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Abstract—in streamflow simulation, the first-order gamma autoregressive (GAR(1)) model [2] has been found to be very effective 

for annual data. This paper presents some attempts to apply the GAR(1) model to the simulation of monthly streamflows. To this 

aim, we propose two models, namely the GAR(1)-Monthly and GAR(1)-Fragments models that will be  compared with the popular 

Thomas-Fiering model. Based on actual data of monthly streamflows at three stations and  generated  series of monthly data for 

1000 years, it was found that both GAR(1)-Monthly and GAR(1)-Fragments models can reproduce very well all statistical 

descriptors, namely mean value, standard deviation and skewness coefficient, of the historical monthly series.  Moreover, the 

GAR(1)-Fragments model was found to perform very well in reproducing those statistical descriptors of historical annual flows 

also. 
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I. INTRODUCTION  

The simulation of seasonal streamflows has been extensively 

studied in previous and recent years. Various parametric and 

nonparametric models have been suggested in literature as in 

[4],[9],[10],[13]. For stochastic generation of streamflows, the 

parametric model uses the statistical descriptors of historical 

data while nonparametric model does not. So far, no any work 

has evaluated the effectiveness between parametric and non-

parametric models.  

Using the parametric model and based on monthly historical 

data, streamflow simulation methods have been used to 

generate series of monthly data having the same characteristics 

for use in the analysis and designs of Water Resources 

(including Irrigation) projects. Starting  with the assumption 

that annual streamflows follows a dependent and skew 

distribution, Fernandez and Salas[2] employed a parametric 

model: the First Order Autoregressive Model with Gamma 

Variables (GAR(1)) in computer simulation and satisfactory 

results were obtained. The applicability of the GAR(1) model 

to the simulation of monthly streamflows is investigated in the 

present study and based on generated monthly data to obtain the 

annual data has not been investigated, and, that is the subject of 

this paper. 

II. LITERATURE REVIEW 

A. The Gamma Distribution 

A continuous random variable X is said to have a three 
parameter gamma distribution if its density can be expressed as 

 𝑓(𝑥) =
(𝑥 − 𝑐)𝑎−1𝑒−(𝑥−𝑐)/𝑏

𝑏𝑎Γ(𝑎)
 (1) 

Where a>0, b>0, c>0, x≥c and a, b, c are respectively the 
shape, scale, and location parameters. The gamma function is 
defined by 

 Γ(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡,      𝑎 > 0
∞

0

  

this function satisfies the following recursive formula 
 Γ(𝑎 + 1) = 𝑎Γ(𝑎)  

and, for a= k (a positive integer), we have :   

 Γ(𝑘) = (𝑘 − 1)! = 1 ∗ 2 ∗ … (𝑘 − 1)  

when c = 0  we have the two-parameter gamma distribution, 
and, when c = 0 and b = 1we have the one-parameter gamma 
distribution.The statistical descriptors of the three-parameter 
gamma distribution are given by the following formulas: 

Expected value:            E(X) =  𝑎b + c 

Variance:                     Var(X)  =  𝑎b2 

Skewness coefficient:  g= 2/√𝑎 
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B. First Oder Autoregressive Model with Gamma Variables 

The model by Lawrance and Lewis[8] has the following 
form 

 𝑋𝑖    =    𝛷𝑋𝑖−1 + 𝑒𝑖 (2) 

where Xi is the random variable representing the dependent 
processes at time i, Ф is autoregressive coefficient and ei is an 
independent variable to be specified Xi has a marginal 
distribution given by a three- parameter gamma density 
function defined as Eq.1. The process defined by Eq.2 is 
denoted as the GAR(1) model. To simulate the process, the 
parameters of the model must be known and ei can be generated 
by certain generators. When the shape parameter a is an integer, 
the following generation scheme for ei of  Eq.2 may be used: 

 𝑒𝑖 =
𝑐(1 − 𝜙)

𝑎
+ ∑ 𝑍𝑗

𝑎

𝑗=1
  

 Zj = 0, with probability Φ  

 Zj = E, with probability 1- Φ  

and E is an exponentiallly distributed random variable with 
expected value b. When a is nonintegral, based on the shot-
noise process used by Weiss[14] the following scheme may be 
used:   

 ei  =   c(1- Φ) + Z (3) 

where Z = 0  if Q= 0 (4) 

and 
𝑍 = ∑ 𝑌𝑗𝛷𝑈𝑗

𝑄

𝑗=1
 if𝑄 > 0 (5) 

In Eq.4 and Eq.5, Q is an integer random variable with 
Poisson distribution of mean value -aln(Φ) the Uj  are identical 
and independently distribution random variables with uniform 
distribution in (0,1) and the Yj are independent, identically 
distribution exponential variables with mean value b. 

C. Estimation of Model Parameters 

Fernandez and Salas[2] have presented a procedure for bias 
correction based on computer simulation studies, applicable for 
the parameters of GAR(1) model. When used in conjunction 
with this procedure, the GAR(1) model is an attractive 
alternative for synthetic streamflow simulation, is simple to use, 
and does not require any transformation of the original data. The 
stationary linear GAR(1) process of Eq.2 has four parameters, 
namely a, b, c and Φ. By using the method of moments, these 
parameters and the population moments of the variable  Xi   have 
the following relationships: 

 𝑀 = 𝑐 + 𝑎𝑏 (6) 

 𝑆2 = 𝑎𝑏2 (7) 

 𝐺 = 2/√𝑎 (8) 

 𝑅 =Φ (9) 

where M, S2, G, R are the mean, variance, skewness coefficient, 
and the lag-one autocorrelation coefficient, respectively. These 
population statistical can be estimated based on a sample {X1, 
X2,…, XN} by: 

 
𝑚 =

1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1
 (10) 

 
𝑠2 =

1

𝑁 − 1
∑ (𝑋𝑖 − 𝑚)2

𝑁

𝑖=1
 (11) 

 
𝑔 =

𝑁

(𝑁 − 1)(𝑁 − 2)𝑠3 ∑ (𝑋𝑖 − 𝑚)3
𝑁

𝑖=1
 (12) 

 
𝑟 =

1

(𝑁 − 1)𝑠2 ∑ (𝑋𝑖

𝑁−1

𝑖=1
− 𝑚)(𝑋𝑖+1 − 𝑚) (13) 

where m, s, g and r are estimators of M,S,G and R respectively 
and N  is sample size. As the variables are dependent and 
nonnormal, some of  these estimators are biased. Hence some 
correction needs to be made as follows: 

 𝑀∗ =  𝑚 (14) 

 
𝑅∗ =

𝑟𝑁 + 1

𝑁 − 4
 (15) 

 
 𝑆∗2 =

𝑁 − 1

𝑁 − 𝐾
𝑠2 (16) 

 
𝐾 =

𝑁(1 − 𝑅∗2) − 2𝑅∗2(1 − 𝑅∗𝑁)

𝑁(1 − 𝑅∗)2  
 

and s2, R*  are given by  Eq.11 and  Eq.15, respectively 

 
 𝐺∗ =

𝑇

𝑓
 (17) 

where 
𝑇 =

𝑝𝑔(𝐴 + 𝐵 (
𝑝2

𝑁
) 𝑔2)

√𝑁
 

 

here,g is given by Eq.12 and p has been given by Kirby[7] 

 
𝑝 =

𝑁 − 2

√𝑁 − 1
 

 

A and B have been given by  Bobee and Robitaille[1] 

 𝐴   =    1 +  6.51𝑁−1 +  20.2𝑁−2  

 𝐵   =    1.48𝑁−1 +  6.77𝑁−2  

finally the expression of f  in the Eq.17 is:   

 𝑓    =    1 –  3.12𝑅∗3.7𝑁−0.49  

By the correction we obtain  M*, R*, S*, and G*  which are 
unbiased estimators of M, R, S  and G. Once all these values are 
computed, Eqs.6-9 are used to estimate the set of model 
parameters a, b, c and Φ, respectively.   

D. Thomas-Fiering Model (TF Model) 

Phien and Ruksasilip[10] studied several models as 
compared to the Thomas-Fiering model for generation of  
monthly streamflows, in terms of  preserving of  historical 
parameters, namely the mean value, standard deviation and 
skewness coefficient of historical series. The Thomas-Fiering 
model has been confirmed by Singh and Lonnquist[5] to be 
quite popular in monthly streamflow studies. The basic model 
is:  
 𝑄𝑖,𝑗 = 𝑄𝑗

∗ + 𝑏𝑗(𝑄𝑖,𝑗−1 − 𝑄𝑗−1
∗ ) + 𝑠𝑗(1 − 𝑟𝑗

2)
1
2𝑡𝑗 (18) 

where Qi,,j  is  the  monthly flow in month j of year i; bj is the 
regression coefficient for estimating the flow in month j from 
that in month j-1; Q*j and sj are respectively the mean and 
standard deviation of the historical flows in  month j; rj is the 
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correlation coefficient between historical flow sequences in 
months j and j-1 and tj is a random variable with zero mean and 
unit variance. The parameters of the historical series of monthly 
flows (ie. the mean value, standard deviation, skewness 
coefficient) are computed according to Eqs.10-12 while the 
correlation coefficient is  as in [5]: 

𝑟𝑗 =
1

(𝑁 − 1)𝑠𝑗𝑠𝑗−1
∑(𝑋𝑖,𝑗

𝑁

𝑖=1

− 𝑚𝑗)(𝑋𝑖,𝑗−1 − 𝑚𝑗−1) 

 𝑗 = 2, . . ,12  

𝑟1 =
1

(𝑁 − 2)𝑠1𝑠12
∑(𝑋𝑖,1

𝑁

𝑖=2

− 𝑚1)(𝑋𝑖−1,12 − 𝑚12)   𝑗 = 1 

E. Method of Fragments 

Svanidze[12]  presented a method in which the monthly 
flows are standardized year by year so that the sum of the 
monthly flows in any year equals unity. This is done by dividing 
the monthly flows in a year by the corresponding annual flow. 
By doing so, from a record of N years, one will have N 
fragments of twelve monthly flows. The annual flows obtained 
from an annual model can be disaggregated by selecting the 
fragments at random. Since the monthly parameters were not 
preserved well, Srikanthan and McMahon[11] suggested a way 
to improve this preservation by selecting the appropriate 
fragment for each flow in the annual flow series. This was done 
as follows: The annual flows from the historical record were 
ranked according to increasing magnitude, and N classes were 
formed. The first class has the lower limit at zero while class N 
has no upper limit. The intermediate class limits are obtained 
by averaging two successive annual flows in the ranked series. 
The corresponding fragments were then assigned to each class. 
That is, the fragment obtained from the monthly flows 
corresponding to the smallest annual flow was assigned to class 
1, the fragment obtained from the monthly flows corresponding 
to the second smallest annual flows was assigned to class 2 and 
so on. The annual flows were then checked one by one for the 
class to which they belong and disaggregated using the 
corresponding fragment. 

III. THE PROPOSED MODELS 

A. Gar(1)-Monthly model (GAR(1)-M) 

The GAR(1) model has been found to be very good in the 
case of annual data [2]. For the case of monthly data, each 
sequence of data of the same month, say j,  of N years long 
forms a sequence of data in month j, and the GAR(1) model can 
be applied to simulate these monthly data. So the GAR(1)-
Monthly model is as follows: 

𝑋𝑖,𝑗    =    𝛷𝑗𝑋𝑖−1,𝑗 +  𝑒𝑖 ,    𝑗 = 1. .12 (19) 

where: 𝑋𝑖,𝑗 is the random variable representing the dependent 

processes at time i of month j, 𝛷𝑗 is autoregressive coefficient 

of month j and ei is an independent variable to be specified. Each 
sequence of dependent gamma variable represents a sequence 
of data of same month over years. The system of equations in 
(19) constitutes a model for use  to simulate monthly 
streamflows.   

In reality, the correlation coefficient between monthly flows 
into consecutive years may be negative and this may give rise 
to a negative value of the autoregressive coefficient, therefore a 
modification of the correlation coefficient of month j is needed 
to make the GAR(1) model applicable: 

𝑟𝑗 =  − 𝑟𝑗 if  𝑟𝑗 < 0. 

B. Gar(1)-Fragments model (GAR(1)-F) 

This model is obtained by a combination of  the GAR(1) 
model with the fragments method. From the historical record of 
monthly data (of N years long), the historical record of annual 
flows with N years, the classes and the fragments are formed. 
The annual flows obtained from the GAR(1) model will be 
disaggregated to obtain the monthly flows by using the 
corresponding fragments. Based on historical record of 
monthlyflows, the GAR(1)-fragments model generates monthly 
flows in the following algorithm: 
1:Seperate the historical series becomes N classes, each class is 
one year of history. 
2:Sort N classes according to increasing magnitude of  historical 
annual streamflow Ai 

𝐴𝑖 = ∑ 𝐴𝑖𝑗

12

𝑗=1
 

    Ai,j is the monthly streamflow in month j of year i, after 
sorting A1 corresponding to smallest annual flow, AN 

corresponding to largest annual flow. 
3:Compute the upper bound Ui of two successive classes: 
    Ui=(Ai+Ai+1)/2, i=1,2,..N-1.  UN has arbitrary large value. 
4:Compute the parameters: shape, scale, location and 
autoregressive coefficient of GAR(1) model based on the 
historical annual streamflow. 
5:Generate a random number X1 has three-parameter gamma 
distribution (the parameters were computed as in Step 4). 
6:Select the class has the smallest upper bound is greater than 
or equal to X1 (so called ith class). 
7:Compute Q1,j = Mi,j * X1 ,Q1,j is the monthly streamflow in 
month j of year 1; Mi,j = Ai,j /Ai , Mi,j  is the fragment of historical 
monthly streamflow in month j of year i. 
8:Compute Qk,j: k=2,..n (n: number of years to genarate), use 
GAR(1) model to generate ek and compute Xk, k=2,..,n. Select 
the class having the smallest upper bound  greater than or equal 
to Xk (so called ith class), then 

Qk,,j = Mi,j * Xk . 

IV. COMPUTER SIMULATIOM  

The simulator is the set of programs which were coded in 
C++. To generate the GAR(1) variables, we  can use the most 
suitable algorithms which have been proposed  for  generating 
the needed random variables.To generate Poisson variates, the 
efficient method of Kemp and Kemp[6] was used while 
exponential variates were obtained by inversion. Gamma 
variates were obtained by Marsaglia and Tsang[3].  

To verify the proposed models, with the GAR(1)-Fragments 
model, first the annual runoffs are computed from the monthly 
streamflow records, then the GAR(1) model is used to generate 
sequences of annual flows which are used for the disaggregation 
to obtain the generated monthly flows. The  values of the shape 
parameters obtained from the historical monthly data were used 
by GAR(1)-Monthly and Thomas-Fiering models for 
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generating the sequence of monthly streamflows. For 
evaluating the preservation of the mean, standard deviation and 
the skewness coefficient, no statistical tests were employed. 
Insteaded, the parameters of the historical and generated 
sequences were tabulated for visual inspection. Monthly and 
annual flow data at three stations (source: Institute of 
Meteorology and Hydrology) were used  to estimate the 
statistical descriptors and model parameters for use in the 
simulation study. For each model and at each station, a 
moderate sample of 1000 years of data  was generated on 
computer using the referred algorithms.The reproduction of 
monthly and annual descriptors corresponding to three stations 
is investigated. The results are as follows: 

TABLE I.  LISTOF STATIONS WHERE DATA WERE EMPLOYED 

Station River Location 
Period of 

record 

Nong Son Thu Bon Quang Nam, VietNam 1980-2010 

Thanh My Vu Gia Quang Nam, VietNam 1980-2010 

Yen Bai Thao Yen Bai, VietNam 1958-2010 

TABLE II.  PARAMETERS AT STATIONS OBTAINED FROM THE 

CORRECTION PROCEDURE AND USED IN GAR(1)-FRAGMENTS MODEL 

Parameters Nong Son Thanh My Yen Bai 

Shape 4.84 2.96 3.59 

Scale 473.56 300.08 960.62 

Location 1178.97 689.03 5344.71 

Autoregressive 0.24 3.18 0.18 

TABLE III.  SHAPE PARAMETERS FOR GENERATING THE SEQUENCE OF 

MONTHLY STREAMFLOWS BY GAR(1)-M AND THOMAS-FIERING MODELS 

Month Nong Son Thanh My Yen Bai 

1 1.03 6.42 7.46 

2 2.24 4.11 47.34 

3 3.63 3.90 2.22 

4 0.81 2.65 3.52 

5 4.44 1.42 3.79 

6 4.69 1.04 2.83 

7 12.60 0.87 4.29 

8 1.01 0.41 0.72 

9 0.16 0.17 14.11 

10 54.53 10.34 6.67 

11 6.08 3.56 1.83 

12      3.91 3.06 1.25 

TABLE IV.  CORRELATION COEFFICIENTS OF THE HIS. MONTHLY RECORDS 

Month Nong Son Thanh My Yen Bai 

1 - 0.04 0.07   0.09 

2   0.16 0.26   0.15 

3   0.02 0.13 - 0.05 

4   0.07 0.25 - 0.03 

5   0.20 0.31 - 0.14 

6   0.01 0.03   0.05 

7   0.27 0.20   0.13 

8   0.08 0.16   0.19 

9 - 0.02 0.02   0.04 

10 - 0.33           - 0.33   0.03 

11   0.05 0.10 - 0.11 

12   0.17 0.14   0.14 

 

 

TABLE V.  MEAN VALUE AT NONG SON STATION 

Month Historical GAR(1)-M GAR(1)-F TF Model 

1 248.96 245.40 220.25 267.63 

2 138.21 137.85 136.53 147.64 

3 94.05 93.01 94.06 101.39 

4 76.45 76.84 66.42 87.16 

5 107.30 106.38 97.66 121.01 

6 94.54 94.15 93.68 101.73 

7 70.33 71.44 74.95 74.84 

8 85.02 85.60 91.32 93.60 

9 195.59 195.30 174.61 94.19 

10 697.19 705.26 778.81 754.37 

11 1041.81 1039.30 1074.54 1116.12 

12 619.97 622.19 559.19 659.08 

TABLE VI.  MEAN VALUE AT THANH MY STATION 

Month Historical GAR(1)-M GAR(1)-F TF Model 

1 116.05 116.72 101.25 116.52 

2 71.03 71.29 66.39 71.66 

3 50.73 50.51 47.96 50.89 

4 45.03 44.92 37.92 44.96 

5 58.50 58.19 53.76 58.29 

6 56.09 56.36 56.69 55.18 

7 46.80 46.31 46.63 45.37 

8 59.03 58.79 55.97 57.02 

9 113.24 114.31 85.78 115.42 

10 301.76 308.59 347.83 302.87 

11 403.93 404.16 405.80 413.26 

12 255.31 255.11 243.10 258.62 

TABLE VII.  MEAN VALUE AT YEN BAI STATION 

Month Historical GAR(1)-M GAR(1)-F TF Model 

1 311.09 310.70 308.49 296.54 

2 264.81 263.61 262.53 264.18 

3 236.31 232.17 233.56 244.88 

4 269.61 269.16 268.31 258.46 

5 433.35 429.57 434.60 346.55 

6 851.98 848.37 847.83 803.96 

7 1340.41 1354.18 1355.75 1281.54 

8 1699.61 1682.67 1689.19 1711.18 

9 1353.24 1336.17 1358.96 1303.05 

10 976.46 976.90 983.76 1075.25 

11 655.91 650.63 640.44 776.64 

12 403.48 400.92 398.18 480.87 

TABLE VIII.  STANDARD DEVIATION AT NONG SON STATION 

Month Historical GAR(1)-M GAR(1)-F TF Model 

1 110.97 104.54 87.42 79.22 

2 46.07 45.50 37.07 34.23 

3 33.30 32.67 30.37 24.61 

4 39.32 40.82 34.25 29.29 

5 60.89 63.72 53.22 45.05 

6 39.63 38.2 32.01 29.01 

7 25.65 26.07 29.32 19.35 

8 48.82 49.52 71.14 36.02 

9 174.70 178.68 88.39 18.56 

10 354.16 376.42 438.79 244.56 

11 549.65 544.42 534.59 401.98 

12 329.72 334.52 311.34 235.41 
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TABLE IX.  STANDARD DEVIATION AT THANH MY STATION 

Month Historical GAR(1)-M GAR(1)-F TF Model 

1 45.38 45.52 42.36 46.49 

2 23.88 24.38 24.74 24.40 

3 16.73 16.13 16.34 16.34 

4 17.86 17.82 17.83 17.26 

5 28.40 28.52 24.26 27.75 

6 27.23 27.06 27.46 26.01 

7 17.16 17.10 17.29 16.16 

8 31.67 31.00 32.57 31.07 

9 90.08 92.33 44.23 90.30 

10 159.87 158.20 164.95 159.19 

11 236.99 240.94 215.25 236.50 

12 128.07 127.88 110.51 129.15 

TABLE X.  STANDARD DEVIATION AT YEN BAI STATION 

Month Historical GAR(1)-S GAR(1)-F TF Model 

1 76.00 75.22 83.20 75.41 

2  58.90 69.28 58.08 57.61 

3 73.98 73.87 76.44 71.29 

4 80.73 84.47 85.85 78.45 

5 182.15 182.56 191.76 181.82 

6 351.79 342.62 317.07 342.55 

7 453.46 450.88 424.31 469.40 

8 632.72 621.31 502.87 626.62 

9 422.36 438.64 421.78 431.73 

10 291.48 316.70 258.66 291.06 

11 275.57 264.99 214.89 268.58 

12 132.14 135.29 155.43 127.62 

TABLE XI.  SKEWNESS COEFFICIENT AT NONG SON STATION 

Month Historical GAR(1)-S GAR(1)-F TF Model 

1 1.54 1.53 1.51 0.67 

2 1.09 1.23 0.95 0.57 

3 0.87 1.20 0.73 0.43 

4 1.70 1.98 2.18 0.48 

5 0.79 1.00 0.78 0.35 

6 0.77 0.80 0.93 0.34 

7 0.47 0.64 1.32 0.22 

8 1.55 1.76 3.44 0.62 

9 3.08 5.17 2.32 1.73 

10 0.23 -0.01 -0.12 0.22 

11 0.68 0.66 1.66 0.42 

12 0.84 1.12 0.96 0.55 

TABLE XII.  SKEWNESS COEFFICIENT AT THANH MY STATION 

Month Historical GAR(1)-S GAR(1)-F TF Model 

1 0.66 0.65 1.39 0.55 

2 0.81 0.89 1.34 0.46 

3 0.84 0.98 1.26 0.40 

4 1.00 1.21 1.33 0.43 

5 1.31 1.45 1.53 0.47 

6 1.53 1.57 1.20 0.70 

7 1.65 1.67 1.69 0.73 

8 2.21 2.78 3.90 0.98 

9 3.02 4.28 1.63 1.65 

10 0.51 0.55 0.43 0.49 

11 0.88 0.98 0.52 0.56 

12 0.94 1.14 0.79 0.71 

 

TABLE XIII.  SKEWNESS COEFFICIENT AT YEN BAI STATION 

Month Historical GAR(1)-S GAR(1)-F TF Model 

1 0.66 0.81 1.24 0.42 

2 0.26 0.32 0.48 0.13 

3 1.18 1.21 2.66 0.63 

4 0.95 1.00 1.29 0.42 

5 0.92 0.93 2.06 0.54 

6 1.06 1.24 0.58 0.48 

7 0.86 0.91 1.38 0.33 

8 1.96 2.13 1.44 0.92 

9 0.48 0.41 0.60 0.25 

10 0.70 0.70 0.65 0.25 

11 1.30 1.29 0.96 0.85 

12 1.54 2.05 2.24 0.66 

TABLE XIV.  STATISTICAL PARAMETERS OF ANNUAL DATA AT NONG SON  

Parameters Historical GAR(1)-M GAR(1)-F TF Model 

Mean value 3469.72 3454.17 3467.92 3588.66 

Standard Dev. 1030.77 729.03 1025.29 664.64 

Skew. Coeff. 0.76 0.32 0.78 0.08 

TABLE XV.  STATISTICAL PARAMETERS OF ANNUAL DATA AT THANH MY 

Parameters Historical GAR(1)-M GAR(1)-F TF Model 

Mean value 1577.48 1583.05 1572.32 1558.69 

Standard Dev. 507.77 347.30 508.08 453.43 

Skew. Coeff. 0.95 0.51 1.15 0.24 

TABLE XVI.   STATISTICAL PARAMETERS OF ANNUAL DATA AT YEN BAI 

Parameters Historical GAR(1)-M GAR(1)-F TF Model 

Mean value 8796.28 8825.09 8732.18 8695.73 

Standard Dev. 1813.37 1312.66 1803.24 1700.69 

Skew. Coeff. 0.94 0.75 0.93 0.04 

 

 

 

 

 

 

 

 

Figure 1. Mean value at Nong Son station 

 

 

 

 

 
 

 

 

Figure 2. Mean value at Thanh My station 
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Figure 3. Mean value at Yen Bai station 

 
 

 

 
 

 

 

 

 

 

 

Figure 4. Standard Deviation at Nong Son station 

 
 

 
 

 

 
 

 

 
 

 

 

Figure 5. Standard Deviation at Thanh My station 
 

 
 

 

 
 

 

 
 

 

 

Figure 6. Standard Deviation at Yen Bai station 

 

 
Figure 7. Skewness coefficient at Nong Son station 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 8. Skewness coefficient at Thanh My station 

 

 
Figure 9. Skewness coefficient at Yen Bai station 

 

V. CONCLUSION 

The following conclusions are drawn from this study: 

- For monthly data: 

 Theoretically, the GAR(1)-Monthly model  cannot apply in 

the case of negative autoregressive coefficient 𝛷𝑗, but in reality, 

for monthly flows, this coefficient can take on negative values 

(table IV), so the proposed modication of the correlation 

coefficient is really needed to release any restriction on the use 

of the GAR(1)-Monthly model.  

 The mean and the standard deviation of the historical 

sequences were preserved very well  by three models under 

consideration (tables V-X and figs. 1-6), whereas GAR(1)-

Fragments and Thomas-Fiering models do not preserve the 

skewness coefficient well (tables XI-XIII and figs. 7-9). 

 The mean, standard deviation and the skewness coefficient 

obtained from monthly data generated by the GAR(1)-Monthly 

model are closer to their historical values than those obtained 

by GAR(1)-Fragments and Thomas-Fiering models. 

 The statistical values obtained by GAR(1)-Fragments  and 

Thomas-Fiering models are very close to each other. 

-   For annual data: 

 In this study, generated annual data were obtained from 

generated monthly data by taking the sum of twelve monthly 

values in a year. Then the mean, standard deviation and 

skewness coefficient can be estimated 

 It was found that these statistical descriptors can be 

reproduced very well by the GAR(1)-Fragments model, much 

better than those by the GAR(1)-Monthly and Thomas-Fiering 

models (tables XIV-XVI). 
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