
An Automated Malware Detection System for Android using Behavior-based Analysis

AMDA

Abela, Kevin Joshua L.

College of Computer Studies

De La Salle University – Manila

1004 Manila, Philippines (632) 524-

4611 loc. 130

kevin.abela@live.com

Delas Alas, Jan Raynier P.

College of Computer Studies

De La Salle University – Manila

1004 Manila, Philippines (632) 524-

4611 loc. 130

jandelasalas@live.com

Angeles, Don Kristopher E.

College of Computer Studies

De La Salle University – Manila

1004 Manila, Philippines (632) 524-

4611 loc. 130

donangeles@live.com

Tolentino, Robert Joseph

College of Computer Studies

De La Salle University – Manila

1004 Manila, Philippines (632) 524-

4611 loc. 130

robert.tolentino@live.com

Gomez, Miguel Alberto N.

College of Computer Studies

De La Salle University – Manila

1004 Manila, Philippines(632) 524-

4611 loc. 130

miko.gomez@delasalle.ph

Abstract— The Android platform is the fastest

growing market in smartphone operating systems to

date. As such, it has become the most viable target

of security threats. The reliance of the Android

Market Security Model on its reactive anti-malware

system presents an opportunity for malware to be

present in the Official Android Market and does not

encompass applications outside the official market.

This allows applications to masquerade as harmless

applications which lead to the loss of credentials if

precautions are not taken. Most anti-malware

applications in the Market use static analysis for

detection because it is fast and relatively simple.

However, static analysis requires regular updates of

threat databases and it may be circumvented by

obfuscation techniques. As a solution to these

problems, the study utilizes behavior analysis of

applications as basis for malware. As a first step,

features of known-benign and known-malicious

applications are extracted for machine learning to

provide baseline behavior datasets. Test applications

are then passed through the behavior based module

for identification of its being malware or benign. A

classification scheme is provided for applications

identified as malware by the system.

Keywords—Android, Security, Behavior Analysis

1 INTRODUCTION

Smartphones are now a target for malicious

software which attempt to damage personal assets

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

1

of users. The Android platform, being the fastest

growing market today, faces the same risk.

Malware takes advantage of the platform for its

being open, complete and free for development

meaning that there is lack in control for application

development. Allowing anyone to develop and to

publish applications into the Android Market

presents an opportunity for attackers to easily

deliver malicious applications onto unsuspecting

users. 1 The presence of alternative Android

market makes this problem worse because of the

lack in review methods thus making them

unreliable sources of applications.

The Android platform uses permissions-based

security models to have access to different

functionalities of devices. This model provides

information about the access and privilege capacity

of an application which to more technical users,

may be used as an indication for malicious intent

but to normal users, this information is often

neglected thus making this model unreliable on its

own. Static analysis is a method used to detect

malware but this method proves to be inadequate

as malware can be undetected by obfuscation, as

an example. The time it takes to manually check

the code provides an opportunity for malware to

infect devices before they are detected.

To address these problems, an automated

behavioral analysis system called AMDA is the

solution. The AMDA system determines malicious

behavior from benign behavior through the use of

machine learning techniques. A behavior model for

trojans, spyware, viruses and exploits are generated

and used for classification of applications. Results

are verified by forwarding them to an expert

system, VirusTotal.

2 AMDA

AMDA is an automated malware detection

system for the Android platform. This paper

includes the discussion of the core modules of the

system namely the Feature Extraction Module and

the Behavior Analysis Module. These modules are

responsible for behavioral analysis to detect

malicious activity of applications based on

extracted features. The current development of the

system involves categorization of applications

based on the AMDA’s classification and cross-

validation of the results to the expert system,

which generally concludes the functionalities of

the system.

A. Applictaion Acquisition Module

The Application Acquisition module is

responsible for downloading applications from

Android Markets and storing them into the

application repository inside the server. Test

applications are downloaded both from the Official

Android market and some Alternative Android

markets. Benign applications are downloaded from

the Official Android Market and known-malware

applications are downloaded from online Android

malware providers such as VirusTotal and

Contagio. For the downloading of test applications,

a web-crawler tool is used applications from

alternative Android market domains which provide

free download of .apk files. The applications are

forwarded to the VirusTotal Malware Verification

System (VMS) to be able to acquire the

classification of the test applications for use in later

modules. As for downloading the training

applications, these are acquired manually in order

to ensure the validity of the applications.

Applications from the Official Android Market

and the Android malware providers are acquired

manually. The downloaded applications are also

tested for their validity as benign or as known-

malware through the VirusTotal VMS. Once the

status of each application is confirmed, the

application is passed on to the repository to be

used by the next module, the Feature Extraction

module.

Web-crawler
Applications from
Official Android

Market

Applications from
online malware

providers

Applications from
Alternative Android

Markets

Feature-extraction
Module

Android
Applications

URL list

Unclassified
Applications

VirusTotal Malware
Verification System

Classified
Applications

 Application
Repository

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

2

Figure 1. Application Acquisition Module

1) Web-crawler Submodule

The web-crawler iterates selected sites from a

predefined list of domains to search for free

Android applications in .apk format. When an

Android application has been found, the web-

crawler downloads the file and stores it in the

applications repository. When the web-crawler has

finished all the URLs in the list, it forwards the

applications to the VirusTotal VMS for

classification. Once all the applications have been

classified, the process of crawling is repeated

starting from the first defined domain. The process

may take some time to finish depending on the

user’s Internet connection and is best done at least

daily to check gather newly uploaded applications

from the alternative Android markets.

B. Feature Extraction Module

The Feature Extraction Module is the one that

generates activity log from running applications
retrieved from the application repository of the
system. The activity log contains the system calls
from application activity which are the features that
the module retrieves. For these features to be
extracted, the logs are processed by the
Virtualization Submodule which handles
monitoring and logging of application activity.
Features acquired from the Virtualization
Submodule are filtered through parsing before
being forwarded to the Behavior-based Analysis
Module.

Figure 1. Feature Extraction Module

1) Virtualization Submodule

An Android 2.3.3 SDK emulator is used to run

the Android applications because this is the only

medium to automate the generation of application

system activity logs without using an actual mobile

device. In order to automate the extraction of the

system calls generated by the applications, the

Android SDK emulator is run together with

Monkey, a tool which simulates user input.

According to 2, there is no actual difference to

using human input to be able to activate the

malicious activity of an application.

The collection of system calls is done through

the use of Strace. The tool monitors and logs low-

level activity in kernel space in the Android SDK

emulator. This method of monitoring low-level

system calls ensure that all activity of the

application is recorded. 3 However, the log data

contains activity which are irrelevant for detection

of malicious activity. With this problem of noise in

the log data, the system utilizes a self-developed

parser which can be customized as to which

features are to be collected.

User Space
Print information

to log
Kernel Space

System call

Return value

System call

Return value

Application

Process

Output

strace

Figure 2. Virtualization Submodule

Features of the system are mapped to activities of

the application which may indicate malicious

activity. The following system calls are typically

executed by Android Malware 34:

Table 1. Mapping of System Calls to

Application Activity

Activity Monitored System Calls

Incoming and outgoing

network traffic in the

application layer

Read(), write(), Brk(),

getpid(), Sigprocmask()

Read and write

operations on all

storages

Read(), Write(), Recv(),

lseek(), getpid()

Application
Acquisition Module

Virtualization
Submodule

Log Parsing

Android
Applications

Feature Extraction
Module

Virtual Logs
Behavior Based
Analysis Module

Extracted
Features

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

3

Services and processes

started

Open(), Msgget(),

Close(), getpid(),

Semget(), Semop(),

Clone(), System_224()

File transfer through

the network

Dup(), Fork()

Bypassed permissions Ioctl(), mprotect()

Table 3. Detailed Description of System Calls

[18]

System Calls Definitions

Read()
reads from file

descriptors

Write()
writes to a file

descriptors

Fork() and Clone()
creates a child

process

Lseek()
repositions read and

write offsets

getpid() and

System_224()

gets process/ thread

information/

identification

Dup()
Duplicates open file

descriptors

Ioctl()
controls input/output

devices

Clone() creates child process

Sigprocmask()
examine and change

blocked signals

mprotect()

changes access

protections for the

process memory

pages

Semget()

Returns the

semaphore indentifier

associated with the

given key

Semop()

Used in semaphore

operations such as

signalling and waiting

Brk()

change the amount of

space allocated for a

process

Recv()
Receive message from

a socket.

Open()
Returns a file

descriptor

Close()
Closes a file

descriptor

Msgget()

Creates or return

results from a

message queue.

C. Behavior-based Analysis Module

The Behavior-based Analysis Module is

responsible for classifying Android applications as

either benign or malicious. This is done by

employing machine learning algorithms for the

generation of behavior models of malicious and

benign applications. A training phase, separate

from the system, is the one which identifies the

behavior of the applications. This module

identifies Android applications into four

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

4

classifications namely: Virus, Trojan, Spyware,

Exploit or Benign.

For the training phase, behavior models for each

type of Android application are generated by

sampling a number of applications per each

classification to run on different algorithms.

Features of applications extracted from the

previous module are translated into an .arff file

format for Weka to be able to process the collected

data. Currently, the module only generates the

accuracy results of the chosen algorithms given

feature sets from each type of malware and of the

benign applications.

Feature-extraction

Module

Features of

test application

Behavior-based

Analysis Module

Training Phase

Behavior models

Of the initial training set

Application

Classification Reports

Figure 3. Behavior-based Analysis Module

The algorithms used for this module include the

Naïve Bayes algorithm for high bias in small data

sets, the Decision Tree algorithms for its low bias 5

and the Logistic Regression algorithm to

accommodate for adjustments in the features. 6

Based on studies which used a similar system setup

for malware detection, the aforementioned

algorithms performed best based on the garnered

False Positive Ratings and True Positive Ratio

from the tests. 7 8. The best performing algorithm

based on percentage of correctly classified

instances, Kappa statistic, precision, true positive

rate and false positive rate.

Figure 4. Weka Statistics Result

In the statistics summary above (Fig. 4), the

percentage of the correct classified instances is

64% and for the incorrect is 36%. The correctly

and incorrectly classified instances, often called

accuracy or sample accuracy, are the percentage of

the test instances that were correctly and

incorrectly classified. These also refer to the case

where the instances are used as test data. When it

comes to classification, correctly and incorrectly

classified instances are the most important figures

and will be used in the study. [17] With these

figures, correctness of the classification of the

applications to the different class labels can be

determined. The numbers of applications and the

classification are shown in the Confusion Matrix

below, where a, b, c and d are the class labels

which in the study’s case, the malware types.

There were 50 samples, so when you add up, a + b

+ c + d = 14 + 14 + 14 + 8.

Figure 5. Weka Confusion Matrix

Kappa statistic (see Fig. 4) measures the

agreement of prediction between the true classes

and the classifications. A value greater than 0.0

means that the classifier is doing better than the

chance and a value of 1.0 signifies complete or

perfect agreement. However, the error rates are

used for numeric prediction rather than

classification tasks which are not relevant in the

study.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

5

Figure 6. Weka Detailed Accuracy Result

The True Positive (TP) rate is the proportion of

applications which were truly classified to a certain

class and how much part of the class was captured.

It is also equal to the Recall. The percentage of

Trojan-labeled applications that are classified as

Trojans could be determined using TP. False

Positive (FP) rate is the proportion of examples

which were classified to a certain class but belongs

to a different class. With FP, the percentage of the

application classified as Trojans but are Virus-

labeled can be generated. The Precision is the

proportion of the examples which truly belong to a

class among those where classified to a specific

class. The F-Measure is simply

(2*Precision*Recall/(Precision + Recall), a

combined measure for Recall and Precision. This

could actually be interpreted as the weighted

average of Precision and Recall. [19] ROC, on the

other hand, is the measure of certainty of the

algorithm with the classification made.

3 MACHINE LEARNING

D. Naïve Bayes

Naïve Bayes is the simplest form of Bayesian

Network wherein given a class variable, all

attributes are assumed to be independent. 9 The

algorithm is able to classify by calculating the

maximum likelihood of the attributes belonging to

a certain class. Even with the interaction of certain

attributes, the Naïve Bayes assumption does not

lose predictive accuracy even if the actual

probabilities are different. 10

An understanding of the Bayes classifier (1) is

required to also understand the Naïve Bayes

classifer. C is the class of an unobserved random

variable to be learned. X denotes a feature vector

variable while x denotes the value of the variable.

Given the Bayes Classifer,

Equation 1. Bayes Classifier

which determines the maxmim a posteriori

probability (MAP) given example x, proves

difficult in providing direct estimation when there

is high-dimensionality in feature space. This is

because the Bayes classfier considers a class-

conditional probability distribution (CPD) defined

in which relies on the dependence

of each feature vector to another. Equation (2)

describes a simplified assumption of the

independence of features given the class. 15

Equation 2. Naive Bayes Classifier

E. Decision Trees

Decision Trees base the classification of

instances by sorting feature vectors. In a decision

tree, a node represents a feature to be classified and

a branch represents the next possible value of a

node. Decision trees may be interpreted as a set of

rules for each path from the root to each leaf of the

tree. 11 The rules employed by decision trees

define how a split is created and how cases are

classified as to what leaf is reached 13 These rules

may also be derived from training data to be used

for actual testing. 11

Figure 7. Decision Tree Sample

F. J48

J48 is an open source Java-based

implementation of the C4.5 Decision Tree

Algorithm. The algorithm splits the data set to

build a certain node for a tree. The data with the

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

6

highest information gain would be the one that

most effectively splits the data set onto one class or

another so this certain data is chosen. After

choosing the data, a decision node is created to

split based on the data chosen. The sublist obtained

by splitting on the data with the highest

information gain is the recursed and then added as

children of the decision node. 11

G. Random Forest

Random Forest utilizes many classification trees

to be able to classify an object based on the

majority vote of classification generated by the

trees. A tree is grown by first sampling a random

number of N cases in the training set. For each

input variable M, a number value m is used for

each node to select randomly from the input

variable to be used to split a node. After, the

generated tree is fully grown as deep as possible.

13

H. Multinomial Logistic Regression

Since the study classifies more than two types

of an Android application, Multinomial Logistic

Regression (MLR) has to be utilized to produce

polychotomous results over Logistic Regression

(LR) which only produces a dichotomous result. In

this note, MLR is an extension of LR which

provides regression models by comparison of an

arbitrary reference category to categories of an

unordered response variable. Simply put, MLR

utilizes multiple logistic regressions on a multi-

category response variable that is unordered.

Equation (3) illustrates a general multinomial

logistic regression model where is an identified

variable and is the reference variable. is an

explanatory variable affects the resulting model.

14

Equation 3. General Equation for MLR

4 TESTING

The process of downloading applications, testing

and choosing the algorithm, and classification of

application are as follows:

a. Learning Data Acquisition

Known-malware applications with types of Trojan,

Virus, Spyware and Exploit are gathered manually

from the expert system VirusTotal which provides

credibility for the learning data. VirusTotal uses an

observed minimum of forty Anti-virus engines

which scans the applications. Applications

downloaded from VirusTotal are tagged as

malware by at least ten anti-virus engines.

For the known-benign applications, they

are gathered through the official Android Market

using a mobile phone running on Gingerbread

2.3.3 Android OS. The applications are extracted

from the mobile phone through the use of a File

Manager application called Astro. Each application

extracted produces an .apk file format of the

application and these files are forwarded to

VirusTotal to verify their status as benign

applications.

Table 1. Count of Applications Downloaded

 The table shows an imbalanced distribution

of applications downloaded for each classification

from VirusTotal. When the applications are

processed through the API, most applications are

classified as Trojan, instead of the tagged

classification.

b. Application Acquisition

A webcrawler is used to download applications

from alternative markets. Some sites involve

javascript download links which cannot be

accessed by the crawler. Because of this, there are

Type Number of

Apps Collected

from

VirusTotal

Number of

Apps used

for Training

Benign 135 50

Trojan 2334 50

Virus 257 50

Spyware 87 50

Exploit 184 50

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

7

chosen markets where the webcrawler could work

since they have the direct download links. Each

market has a different webcrawler program to

satisfy different settings.

Table 2. Count of Applications from Alt.

Market
Alternative

Android

Market

Cell11 Appchina Slideme

no. of

applications

downloaded

30 26 26

c. Application Virtualization

Applications are run inside an emulator to

collect for logs of the behavior of these

applications to be used by Weka.

A tool, Strace, is used to obtain the system calls

made by the application that is running. These

system calls that have been collected are then

stored into a separate file along with its

classification as benign or as one of the types of

malware.

The systems calls to be collected are as follows:

recv(), close(), brk(), open(), write(), msgget(),

read(), lseek(), sigprocmask(), fork(), dup(), ioctl(),

mprotect(), SYS_224.

d. Application Log Parsing

The application logs that have been generated

by Strace are collected and injected into the parser

program.

This parser program generates the ARFF

(Attribute Relation File-Format) file to be used by

Weka in classifying the applications. The program

searches for specific system calls made by the

application inside the log file. The count of these

system calls are taken and then appended into the

ARFF file. This is done for all desired system calls

to be taken for all the application logs.

e. Algorithm Testing

The ARFF file generated by the parser program

is fed into Weka for the classification of the

applications. Different algorithms are tested to see

whether which algorithm fares better.

The metrics to be checked for are the following:

1) True Positive Rate 2) Kappa Statistic 3)

Receiver Operating Characteristic (ROC)

Whilst the algorithms to be tested are the

following: 1) J48 (J48graft) 2) Random Forest 3)

Multinomial Logistic Regression 4) Naive Bayes.

f. Application Log Parsing

 The behavior logs of test applications are

produced and then processed through the use of the

parser for test applications. The parser works with

a set dictionary of relevant features based from the

features of the behavior model from the training

phase. An ARFF file for each test application is

produced by the parser which is used for

comparison with the behavior-model of the most

accurate algorithm.

 The applications for this test are downloaded

from different sources. These test applications

came from VirusTotal and as well as form

alternative Android markets namely: Slideme,

Cell11 and Appchina.

g. Application Log Parsing

 The behavior logs of test applications are

produced and then processed through the use of the

parser for test applications. The parser works with

a set dictionary of relevant features based from the

features of the behavior model from the training

phase. An ARFF file for each test application is

produced by the parser which is used for

comparison with the behavior-model of the most

accurate algorithm.

 The applications for this test are downloaded

from different sources. These test applications

came from VirusTotal and as well as form

alternative Android markets namely: Slideme,

Cell11 and Appchina.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

8

h. Application Log Parsing

AMDA application classification results stored in

the database are compared to the classification

report from VirusTotal. AMDA collates the results

and uses a counting mechanism as to how many

tags of applications are made by the AV engines as

Trojan, Spyware, Exploit, Virus and Unclassified.

 Again, the performance of the system is

measured by the True Positive Rate, Kappa

Statistic and the Receiver Operating Characteristic

(ROC Curve).

5 ALGORITHM AND CLASSIFICATION

RESULTS

The training phase for the system undergoes a

rigorous process for being able to generate the best

behavior model for the system. There is a total of

80 number of tests made. As mentioned in the

earlier section, each algorithm is tested with three

different feature selection methods and without a

feature selection method used. This is done five

times and for each test, the number of applications

used varied in number.

Table 3. Number of Applications per Training Phase

Training Phase Number of Applications

Test 1 50

Test 2 100

Test 3 150

Test 4 200

Test 5 250

 For the training set, the Random Forest

algorithm in Test 1 with Gain Ratio as the feature

selection method and Test 5 with no feature

selection method (See Figure. 8) garnered the best

accuracy through measurement by True Positive

Rate. Both tests achieved 78% accuracy. In

addition, the Random Forest algorithm consistently

outperformed the other algorithms. The behavior

model from Training Phase Test 5 is chosen to be

used for the system since it performed well even

with a larger number of applications used and the

test garnered a higher rate of ROC which means

that the algorithm is definite with its

classifications.

Figure 8. Summarized Results of Machine

Learning Algorithms

 After knowing the best algorithm for

classification through the training phase, gathering

and processing of test applications follows.

Table 4. Applications Classified by AMDA

Type of Android

Application

Number of

Applications Classified

Benign 35

Trojan 41

Spyware 54

Exploit 81

Virus 13

There are a total of 224 applications parsed by the

system. The results are compared to the

classification report from VirusTotal.

Figure 9. Information Verification Results

When the results of the AMDA System are

validated to the results garnered through

VirusTotal, TP Rate measurement exacted to

46.2%, Kappa Statistic to 27.17% and the ROC

Area measured 67.5%. The results above constitute

quite a low accuracy for classification of the types

of Android applications. The ROC Area, being

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

9

above the 50% mark, means that the system is

mostly certain of its classifications. A low measure

was garnered by the Kappa Statistic which means

that the system encountered a dataset with mostly

random attributes.

Further checking deep into the system calls is

made to identify other measurement of analysis

and problems. It is found that fourteen of the

system call features exhibit the same

characteristics for pairs of malware types. Virus

and Exploit applications typically measure the

same for these system calls. Trojan and Spyware

applications are paired for the mentioned system

calls.

With that information, it can be derived that

malware applications exhibit the same behaviors

which explains why the results of the classification

is low. Instead of having 4 classifications for

Malware, it is simplified into just Malware versus

Benign classifications.

Figure 10. Malware vs. Benign Results

The TP Rate measurement increased to

74.7%, the Kappa Statistic to 23.17% and the ROC

area as 72.1%. The TP Rate achieved a

significantly higher value percentage compared to

the previous result which indicates that the system

is able to better correctly classify the applications.

The Kappa Statistic measured is almost the same

as the previous test. This is expected since the

same dataset is used as with the previous test. The

ROC Area still achieved a high measurement

which indicates that the system is mostly certain of

the classifications made.

6 CONCLUSION

The system, given the capability to classify

unknown applications based from its data, can be

used to categorize different Android applications in

the market. With the web crawler at hand, the

system has the potential to automatically download

and classify new applications uploaded to the

different alternative markets. Other than these, the

system has the ability to classify malware to

different types using behavior-based analysis. With

this at hand, the system can act as an Anti-Virus

that could easily provide classification results to

users.

 However, expert systems or different

classification sources change classifications from

time to time. This happens when more Anti-virus

engines are able to classify applications as from

when the application was first classified or because

there are more and more malware families being

identified. With this, there is a clear lack of

standards in the classification scheme of

applications. This lack of standards contributes to

the futility of classifying malware into different

classifications other than just classifying it as

malware.

Another factor would be that malware families

would have variants of other malware families

which makes it even more difficult to distinguish

between malware types [20].

7 FUTURE WORK

Further work to be done is the ability to detect

advanced malware attacks such as Zero-day attack.

Implementation of Behavior-based analysis with

permission-based can also be done to determine

malicious Android applications. Administrative

User interface and an AMDA Android Application

will allow easier analysis and access of the system.

REFERENCES

1. T. Vennon, “Threat Analysis of the Android Market,”
2010. [Online].
Available:http://www.globalthreatcenter.com/wp-
content/uploads/2010/06/Android-Market-Threat-
Analysis-6-22-10-v1.pdf [Accessed: October 30, 2012]

2. K. Elish, D. Yao, and B. Ryder, “User-Centric
Dependence Analysis For Identifying Malicious Mobile
Apps,” in Proceedings of the IEEE CS Security and
Privacy Workshop, 2012. San Francisco, CA.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

10

3. T. Isohara, K. Takemori and A. Kubota, “Kernel-Based
Behavior Analysis for Android Malware,” in
proceedings of the 2011 Seventh International
Conference on Computational Intelligence and Security.
Saitama, Japan. 2011.

4. I. Burguera., U. Zurutuza and S Tehrani, “Crowdroid:
Behavior-Based Malware Detection System for
Android,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011.
Chicago, IL. 17 October 2011.

5. T. Blasing and et al, “An Android Application Sandbox
System for Suspicious Software Detection,” in
Proceedings of the 5th IEEE International Conference on
Malicious and Unwanted Software, 2010.

6. Oracle, 2008. “Data Mining Concepts: Regression,”
2008.[Online].Available:http://docs.oracle.com/cd/B283
59_01/datamine.111/b28129/regress.htm#DMCON005
[Accessed: October 30, 2012]

7. B. Sans., “On the Automatic Categorisation of Android
Applications,” 2012. [Online]. Available:
http://paginaspersonales.deusto.es/isantos/publications/2
012/Sanz_2012_CCNC_Android_Apps_Categorisation.
pdf. [Accessed: October 25, 2012]

8. A. Shabtai and C. Glezer, “ “Andromaly” a behavioral
malware detection framework for android devices,”
2010. [Online]. Available:
http://posgrado.escom.ipn.mx/biblioteca/%E2%80%9CA
ndromaly%E2%80%9D%20a%20behavioral%20malwar
e%20detection.pdf

9. P. Flach and N. Lachiche, “Naïve Bayesian
Classification of Structured Data,” [Online]. Available:
http://www.cs.bris.ac.uk/~flach/papers/mlj04-1BC-
final2.pdf [Accessed: November 1, 2012]

10. H. Zhang, “The Optimality of Naïve Bayes,” [Online].
Available: http://courses.ischool.berkeley.edu/i290-
dm/s11/SECURE/Optimality_of_Naive_Bayes.pdf
[Accessed: November 1, 2012]

11. S. Kotsiantis, I. D. Zaharakis and P. E. Pintelas,
“Supervised Machine Learning: A Review of
Classification and Combining Techniques,” [Online].
Available: www.cs.bham.ac.uk/~pxt/IDA/class_rev.pdf
[Accessed: November 2, 2012]

12. J. Chan, K. Chan, and A. Yeh, “Detecting the Nature of
Change in an Urban Environment: A Comparison of
Machine Learning Algorithms,” American Society for
Photogrammetry and Remote Sensing, , vol. 67, No. 2,
pp. 213-225, February 2001.

13. L. Breiman and A. Cutler, “Random Forests,” [Online].
Available: http://stat-
www.berkeley.edu/users/breiman/RandomForests/cc_ho
me.htm#intro [Accessed: November 3, 2012]

14. L. Moutinho and G.D. Hutcheson, “Dictionary of
Quantitative Methods in Management,” [Online].
Available: http://www.research-
training.net/addedfiles/READING/MNLmodelChapter.p
df [Accessed: November 4, 2012]

15. I. Rish, “An Emprical Study of the naïve Bayes
Classifer,” [Online]. Available:
www.cc.gatech.edu/~isbell/reading/papers/Rish.pdf
[Accessed: November 5, 2012]

16. Weka, 2008, “Weka: Primer,” 2012. [Online]. Available:
http://weka.wikispaces.com/Primer [Accessed:
November 5, 2012]

17. J. Tiedemann, “Interpreting Weka Output,” [Online].
Available:
http://www.let.rug.nl/tiedeman/ml06/InterpretingWekaO
utput [Accessed: November 5, 2012]

18. J. He, “Linux System Call Quick Reference,” [Online].
Available:
http://www.digilife.be/quickreferences/qrc/linux%20syst
em%20call%20quick%20reference.pdf [Accessed:
November 7, 2012]

19. T.Borovicka, M.Jirina Jr., P. Kordik and M. Jirina,
“Selecting Representative Data Sets,” [Online].
Available:
http://cdn.intechopen.com/pdfs/39037/InTech-
Selecting_representative_data_sets.pdf [Accessed:
December 2, 2012]

20. ESET Labs, 2013. “Trends for 2013: Astounding growth of mobile
malware.,” [Online]. Available:
http://go.eset.com/us/resources/white-
papers/Trends_for_2013_preview.pdf

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(2): 1-11
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

11

http://weka.wikispaces.com/Primer

