

Detecting Hidden Encrypted Volume Files via

Statistical Analysis
Mario Piccinelli and Paolo Gubian

University of Brescia

Via Branze 38, 25123 Brescia (Italy)

email: mario.piccinelli@gmail.com

Abstract — Nowadays various software tools have been developed

for the purpose of creating encrypted volume files. Many of those

tools are open source and freely available on the internet.

Because of that, the probability of finding encrypted files which

could contain forensically useful information has dramatically

increased. While decoding these files without the key is still a

major challenge, the simple fact of being able to recognize their

existence is now a top priority for every digital forensics

investigation. In this paper we will present a statistical approach

to find elements of a seized filesystem which have a reasonable

chance of containing encrypted data.

Keywords — Forensics, Anti-anti-forensics, Encryption,

Detection.

I. INTRODUCTION

DATA ENCRYPTION is here understood as the process of

transforming information using an algorithm (called cypher)

to make it unreadable to anyone except those possessing

special knowledge, usually referred to as a key. In computer

forensics the encrypted data is usually a part of a filesystem

(one or more files) cyphered into a single binary blob, which

in turn can be saved as a single file in the main filesystem of

the machine it is hosted on or as a whole partition (or a part of

it). When a single encrypted file hosts a filesystem it is called

volume file, because it mimics a logical volume of a disk.

The data produced by modern encryption software like

TrueCrypt or PGP Virtual Disk is usually indistinguishable

from uniform random data, and has no recognizable header.

This means that it is impossible to link an encrypted volume

file to the methodology used to encrypt it, nor it is possible to

even prove that it is in fact an encrypted file. This goes under

the principle of “Plausible Deniability”, by which it is not

possible to prove under a court the existence of hidden data.

Nonetheless, experimental evidence proved that there is very

low probability for a normal file to have a random distribution

of data; under this assumption it can be said that proving a file

to be random means proving it has a big chance of being an

encrypted volume.

A major problem in recognizing encrypted data by its

randomness is that random data can be produced by other

means, the most important of those being data wiping

algorithms. Data wiping tools in fact destroy data by

overwriting the interested area with a random sequence [1],

which is as stated before indistinguishable from encrypted

data. This is a still open challenge in the analysis of entire

disks, entire volumes of a disk, or apparently unused disk

space [2]; in these cases it is impossible to prove that these

areas contain encrypted data (according to the principle of

“Plausible Deniability” described before). For encrypted files,

instead, it is impossible to hide their existence as single

entities on the disk, and this can lead to the conclusion that

they could contain useful data.

II. NIST STATISTICAL TEST SUITE

The NIST Statistical Test Suite (identified by the

description “a statistical test suite for random and pseudo-

random number generators for cryptographic applications”) is

a software tool written in ANSI C developed by the National

Institute for Standards and Technology (U.S. Department of

Commerce). It includes 10 pseudo-random number generation

algorithms and 15 algorithms for testing randomness of a

given data stream. It has been made available in the public

domain under an open source license, and can be downloaded

from the NIST website with exhaustive documentation. For

the experiments mentioned in this paper we used the last

release available at the time of writing, version 2.1.1 dated

April, 2010. For the purposes of this research only a subset of

the testing algorithms will be used. The subset will be chosen

according to the size of the file to analyze, because each test

has a recommended minimum length (n) in bytes for each run

(each sequence is split into a chosen number of runs to be

analyzed individually, and each run is n bits long).

A. How the suite is used

Once the package has been compiled a single executable

 named assess is created. It accepts one integer parameter, the

 bit stream length n.

$./assess 32000

Once launched, the software asks the user to choose the

 sequence generator among all the available pseudo random

 number generators. For our tests we select the option:

[0] Input File

Then, the software asks to enter the name of the data file to

analyze.

User Prescribed Input File: _

30

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

In the next screen the user is asked about which statistical

test to run on the selected file. The user can choose between

running each test (option 1) or be brought to a next screen in

which he’ll be able to select a specific subset (option 0).

Whether the user selects all the tests or just a subset, another

menu is shown to present the default test-specific parameters,

and let the user modify them. The parameters depend mainly

on the size n of the streams, and are well described in the

NIST manual. They won’t be described here because they are

outside the scope of this paper. To go on the user has to

choose option 0.

At last the user is asked to insert the number of runs of n bit

to extract from the selected data source, then how the input

file is built.

Input File Format:

[0] ASCII - A sequence of ASCII 0’s and 1’s

[1] Binary - Each byte in data file contains 8 bits of data

For our tests the second option will be chosen. Then the

test begins.

B. How the suite is used

To be able to validate the detection algorithm described in

this paper many test runs had to be performed. To make the

process faster, the NIST suite was modified to be able to

perform a test without user interaction by passing all the

needed parameters from command line. The needed

parameters are the size in bits of a run (which is already

provided by command line), the number of runs to perform

and the input file. With the modified NIST suite an entire test

is performed by calling:

./assess 32000 250 testfile.ext

The above mentioned line tests the file testfile.ext with 250

runs of 32000 bits each.

C. How the tests are performed

This section has been extracted from the NIST Statistical

Test Suite manual [3]. Each test is formulated to test a specific

null hypothesis (H0), which states that the analyzed sequence

is random. Associated with the null hypothesis is the

alternative hypothesis (Ha), which is that the sequence is not

random. For each test a decision is derived that accepts or

rejects the null hypothesis.

For each test, a relevant randomness statistic must be

chosen and used to determine the acceptance or rejection of

the null hypothesis. Under an assumption of randomness, such

a statistic has a distribution of possible values. A theoretical

reference distribution of this statistic under the null hypothesis

is determined by mathematical methods.

From this reference distribution, a critical value is

determined (typically, this value is “far out” in the tails of the

distribution, say out at the 99% point). During a test, a test

statistic value is computed on the data (the sequence being

tested). This test statistic value is compared to the critical

value. If the test statistic value exceeds the critical value, the

null hypothesis for randomness is rejected. Otherwise, the null

hypothesis (the randomness hypothesis) is not rejected (i.e.,

the hypothesis is accepted).

Each test is based on a calculated test statistic value, which

is a function of the data. The test statistic is used to calculate a

P-value that summarizes the strength of the evidence against

the null hypothesis. For these tests, each P-value is the

probability that a perfect random number generator would

have produced a sequence less random than the sequence that

was tested, given the kind of non- randomness assessed by the

test. If a P-value for a test is determined to be equal to 1, then

the sequence appears to have perfect randomness. A P-value

of zero indicates that the sequence appears to be completely

non-random. A significance level (α) can be chosen for the

tests. If P-value ≥ α, then the null hypothesis is accepted; i.e.,

the sequence appears to be random. If P-value < α, then the

null hypothesis is rejected; i.e., the sequence appears to be

non-random. The parameter α denotes the probability of the

Type I error (i.e. the probability of rejecting a random

sequence), and its default value (which will be used during the

following tests) is 0.01, which means that one would expect

one sequence in 100 sequences to be rejected by the test if the

sequence was random.

D. How the tests are interpreted

The output data from the tests is made up of ASCII text

files saved in the directory experiments/AlgorithmTesting/.

This directory contains several subdirectories (one for each

test) and two general files. Each test-specific subdirectory

contains two test-specific files.

Test-specific files:

 results.txt contains the p-values of the single runs.

 stats.txt contains test-specific computational

information for each run.

General files:

 freq.txt contains the count of 0s and 1s in each run.

 finalAnalysisReport.txt is the main result file.

For further analysis the main result file

finalAnalysisReport.txt will be used. The file has a structure as

shown in Listing 1. This file contains a row for each test

performed, and shows the results as:

 Columns C1-C10 show the distribution of the p-

values. The p-value range (0-1) is split into 10 sub-

ranges, and the software counts the number of runs

with a p-value included in each (i.e., the column C1

contains the number of tests with a p-value between

0.0 and 0.1).

 Column P-value contains the P-value that arises via

the application of a chi-square test, used to assess the

uniformity of P-values for each test performed.

 Column Proportion shows the proportion of single

runs which passed the test.

31

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

At the end of the output file the minimum pass rate for each

statistical test is shown, determined using the confidence

interval defined as:

where = 1-α and n is the sample size. For example, if α =

0.01 and n = 1000, the confidence interval is:

which means the proportion should lie above 0.98056.

When a test fails this condition (or the condition provided by

the uniformity condition) a star (*) symbol is inserted near the

failing value.

III. DETECTING ENCRYPTED FILES

As stated before, there is no simple mean of detecting files

encrypted using modern cyphering tools such as Truecrypt.

The files have no useful header section and present no useful

extension. Moreover, the extension of encrypted files can be

easily modified to make the file appear like a normal system

file. It is not uncommon for Truecrypt files to have their name

changed to something system-like, such as system.dll (on

Windows systems), and be placed in unusual positions on the

filesystem (as in the windows/system directory among many

other .dll files). In such cases it is impossible to detect these

files at first glance or with a superficial analysis of the disk,

and deeper methods must be employed.

A. Detecting suspicious files

A statistical analysis on each file in a computer could take a

huge amount of time because of the high number of files in a

normal system. For a first analysis it could be useful to be able

to detect suspicious files, i.e. files which appear to be

something different of what they are supposed to be. The next

sections outline some simple methods for the identification of

the most interesting target files for a first analysis.

File size: If a file is used to hide an encrypted volume it has

to be big enough to contain the data. Under this assumption, it

is unlikely to find a small file used to hide an encrypted

volume. The first files to be checked on an acquired file

system should be the bigger ones.

File extension: In normal conditions the extension of a file

identifies the file type and so the software which should be

able to handle it. For example, a .jpg file is supposed to be an

image, and so it should be read by any software able to handle

that kind of images. A big file with a known extension but

which can’t be opened by the right software is suspicious.

This means the first thing to do on a copy of a seized

filesystem is try to open all the files with known extensions to

assess whether they are what they look like or not.

File type via header: In normal conditions all files are

identified by their header, the first part of a file which contains

information about the file itself. Known file types are

identified by their header data, which should match with their

extension (a .jpg file should present the .jpg header data) [4]

[5]. A mismatch between file header and file extension (or

having a known extension on a header less file) is suspicious.

Listing 1 Example of NIST final analysis report

32

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

It should be noted that this methodology could be disrupted

using software tools able to change header information of a

file or add a known header to a header less file, such as the

Transmogrify tool [6].

File content via know hash: Known operating system and

program installation files can be deemed not important (and

thus not need to be further analyzed) if it can be proved that

their content is not different from what is expected in a non-

manipulated case. To verify that it is possible to check them

(for example by their MD5 hash) versus the same files in a

reference system. Another way is to check their MD5 hashes

against a database of known hashes, such as the one provided

by the HashKeeper tool [7] provided free of charge by the

National Drug Intelligence Center, a component of the

Department of Justice of the United States.

B. Analysing suspicious files

Once a file has been deemed for further analysis (or, at

least, each file which is not clearly recognized as forensically

useless), the statistical analysis with the NIST Statistical Test

Suite can be performed to assess whether the file data is

random and thus it can be recognized with a certain

probability as an encrypted volume file.

The tests to be performed on the data must be chosen

according to the size of the data itself, according to the

minimum n values recommended for each test. Some tests

require a big value for n, such as the Random Excursion tests

(see appendix A-N and A-O) requiring at least one million bits.

Testing sequences with a high value of n can require a large

amount of time, so it’s preferable to select lower values and

choose the tests list accordingly.

Each file is split into 1 MB blocks, and for each block the

NIST test is performed for 250 runs of 4 KB each (n =

320,000). These values have been chosen after extensive

testing as a good tradeoff between run size and test duration.

Once a block has been tested a report like the one in listing

1 is produced for further interpretation.

For the results shown in the following chapters all tests

have been considered except for the Binary Matrix Rank Test,

the Random Excursion Test and the Random Excursion

Variant Test, which require a value of n greater than 32000 to

be considered reliable.

C. Interpretation of analysis results

After the analysis is completed by the NIST tool, results in

the output file have to be interpreted to discriminate whether

the sequence can be considered random or not.

To choose whether the file is random or not we used the

following algorithm:

 for each block (1MB):

o for each kind of test performed on the

selected block:

 if the test is run only one time: the

test is passed if both p-value and

proportion are deemed passed by

the NIST suite.

 if the test is run many times: the

test is passed if at least 90% of the

times it is deemed passed by the

NIST suite.

o The block is deemed passed if at least 70%

of the test kinds performed are passed.

 The whole file is deemed passed (and thus random) if

at least 70% of the blocks are passed.

To achieve this result we defined three thresholds. These

thresholds have been determined by experiments with various

samples of “normal” data and data produced by cyphering

algorithms.

The algorithm has been implemented as a Python script

which receives as input the finalAnalysisReport.txt’s of all the

blocks of a single file concatenated.

D. Example of interpretation

As an example to illustrate the algorithm we decide to test a

50 MB file. The file is split into 50 blocks of 1 MB each, and

on each block the NIST test is performed with 250 runs of 4

KB each. We assume the first test gives an output like this:

- Test: 49, lines: 188, passed: 160

- test: Frequency, passed: 1/1 (PASS)

- test: BlockFrequency, passed: 1/1 (PASS)

- test: CumulativeSums, passed: 2/2 (PASS)

- test: Runs, passed: 1/1 (PASS)

- test: LongestRun, passed: 1/1 (PASS)

- test: Rank, passed: 1/1 (PASS)

- test: FFT, passed: 1/1 (PASS)

- test: NonOverlappingTemplate, passed: 148/148 (PASS)

- test: OverlappingTemplate, passed: 1/1(PASS)

- test: Universal, passed: 0/1 (FAIL)

- test: ApproximateEntropy, passed: 0/1(FAIL)

- test: Serial, passed: 2/2 (PASS)

- test: LinearComplexity, passed: 1/1(PASS)

Tests passed: 11/13 (84%)

PASSED

In the previous listing it is shown that 188 tests of 13

different kinds have been performed on the block. The reason

for this incongruity is that some tests are performed many

times (such as the non-overlapping template test, which is

performed 148 times, each time with a different test template).

To keep all the tests on the same level of importance it has

been decided not to count every occurrence of them, but to

deem the kind “passed” if at least 90% of the occurrences are

passed. This way the non-overlapping template test, run 148

times, still counts as one “passed”.

After all the test results are analyzed the percentage of

passed tests against the number of tests is calculated. In the

example this percentage is 84%, over the 70% threshold, so

the whole block is deemed passed.

After testing all the 1 Mb blocks in the file, a final statistic

is calculated:

33

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

Final results: 49/50 blocks passed

PASSED

If at least 70% of the blocks is deemed passed, then the

whole file can be considered random.

IV. TEST CASES

To test the proposed detection algorithm we chose the most

widely used open source encryption software, TrueCrypt, to

create some test cases. The results are validated by testing

TrueCrypt volume files and volumes versus standard files

from a reference repository.

A. TrueCrypt files

Using TrueCrypt version 7.0a on Mac Os X we created

three encrypted volume files of 50 MB each, one with no data,

one half full and one full. Results are shown in Table I.

TrueCrypt files have no header and are recognized as random

data for all the file size (both encrypted data and empty space

are equally random).

TABLE I

TEST RESULTS FOR TRUECRYPT VOLUMES

File Blocks
Random

blocks

Nonrandom

blocks
Perc.

Empty

volume
50 49 1 98%

Half

full

volume

50 49 1 98%

Full

volume
50 50 0 100%

B. TrueCrypt partitions

A TrueCrypt encrypted partition was created on a USB

mass storage of 256 MB using TrueCrypt version 7.0a on Mac

Os X. This partition was then dumped to a file using EnCase v.

4.20 for Windows. The file was then split into chunks of 50

MB each, and the above described analysis was performed on

each part. The results are shown in Table II. It is shown that

all the parts are correctly recognized as random data.

TABLE II
TEST RESULTS FOR TRUECRYPT VOLUME FILES

File Blocks
Random

blocks

Nonrandom

blocks
Perc.

Chunk 1 50 48 2 96%

Chunk 2 50 49 1 98%

Chunk 2 50 47 3 94%

Chunk4 50 50 0 100%

Chunk 5 50 47 3 94%

C. Standard files

In order to test the classifier we looked on the Internet for a

publicly available repository of standard files, here intended

as files more likely to be found on a computer (which should

be classified nonrandom). We found a repository named

Digital Forensics Corpora
i
 which was set in order to have a

database that can be used for research purposes. From that

repository we downloaded directory 000 and chose some of

the files larger than 5 MB to test. Results are shown in Table

III. It is shown that all files but one are clearly recognized as

nonrandom.

TABLE III

TEST RESULTS FOR STANDARD FILES

File Blocks
Random

blocks

Nonrandom

blocks
Perc.

000033.xls 6 0 6 0%

000030.xls 8 0 8 0%

000113.doc 14 0 14 0%

000134.ppt 9 0 9 0%

000143.pdf 5 0 5 0%

000187.pdf 9 6 3 66%

000208.pdf 6 0 6 0%

000559.ppt 17 0 17 0%

000564.csv 8 0 8 0%

000736.gz 6 0 6 0%

000766.ps 5 0 5 0%

000801.doc 6 0 6 0%

000938.txt 29 0 29 0%

V. SIMILAR TOOLS FOUND IN LITERATURE

In literature we found a little number of tools which claim

to be able to detect cyphered files. The most interesting tools

are:

 FI Tools from Forensics Innovations

 TCHunt from 16 Systems

Interestingly all their developers agree on the fact that it is

impossible to accurately detect encrypted files from random

files, because they appear identical on every analysis. It is

remarked that the only method to provide some sort of

detection is to identify files containing random data [8] [9].

TCHunt uses another three file attributes to try to detect

TrueCrypt files:

 The suspect file size modulo 512 must equal zero,

because TrueCrypt files are built from 512 bytes

blocks.

 The suspect file size is at least 19 KB in size, because

this is the minimum dimension for a TrueCrypt

volume file.

 The suspect file must not contain a common file

header.

After performing some tests it appears that these tools have

almost the same success rate of the methodology explained,

because they work on the same hypothesis.

VI. CONCLUSIONS

This paper was motivated by the lack of open source

forensically sound tools to provide some sort of detection of

encrypted volume files. While it was known from the

beginning that a true detection of this sort of archives is not

possible, a methodology was developed to identify filesystem

elements which with high probability contain encrypted data.

34

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

The methodology was tested against a number of test cases

which proved it to be reliable for identifying data encrypted

with a popular encryption tool. The next step in this research

work will be to provide an integrated software tool which

could be used by both researchers and practitioners in digital

forensics to easily scan a filesystem and identify realistic

candidates for further cryptographic examination.

APPENDIX A

TESTS IN THE NIST SUITE

This appendix reports a brief description of the statistical

tests used in the NIST Suite. The descriptions are taken from

the NIST Statistical Test Suite manual [3].

A. Frequency (Monobit) Test

The purpose of this test is to determine whether the number

of ones and zeros in a sequence are approximately the same as

would be expected for a truly random sequence. The test

assesses the closeness of the fraction of ones to 0.5, that is, the

number of ones and zeroes in a sequence should be about the

same.

It is recommended that each sequence to be tested consist

of a minimum of 100 bits (i.e., n ≥ 100).

B. Frequency Test within a block

The purpose of this test is to determine whether the

frequency of ones in an M-bit block is approximately M/2, as

would be expected under an assumption of randomness. For

block size M=1, this test degenerates to test 1, the Frequency

(Monobit) test.

It is recommended that each sequence to be tested consist

of a minimum of 100 bits (i.e., n ≥ 100). Note that n ≥ MN.

The block size M should be selected such that M ≥ 20,

M > .01*n and N < 100.

C. Run test

The purpose of the runs test is to determine whether the

number of runs of ones and zeros of various lengths is as

expected for a random sequence. A run of length k consists of

exactly k identical bits and is bounded before and after with a

bit of the opposite value. In particular, this test determines

whether the oscillation between such zeros and ones is too fast

or too slow.

It is recommended that each sequence to be tested consist

of a minimum of 100 bits (i.e., n ≥ 100).

D. Test for the Longest Run of Ones in a Block

The purpose of this test is to determine whether the length

of the longest run of ones within the tested sequence is

consistent with the length of the longest run of ones that

would be expected in a random sequence.

The recommended length of the sequence to be tested is n ≥

128. According to this dimension, the length M of the blocks

is chosen as follows:

Minimum n M

128 8

6272 128

750000 10
4

E. Binary Matrix Rank Test

The purpose of this test is to check for linear dependence

among fixed length substrings of the original sequence, by

calculating the rank of disjoint sub-matrices of the entire

sequence.

The probabilities for M = Q = 32 (where M is the number

of rows in each matrix, and Q the number of columns) have

been calculated and inserted into the code. Other choices of M

and Q may be selected, but the probabilities would need to be

calculated. The minimum number of bits to be tested must be

such that n ≥ 38MQ (i.e., at least 38 matrices are created). For

M = Q = 32, each sequence to be tested should consist of a

minimum of 38,912 bits.

F. Discrete Fourier Transform (Spectral) Test

The purpose of this test is to detect periodic features (i.e.,

repetitive patterns that are close to each other) in the tested

sequence that would indicate a deviation from the assumption

of randomness. The intention is to detect whether the number

of peaks exceeding the 95% threshold is significantly different

than 5%.

It is recommended that each sequence to be tested consist

of a minimum of 1000 bits (i.e., n ≥ 1000).

G. Non-overlapping Template Matching Test

The purpose of this test is to detect sequences with too

many occurrences of a given non-periodic (aperiodic) pattern.

An m-bit window is used to search for a specific m-bit pattern.

If the pattern is not found, the window slides one bit position.

If the pattern is found, the window is reset to the bit after the

found pattern, and the search resumes.

The test code has been written to provide templates for m =

2, 3,...,10. It is recommended that m = 9 or m = 10 be

specified to obtain meaningful results. Although N = 8 has

been specified in the test code, the code may be altered to

other sizes. However, N should be chosen such that N ≥ 100

to be assured that the P-values are valid. Additionally, be sure

that M > 0.01 ≥ n and N = floor(n/M).

H. Overlapping Template Matching Test

Both this test and the Non-overlapping Template Matching

(section A-G) test use an m-bit window to search for a

specific m-bit pattern. As with the test in A-G, if the pattern is

not found, the window slides one bit position. The difference

between this test and the test in section A-G is that when the

pattern is found, the window slides only one bit before

resuming the search.

The values of K, M and N have been chosen such that each

sequence to be tested consists of a minimum of 106 bits (i.e.,

n ≥ 106). Various values of m may be selected, but for the

time being, NIST recommends m = 9 or m = 10.

I. Maurers Universal Statistical Test

35

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

The purpose of the test is to detect whether or not the

sequence can be significantly compressed without loss of

information by evaluating the number of bits between

matching patterns. A significantly compressible sequence is

considered to be non-random.

This test requires a long sequence of bits (n ≥ (Q+K)L)

which are divided into two segments of L-bit blocks, where L

should be chosen so that 6 ≤ L ≤ 16. The first segment

consists of Q initialization blocks, where Q should be chosen

so that Q = 10 ∙ 2
L
. The second segment consists of K test

blocks, where . The values of L, Q

and n should be chosen as follows:

n L

≥ 387840 6 640

≥ 904960 7 1280

≥ 2068480 8 2560

≥ 4654080 9 5120

… … …

J. Linear Complexity Test

The purpose of this test is to determine whether or not the

sequence is complex enough to be considered random by

evaluating the length of a linear feedback shift register

(LFSR). Random sequences are characterized by longer

LFSRs. An LFSR that is too short implies non-randomness.

It is recommended that n ≥ 106. The value of M must be in

the range 500 ≤ M ≤ 5000, and N ≥ 200.

K. Serial Test

The purpose of this test is to determine whether the number

of occurrences of the 2m m-bit overlapping patterns is

approximately the same as would be expected for a random

sequence. Random sequences have uniformity; that is, every

m-bit pattern has the same chance of appearing as every other

m-bit pattern. Note that for m = 1, the Serial test is equivalent

to the Frequency test.

It is recommended to choose m and n such that
 .

L. Approximate Entropy Test

The purpose of the test is to compare the frequency of

overlapping blocks of two consecutive/adjacent lengths (m

and m+1) against the expected result for a random sequence.

It is recommended to choose m and n such that
 .

M. Cumulative Sums (Cusum) Test

The focus of this test is the maximal excursion (from zero)

of the random walk defined by the cumulative sum of adjusted

(-1, +1) digits in the sequence. The purpose of the test is to

determine whether the cumulative sum of the partial

sequences occurring in the tested sequence is too large or too

small relative to the expected behavior of that cumulative sum

for random sequences. This cumulative sum may be

considered as a random walk. For a random sequence, the

excursions of the random walk should be near zero.

It is recommended that each sequence to be tested consist

of a minimum of 100 bits (i.e., n ≥ 100).

N. Random Excursions Test

The focus of this test is the number of cycles having exactly

K visits in a cumulative sum random walk. The cumulative

sum random walk is derived from partial sums after the (0, 1)

sequence is transferred to the appropriate (-1, +1) sequence. A

cycle of a random walk consists of a sequence of steps of unit

length taken at random that begin at and return to the origin.

The purpose of this test is to determine if the number of visits

to a particular state within a cycle deviates from what one

would expect for a random sequence. This test is actually a

series of eight tests (and conclusions), one test and conclusion

for each of the states: -4, -3, -2, -1 and +1, +2, +3, +4.

It is recommended that each sequence to be tested consist

of a minimum of 1,000,000 bits (i.e., n ≥ 10
6
).

O. Random Excursions Variant Test

The focus of this test is the total number of times that a

particular state is visited (i.e., occurs) in a cumulative sum

random walk. The purpose of this test is to detect deviations

from the expected number of visits to various states in the

random walk. This test is actually a series of eighteen tests

(and conclusions), one test and conclusion for each of the

states: -9, -8, ..., -1 and +1, +2, ..., +9.

It is recommended that each sequence to be tested consist

of a minimum of 1,000,000 bits (i.e., n ≥ 10
6
).

REFERENCES

[1] A. Savoldi, M. Piccinelli, and P. Gubian. A statistical method for
detecting on-disk wiped areas. Digital Investigation, Elsevier,

Volume 8, 2012.
[2] A. Czeskis, D.J.St. Hilaire, T. Kohno, K. Koscher, S.D. Gribble,

and B. Schneier. Defeating Encrypted and Deniable File Systems:

TrueCrypt v5.1a and the Case of the Tattling OS and Applications.
Retrieved January, 2011, from

http://pdos.csail.mit.edu/6.858/2010/readings/truecrypt.pdf.

[3] D. Banks, E. Barker, J. Dray, A. Heckert, S. Leigh, M. Levenson,
J. Nechvatal, A. Rukhin, M. Smid, J. Soto, M. Vangel, and S. Vo.

NIST Statistical Test Suite, 2008. Retrieved January, 2011, from

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.zip.

[4] D.J. Hickok, D.R. Lesniak, and M.C. Rowe. File Type Detection

Technology, 2005. Retrieved January, 2011, from

http://www.uwplatt.edu/csse/courses/prev/csse411-
materials/StudentConferencePublications/MICS2005 File Type

Detection Technology.pdf.

[5] C. Sadowski and G. Levin. SimHash: Hash-based Similarity
Detection, 2007. Retrieved January, 2011, from

http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.

pdf.
[6] B. Blunden. Anti-Forensics: The Rootkit Connection. In Black Hat

USA 2009 Conference proceedings, 2009. Retrieved January,

2011, from http://www.blackhat.com/presentations/bh-usa-
09/BLUNDEN/BHUSA09-Blunden-AntiForensics-PAPER.pdf.

[7] Hashkeeper web site. Retrieved on February, 2011 from

http://www.justice.gov/ndic/domex/hashkeeper.htm.
[8] Comments from president of Forensic Innovations, Inc. Rob

Zirnstein on FI blog post TrueCrypt is now detectable. Retrieved

January, 2011, from
http://www.forensicinnovations.com/blog/?p=7.

36

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

http://pdos.csail.mit.edu/6.858/2010/readings/truecrypt.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.zip
http://www.uwplatt.edu/csse/courses/prev/csse411-%20materials/StudentConferencePublications/MICS2005%20File%20Type%20Detection%20Technology.pdf
http://www.uwplatt.edu/csse/courses/prev/csse411-%20materials/StudentConferencePublications/MICS2005%20File%20Type%20Detection%20Technology.pdf
http://www.uwplatt.edu/csse/courses/prev/csse411-%20materials/StudentConferencePublications/MICS2005%20File%20Type%20Detection%20Technology.pdf
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf
http://simhash.googlecode.com/svn/trunk/paper/SimHashWithBib.pdf
http://www.blackhat.com/presentations/bh-usa-09/BLUNDEN/BHUSA09-Blunden-AntiForensics-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/BLUNDEN/BHUSA09-Blunden-AntiForensics-PAPER.pdf
http://www.justice.gov/ndic/domex/hashkeeper.htm
http://www.forensicinnovations.com/blog/?p=7

[9] TCHunt FAQs from 16 System website. Retrieved on February
14th, 2011 from http://16s.us/TCHunt/faq/.

i
 http://domex.nps.edu/corp/files/govdocs1/

37

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 3(1): 30-37
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

