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Abstract 
Due to the wide range of applications for ozone and its increasing use for medical and industrial purposes, 
studying its effects has become a very important line of research. The ozone has been suspected to be a 
carsinogen. Because of the increasing use of ozone, the human could be more and more exposed to this gas. In 
this study the effects of ozone inhalation on chromosomes and its clastogenic consequences have been 
investigated using in vivo micronucleus assay in bone marrow cells of treated rats. 

Animals were treated for 6 hours a day at 3 ppm of ozone during 10 consecutive days. The micronucleus 
assay was performed immediately and 11 days after the last exposure. The frequency of micronucleated 
polychromatic erythrocyte of bone marrow (MNPCE) increased in both groups compared to the control. Such 
increase confirmed the clastogenic effects of ozone. The elevated frequency of MNPCE did not decrease after 
11 days of the last ozone exposure. 

Results indicate that ozone inhalation could induce persistent chromosomal damages even to bone marrow 
cells which were not in direct contact to it. Also, once more, the results confirmed the usefulness of the 
micronucleus assay in toxicological studies. 
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Introduction∗ 
Studying the substances and factors polluting the 
environment is getting more and more important in 
our industrialized life and environment. One of 
those widely used factors is ozone. Ozone is used 
for sterilization of operating rooms and surgical 
tools, as a direct or indirect antiseptic agent of 
drinking water and preservative of food. Also due 
to its very strong oxidative capability, it is 
considered as a very good agent in removal of 
natural organic substances of swimming pools 
(Matilainen, 2006; Murphy, 2006). 
Because of its special chemical and physical 
properties, in aqueous solution, ozone is capable of 
producing free radicals which could cause wide 
range of damages to cells and tissues. Different 
studies have presented various results on the effects 
of ozone on living organism (Victorin, 1992). 
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Ozone is a very strong oxidant with the ability to 
interact with biomolecules. Its disintegration in 
aqueous solutions leads to formation of various free 
radicals of oxygen such as oxygen super oxide (O-

2), hydrogen peroxide (H2O2), hydroxyl radical 
(OH0), and very active single oxygen of superoxide 
(O0). These free radicals, in turn, can take part in 
secondary reactions which produce an oxidative 
stress (Victorin, 1992). Free oxygen radicals 
eventually destroy DNA by inducing cleavage in 
the deoxyribose-phosphate backbone and the 
chromosome breakages. Also ozone could directly 
react with DNA and destroy or modify its organic 
bases (Cataldo, 2006, Ito, 2005). The results of 
these changes in cells and tissues are oxidative 
destructions which are effective on aging, cell 
deformation, mutation, cancer, and eventually cell 
death and necrosis. In some particular 
concentrations ozone inhibits DNA replication. The 
tissue destruction caused by ozone is mostly due to 
its destructive effects on lipids of cell memebranes 
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(Steinberg, 1990). It leads to decomposition of fatty 
acids of cell membrane and inflict serious damages 
to the airway cells (Leikauft, 1995). Analysis the 
ozone exposure on airway tissues of several test 
animal species and humans with regards to the 
ozone concentration suggest that time and 
frequency of exposure have a very important role 
on its induced-destructive effects (Ratto, 2006). 
The elevated level of ozone in living and working 
environments may cause serious damages to living 
cells and chromosomes of the individuals involved 
in such conditions, and may explain the increasing 
risk of subsequent lung cancer (Chen, 2006).  
In nature ozone is found in concentrations of 0.01 
to 0.05 ppm which reaches 10 to 20 ppm in the 
ozone layer high above the ground. In natural 
conditions it is produced as a result of solar 
radiation and thunder storms. The industrial 
methods of producing ozone are: using UV 
irradiation on pure oxygen or air and/or passing air 
or oxygen through electric arch chambers (Sundell, 
1996). 
Considering the destructive effects of ozone on 
cells and tissues, there has been extensive research 
on its mechanisms of inducing damages and 
effective doses. These studies have mostly 
performed on target tissues such as cells of 
pulmonary systems or treated cells in culture media 
(Leikauf, 1995; Ratto, 2006; Chorvatovicova; 
2000). There has been no report concerning the 
effects of this gas on other tissues which are in no 
direct contact with it in in-vivo conditions.  
Due to the extended uses of ozone and its known 
effects on tissues we decided to study the effects of 
ozone inhalation in long-term treatment on the 
chromosomes of rat bone marrow cells which are 
not in direct contact to inhaled ozone. In this study 
the micronucleus assay has been performed. 
The in vivo micronucleus assay was introduced by 
Schmid in 1975. The in vivo micronucleus is able to 
reveal the structural and numerical chromosomal 
damages induced by physical or chemical stimuli. 
The in vivo micronucleus has significant 
advantages over analysis of metaphase 
chromosome. In terms of preparation and scoring 
the probable damages, this method is easier and 
faster than metaphase chromosomal analysis while 
keeping the accuracy intact (Heddle 1973). It is 

widely used in toxological study for analysis the 
effect of physical and chemical agents in our 
environment. In this method, any damages to 
chromosomes which may lead to chromosome 
breakage or loss, could be detected by scoring the 
small nucleous (micronucleus) in cytoplasm of the 
damaged cell (Heddle, 1991; Gocke, 1996; 
Hayashi, 1994; Mutsuki, 1993). The frequency of 
micronucleus reflects the rate of chromosomal 
damages. In in vivo systems this method is 
applicable to sample from different tissues such as 
skin, spleen, bone marrow, and blood (Abramsson-
Zetterberg, 1999). 
 
Materials and Methods 
Male Wistar rats with the age of 7 to 8 weeks and 
weight of 250-300 grams were kept in animal house 
with the standard condition of 12h dark/12h light 
with the temperature of 20 ± 2 °C for a week to 
adapt before treatment. They were divided into 
three groups of control, treatment1 and treatment2. 
Total of 12 rats were divided into these three 
groups. All the experimental procedure were 
performed according to the Guide for the Care and 
Use of Laboratory Animals by National Academy 
Press Washington, D.C. in 1996.  
 
Ozone treatment: To provide the required dose of 
ozone, the ozone producing chamber (Teb-e-Razi 
Mashhad) was used which could produce ozone by 
electrical discharge of the air. The dose of 3 ppm of 
ozone was used in this study. The calibration of 3 
ppm ozone was performed by chemical titration of 
iodine released from KI solution (recommended by 
the manufacturer). Briefly, passing the ozone gas 
through KI solution resulted in releasing of iodine 
according to the following formula: 

 
O3 + 2KI + H2O → I2 + 2KOH + O2 

 
The sodium thiosulfate is capable to scavenge the 
iodine from the above solution. Decrease of the free 
iodine would change the solution color from yellow 
to blue. The dose of ozone used to free the iodine 
from KI could be calculated by measuring the 
amount of sodium thiosulfate solution consumed to 
scavenge the iodine. 
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The treatment chamber with dimensions of 
70×110×50 cm was used for ozone exposure. The 
samples were treated separately inside the chamber. 
The rats from each treatment groups 1 and 2 were 
exposed to 3ppm of ozone to inhale for 10 
consecutive days and 6 hours daily from 12:00 to 
18:00.  

 
Sampling: Micronucleus assay were performed on 
control as well as treatment groups 1 and 2. The 
rats from treatment group 1 were sacrificed 
immediately after last ozone inhalation. The rats of 
the group 2 were sacrificed 11 days after the last 
ozone inhalation.  
The micronucleus assay was performed according 
to Hayashi et al (1994), and Schmid (1975); briefly, 
rats were euthanized by chloroform inhalation. The 
femoral bone marrow cells were gently flushed out 
by a 5 ml syringe containing 3 ml fetal bovine 
serum (gibco) and smeared on clean slides. The 
smeared cells were left 24 h to air dry and fixed 
with absolute methanol for 5 min and stained 
according to May-Grünwald – Gimsa technique. 
Observations were made within 24 h. The 
coverslipped slides were blindly scored on coded 
slides at ×1000 magnification. At least 2000 
polychromatic erythrocytes (PCEs) with or without 
micronuclei and normochromatic erythrocytes 
(NCE) were scored per slide. At least two slides per 
animal were scored. The ratio of micronucleated 
polychromatic erythrocytes (MNPCEs) to PCEs 
was calculated after simultaneously recording both 
PCE and MNPCE on each slide. 
 

Statistical analysis: The statistical analysis was 
performed using software MINITAB. The 
differences between treated groups and control and 
also between treated groups themselves were 
analyzed by the one way analysis of variance 
(ANOVA). 
 
Results 
Treatment with ozone had a significant effect on 
increased frequency of micronucleus in bone 
marrow cells compared to the control group 
(Figures 1, 2). Micronucleus frequency in the 
control group was 1.12%. Long term treatment with 
ozone could significantly elevate the micronucleus 
frequency to 4.88% (Table 1). The rats treated with 
similar dose and time of ozone, the elevated 
frequency of micronucleus did not decreased even 
after 11 days of the last exposure. The frequency of 
micronucleus in treatment 1 and 2 did not show any 
significant differences.  
In both treatment groups 1 and 2 the ratio of 
polychromatic erythrocytes to the total number of 
normochromatic and polychromatic cells was 
decreased significantly, representing the toxicity of 
the ozone inhalation in bone marrow cells (Table1). 
Comparing the values from the two treatment 
groups showed a significant increase for the 
treatment group 2, representing recovery from 
ozone treatment and returning to natural cellular 
conditions in bone marrow after 11 days of last 
exposure.  

 
 

Table1: Frequency of MNPCE** in Rat Bone Marrow Cells  
 

 MnPCE/100 PCE PCE/NCE***+PCE 
Control 

Treatment 1 
Treatment 2 

1.12±0.29 
4.88*±0.88 
5.62*±1.34 

54.45±0.092 
46.34*±1.02 
51.77*±0.88 

*Significant difference with control (0.05) 
** Micronucleated polychromatic erythrocyte 
*** Normochromatic erythrocyte 
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Figure 1: Bone marrow smear from control rat. PCE are stained light purple. 
 
 

 
 

Figure 2: Bone marrow smear of treated rat. MNPCE is at the center. 
 
Discussion 

Due to the way of exposure of living organisms to 
ozone, a ubiquitous air pollutant, the study of 
clastogeneic effect of this gas in in vivo are mostly 
devoted to the cells and tissues directly exposed to 
it (Haney et al., 1999; Chorvatovicova, 2000). In 
this study the cytogenetic effects of long term 
ozone inhalation were analysied on bone marrow 
cells of rat. The cells studied here are not directly 
exposed to ozone. 
The frequency of micronucleus in PCE of control 
rats was 1.12. In toxicological studies on rats the 
reported frequency for control group covers a wide 
range. Such studies report frequencies of 0.01 to 1 
percent (Suzuki, 2006; Zhong, 2000). Therefore the 

observed base line micronucleus frequency in the 
present study is in the range reported by others. 
In this study ozone inhalation clearly increased the 
frequency of micronucleus in polychromatic 
erythrocyte of rat bone marrow. In in vivo 
micronucleus assay increase in the frequency of 
MN represents the structural and numerical 
chromosomal damages in cells affected by the 
stimuli. Lost or broken parts of chromosome in 
cytoplasm of the cell form a small nuclei which is 
visible as micronucleus. Here the small size of MN 
suggests the structural damages to the 
chromosomes (Wakata and Sasaki, 1987). Due to 
its chemical and physical properties, ozone is 
capable of producing free radicals when it comes in 
contact with biologic systems (Victorin, 1992). 

Micronucleated 
polychromatic 

erythrocyte 
(MNPCE) 

Polychromatic 
erythrocytes (PCE) 



Ferdowsi University International Journal of Biological Sciences  45 

Free oxygen radicals may destroy DNA, cleave the 
deoxyribos-phosphate bonds of DNA, and break the 
chromosomes. Clastogenic properties of ozone 
through its ability to break DNA chain have already 
been established in different studies (Haney, 1999; 
Diaz-Liera, 2002; Bornholdt 2002). Increased 
frequency of micronucleus in rats of this 
experiment represents the ozone-caused structural 
damages to chromosomes by direct or indirect 
exposure to free radicals induced by long term 
ozone inhalation which could reach the bone 
marrow cells. 
In-vitro studies of effects of ozone on leucocytes of 
peripheral blood have demonstrated temporary 
effects of ozone in inducing damages to the DNA. 
The clastogenic effect of ozone treatment was 
reversed when treatment stopped (Diaz-Liera, 
2002). What is significant here and has not been 
reported before is the persistent harmful effect of 
long time ozone treatment. The stable frequency of 
induced micronucleus even after 11 days from last 
ozone exposure is a proof that the damages induced 
to chromosomes or bone marrow cells are some 
how permanent. It is expected that frequency of 
micronucleus will decrease when the induction of 
chromosome damages is stopped. It is reported in 
other studies that the effects of chromosomal 
damaging factors on micronucleus frequency are 
reversible and reduces as factors creating 
chromosome disorders are eliminated (Haddad et 
al., 2004; Malvandi et al., 2006). Reduction of 
micronucleus frequency after stopping the induced-
damages to chromosome is due to the following 
reasons: 
 

• Random integration of micronucleus to one of 
the main nuclei (Gustavino, 1994) 

• Disintegration of micronucleus by cytoplasm 
nucleases (Granetto, 1996) 

• Replacement and repairing of the tubulin 
reservoir and remaking of the dividing spindle 
needed for correct chromosome separation in the 
following cell division (Nichol, 1988) 

• Activities of monitoring mechanism for 
preventing the division of damaged cells and 
induction of apoptosis in cells unable of repair 
(Sablina, 1998) 

 

Due to the persistence elevated level of 
micronucleus frequency after 11 days of the last 
ozone exposure, it can be concluded that despite 
stopping the ozone exposure there are still factors 
inducing chromosome damages inside the bone 
marrow of the treated rats. Induction of 
chromosome damages, which is due to the attack of 
the free radicals to DNA, might be because of the 
deposit of free radicals in fat tissues of rats. The 
ability to induce clastogenic damages to bone 
marrow cells and the long lasting effects of ozone 
inhalation both refer to the existence of a 
mechanism that transfers ozone and/or ozone-
produced free radicals to internal tissues of the 
body and continuously induces the damages to the 
chromosome structure.  
Although more investigation regarding the analysis 
of the induced abnormalities to the tissues which 
are not in direct contact to inhaled ozone are 
required. In general the proposed model 
demonstrates that people who are exposed to ozone 
inhalation because of their jobs requirement may 
suffer chromosomal damages which may remain 
for long period of time. Thus care must be taken to 
not be exposed to ozone inhalation in particular 
cases such as planning for pregnancy. 
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