×  and 2 33
01/ 4 10LCqβ = = × . 

The numerical solution for the runge - Kutta 
method and the analytical solution we obtain 
from (23), i.e.

6( ) cn(8.94427 10 ,0.70710678118654 )75q q t= = ×

are compared (graphically) in Figure 7.

Figure 7. numerical solution (dashed) vs 
analytical solution (solid)

source: own elaboration

5. conclusions

a way to study non-linear circuits by means 
of the cubic Duffing differential equation has 
been shown, obtaining an exact solution in 
terms of a Jacobi elliptic function cn. It was 
possible to establish conditions under which 
the solution is periodic and harmonic. This is 
very important in the study of electric reso-
nators and their applications in engineering. 
On the other hand, the results (already know) 
for the linear case were generalized for the 
nonlinear case in a consistent and natural 
way. It may be stated that the Jacobi elliptic 
functions are an essential way to solve many 
nonlinear problems.

Solutions (24) and (27) turned out to be very 
interesting because they represent a type of 
soliton solution (for a more thorough study of 
these solutions see [9]).
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