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________________________________________________________________                    
ABSTRACT: Wave motion in an infinite transversely isotropic, thermoelastic plate in the context of 
conventional coupled thermoelasticity (CT), Lord-Shulman (LS) and Green-Lindsay (GL) theories of 
generalized thermoelasticity has been studied by using Homotopy perturbation method (HPM). The 
expressions for displacement components and temperature are derived. Finally, the numerical solution is 
carried out for transversely isotropic plate. The dispersion curves of displacements with thickness and 
time are presented graphically for coupled and generalized theories of thermoelasticity.  
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INTRODUCTION 
He [1] has studied few problems with or without small parameters with the homotopy perturbation 
technique and the proposed method does not require small parameters in the equations, so the 
limitations of the traditional perturbation methods can be eliminated. The initial approximation can be 
freely selected with possible unknown constants. The approximations obtained by this method are 
valid not only for small parameters, but also for very large parameters.  
In the numerical method, stability and convergence should be considered, to avoid divergent or 
inappropriate results. Therefore, approximate analytical solutions were introduced, among which 
HPM, He [1-6] are the most effective and convenient ones for heat equation. Developing the 
perturbation method for different usage is very difficult because this method has some limitations and 
based on the existence of a small parameter. Therefore, many different new methods have recently 
introduced some ways to eliminate the small parameter such as artificial parameter method. One of 
the semi-exact methods is HPM, introduced by He [1-6] has successfully been applied to solve many 
types of linear and nonlinear functional equations. The methods have a useful feature in that it 
provides the solution in a rapid convergent power series with elegantly computable convergence of 
the solution. This method, which is a combination of homotopy in topology and classic perturbation 
techniques, provides us with a convenient way to obtain analytic or approximate solutions to a wide 
variety of problems arising in different fields. He has studied few problems with or without small 
parameters with the homotopy perturbation technique and the proposed method does not require small 
parameters in the equations, so the limitations of the traditional perturbation methods can be 
eliminated. The initial approximation can be freely selected with possible unknown constants. The 
approximations obtained by this method are valid not only for small parameters, but also for very 
large parameters. Chun et al. [7] solved the wave equation, where the domain of the space variable is 
unbounded, and a modified homotopy perturbation method to some nonlinear diffusion equations to 
obtain exact solutions without any restrictive assumption that may change the physical behavior of the 
solutions. Biazar and Ghazvini [8] studied the problem of convergence of HPM and presented 
sufficient condition for convergence of method. Babolian et al. [9] proposed some guidelines for 
beginners who intend to solve some problems using HPM.      
The present work is an attempt to find a displacement and temperature relation from three-
dimensional analog of the Rayleigh-Lamb frequency equation that would be sufficient for wave 
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motion in generalized thermoelastic plates. The analysis is based on the approach and HPM used in 
Refs [1-6]. 
 
FORMULATION OF THE PROBLEM:  
We consider wave motion in a transversely isotropic coupled thermoelastic plate of thickness h2  
initially at uniform temperature 0T . The origin of Cartesian co-ordinate system oxyz  is taken at any 
point o  in the middle plane of the plate and z-axis is pointed along the thickness of the plate. We 
assume that the plate is infinite in x  and y directions which thus occupies the region                  
    hzhyx  ,,  

In the region , the corresponding basic non dimensional governing equations for homogenous 
transversely isotropic linear thermoelasticity in the absence of body forces and heat sources are given 
by  
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where )3,2,1( iui are the displacement components, ijc  are isothermal elastic parameters, 

),,,( tzyxTT  is temperature change;   is mass density and eC  is the specific heat at constant 
strain, This type of medium has only one axis of elastic symmetry that which is also an axis of 
thermal symmetry and is taken along z axis. So that 313112111 )(  ccc  ,  

3331133 2  cc  , ,1 1K  are the coefficients of linear thermal expansion and thermal 

conductivity, in the direction orthogonal to axis of symmetry , ,3 3K  are the corresponding 

quantities along the axis of symmetry, 2,1, iik  is Kronecker delta, where 1k   corresponds to 
Lord –Shulman (LS)  and  2k   corresponds to Green Lindsay (GL) theory of generalized 
thermoelasticity, 0t , 1t  are thermal relaxation times, moreover 10 0 tt   leads to coupled (CT) 

theory of thermoelasticity and further 31 0    leads to uncoupled theory of thermoelasticity. 

It can be shown thermodynamically that 01 K , 03 K  and also 0 , 00 T . In addition, we 

assume that 0eC  and isothermal linear elasticities are components of positive definite fourth-order 
tensor. The necessary and sufficient conditions for satisfaction of this requirement are  

                011 c ,       2
12

2
11 cc  ,     044 c ,           2

13121133 )( cccc  . 

The non-dimensional quantities  
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where *  is characteristics frequency,   is thermoelastic-coupling constant  and pv  are the velocity 
of longitudinal wave. 
Initial conditions 

0)0,,,()0,,,()0,,,()0,,,(  zyxTzyxwzyxvzyxu  ,  

 0)0,,,()0,,,()0,,,()0,,,(  zyxTzyxwzyxvzyxu  ,    (6) 

 Boundary conditions 
0),,,(),,,(),,,(),,,(  thyxTthyxwthyxvthyxu                               (7)                         

SOLUTION OF THE PROBLEM: 
We assume harmonic wave solution of the form   
      ).(exp,,,,,,, nritzutzyxwvTu 

                                                                            (8) 

Where  ),(),,(),,(),,(),( tzWtzVtztzUtzu 


 is amplitude vector,  yxr ,


  is position 
vector and )0,(sin),(  mln  is wave number, where  is angle of incidence with  axis of 
symmetry ( z -axis).  
On applying solution (8) to governing Eqs. (1) - (4) and initial and boundary conditions Eqs. (6) and 
(7),  
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Initial conditions 









h
zazWzVzU sin)0,()0,()0,(  , 0)0,( Tz   
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 0)0,()0,()0,()0,(  zzWzVzU 
               (13) 

 Boundary conditions 
0),(),(),(),(  ththWthVthU                                                                (14) 

BASIC IDEA OF HOMOTOPY PERTURBATION METHOD:                    
To convey an idea of HPM, we consider a general equation of the type 
                                            0)( uL ,                                               (15 

In equation (15), L  is an integral or differential operator. We define a convex homotopy  ),( puH  

by 

                                     )()()1(),( upLuFppuH                                                        (16)    

)(uF  is functional operator with known solution 0v , which can be easily obtained. It is clear that                               
0),( puH                                                                           (17) 

From which we have )()0,( uFuH  and )()1,( uLuH  . 
This shows that ),( puH  continuously traces an implicitly defined curve from a starting point  

)0,( 0vH  to a solution )1,( fH . The embedding parameter increases monotonically from zero to 

unity as the problem 0)( uF   continuously deforms the original problem 0)( uL .    The 
embedding parameter can be considered as an expanding parameter. The HPM uses the homotopy 
parameter ‘ p ’ as an expanding parameter to obtain   
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If 1p , then equation (18) corresponds to (16) and becomes the approximate solution of the form 








01

lim
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It is well know that the series (19) is convergent for most of the cases and also the rate of convergence 
is dependent on )(uL . 
 
APPLICATIONS: 
In this section we present the homotopy perturbation method for solving linear partial differential 
coupled Eqs. (9) - (12), and initial and boundary conditions (13) and (14). According to the homotopy 
perturbation, we construct the following homotopy: 
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or equivalently; 
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Where
t

tkt 


 121  , 
t

tkt 


 01
* 1    and *

0
*

0
*

0
*
0 ,,, WVU are initial solutions.

  Suppose the solutions of system of Eqs. (20) – (23) has the form 
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Substituting solutions (24) – (27) into Equations (20) – (23), and comparing coefficients of terms with 
identical powers of p , leads to: 
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   ,3,2,1i  

Initial conditions 
:0p  zazWzVzU sin)0,()0,()0,( 000   , 00 )0,( Tz   

:ip )0,()0,()0,()0,( zzWzVzU iiii   , ,3,2,1i  

 :ip 0)0,()0,()0,()0,(  zzWzVzU iiii 
, ,3,2,1,0i               (30) 

Boundary conditions 
:ip 0),(),(),(),(  ththWthVthU iiii  , ,3,2,1,0i               (31)    

Suppose initial solutions 
   ztaVU T  sincos*

0
*
0  ,    ztaW L  sincos*

0  , 

   tKzT 20*
0 expsin4 


                    (32) 

Where  2cT  ,  1cL  , h/  . 
Solving equations (28) and (29), by using (30) – (32), we get 

   ztaVU T  sincos00  ’ 

   ztaW L  sincos0  , 
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   tKzT 20
0 expsin4 


  , 

          zttKtzU LT  coscosexpcossin )0(
1
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)0(
11  , 

       ztztV LT  coscossincos )1(
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)1(
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          ztBtKBtBzV LT  coscosexpcossin 12

.2
13112  , 

               tKDtDtDztDtDzW TTLL
2

15141213112 expsincoscossincossin   , 

               tEtEztKEtEtEz LLTT  cossincosexpsincossin 1211
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2

1312113  , 
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.2
1312113  , 
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221

15 DisADisAEtEKsJ kLL   

, 

If 1p , then equations (24) to (27) becomes the approximate solutions of the form  
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lim UUUUU
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              .2)0(
113151214

)0(
11111 expsincossin tKFAtFAtaFAz TT    

          tFAtFAz LL  sincoscos 1513
)0(

11412  , 


 210

*

1
lim VVVVV
p

  

            .2
1313121111
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1 expsincossin tKGBtGtaGBz TT    

        .151412
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1 sincoscos tGtGBz LL   , 
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lim WWWWW
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          tDHtaHDz LL  sincossin 13121111
)2(

1 

 
              .2

1515
)2(

114141312
)2(

1 expsincoscos tKHDtHDtHDz TT  
                           


 210

*

1
lim 
p

   

              .2
0

)2(
1131511

)3(
213

)3(
21214 exp/4sincossin tKTJEtJEtJEz TT    

          tJEtJEz LL  cossincos 1512
)3(

11411
)3(

1  . 

CONCLUSION 
The homotopy perturbation method has an advantage in comparison to the traditional perturbation 
methods. The approximate analytic solution obtained applying the homotopy perturbation method for 
solving coupled complex-valued second-order differential equations is in very good agreement with 
the exact closed form analytic solution. In this paper, we have shown that the HP method can be used 
successfully for finding the solution of the linear-boundary value problem.. The HP method is not 
affected by round off errors and the solution is found without taking a long time and a large amount of 
computer memory. Therefore, it may be concluded that this technique is very powerful and efficient 
in finding the analytical solutions for system of differential equations.                                          
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