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Abstract— The Android platform is the fastest 

growing market in smartphone operating systems to 

date. As such, it has become the most viable target 

of security threats. The reliance of the Android 

Market Security Model on its reactive anti-malware 

system presents an opportunity for malware to be 

present in the Official Android Market and does not 

encompass applications outside the official market. 

This allows applications to masquerade as harmless 

applications which lead to the loss of credentials if 

precautions are not taken. Most anti-malware 

applications in the Market use static analysis for 

detection because it is fast and relatively simple. 

However, static analysis requires regular updates of 

threat databases and it may be circumvented by 

obfuscation techniques. As a solution to these 

problems, the study utilizes behavior analysis of 

applications as basis for malware. As a first step, 

features of known-benign and known-malicious 

applications are extracted for machine learning to 

provide baseline behavior datasets. Test applications 

are then passed through the behavior based module 

for identification of its being malware or benign. A 

classification scheme is provided for applications 

identified as malware by the system. 

Keywords—Android, Security, Behavior Analysis 

1  INTRODUCTION  

Smartphones are now a target for malicious 

software which attempt to damage personal assets 
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of users. The Android platform, being the fastest 

growing market today, faces the same risk. 

Malware takes advantage of the platform for its 

being open, complete and free for development 

meaning that there is lack in control for application 

development. Allowing anyone to develop and to 

publish applications into the Android Market 

presents an opportunity for attackers to easily 

deliver malicious applications onto unsuspecting 

users. 1 The presence of alternative Android 

market makes this problem worse because of the 

lack in review methods thus making them 

unreliable sources of applications.  

 

The Android platform uses permissions-based 

security models to have access to different 

functionalities of devices. This model provides 

information about the access and privilege capacity 

of an application which to more technical users, 

may be used as an indication for malicious intent 

but to normal users, this information is often 

neglected thus making this model unreliable on its 

own. Static analysis is a method used to detect 

malware but this method proves to be inadequate 

as malware can be undetected by obfuscation, as 

an example. The time it takes to manually check 

the code provides an opportunity for malware to 

infect devices before they are detected.  

 

To address these problems, an automated 

behavioral analysis system called AMDA is the 

solution. The AMDA system determines malicious 

behavior from benign behavior through the use of 

machine learning techniques. A behavior model for 

trojans, spyware, viruses and exploits are generated 

and used for classification of applications. Results 

are verified by forwarding them to an expert 

system, VirusTotal.  

2 AMDA 

AMDA is an automated malware detection 

system for the Android platform. This paper 

includes the discussion of the core modules of the 

system namely the Feature Extraction Module and 

the Behavior Analysis Module. These modules are 

responsible for behavioral analysis to detect 

malicious activity of applications based on 

extracted features. The current development of the 

system involves categorization of applications 

based on the AMDA’s classification and cross-

validation of the results to the expert system, 

which generally concludes the functionalities of 

the system. 

A. Applictaion Acquisition Module 

The Application Acquisition module is 

responsible for downloading applications from 

Android Markets and storing them into the 

application repository inside the server. Test 

applications are downloaded both from the Official 

Android market and some Alternative Android 

markets. Benign applications are downloaded from 

the Official Android Market and known-malware 

applications are downloaded from online Android 

malware providers such as VirusTotal and 

Contagio. For the downloading of test applications, 

a web-crawler tool is used applications from 

alternative Android market domains which provide 

free download of .apk files. The applications are 

forwarded to the VirusTotal Malware Verification 

System (VMS) to be able to acquire the 

classification of the test applications for use in later 

modules. As for downloading the training 

applications, these are acquired manually in order 

to ensure the validity of the applications. 

 

Applications from the Official Android Market 

and the Android malware providers are acquired 

manually. The downloaded applications are also 

tested for their validity as benign or as known-

malware through the VirusTotal VMS. Once the 

status of each application is confirmed, the 

application is passed on to the repository to be 

used by the next module, the Feature Extraction 

module. 

 

Web-crawler 
Applications from 
Official Android 

Market

Applications from 
online malware 

providers

Applications from 
Alternative Android 

Markets

Feature-extraction 
Module

Android 
Applications

URL list

Unclassified 
Applications

VirusTotal Malware 
Verification System

Classified 
Applications

 Application 
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Figure 1. Application Acquisition Module 

 

1) Web-crawler Submodule 

 

The web-crawler iterates selected sites from a 

predefined list of domains to search for free 

Android applications in .apk format. When an 

Android application has been found, the web-

crawler downloads the file and stores it in the 

applications repository. When the web-crawler has 

finished all the URLs in the list, it forwards the 

applications to the VirusTotal VMS for 

classification. Once all the applications have been 

classified, the process of crawling is repeated 

starting from the first defined domain. The process 

may take some time to finish depending on the 

user’s Internet connection and is best done at least 

daily to check gather newly uploaded applications 

from the alternative Android markets. 

 

 

B. Feature Extraction Module 

 
The Feature Extraction Module is the one that 

generates activity log from running applications 
retrieved from the application repository of the 
system. The activity log contains the system calls 
from application activity which are the features that 
the module retrieves. For these features to be 
extracted, the logs are processed by the 
Virtualization Submodule which handles 
monitoring and logging of application activity. 
Features acquired from the Virtualization 
Submodule are filtered through parsing before 
being forwarded to the Behavior-based Analysis 
Module. 

 

Figure 1. Feature Extraction Module 
 

1) Virtualization Submodule 
 

An Android 2.3.3 SDK emulator is used to run 

the Android applications because this is the only 

medium to automate the generation of application 

system activity logs without using an actual mobile 

device.  In order to automate the extraction of the 

system calls generated by the applications, the 

Android SDK emulator is run together with 

Monkey, a tool which simulates user input. 

According to 2, there is no actual difference to 

using human input to be able to activate the 

malicious activity of an application.  

 

The collection of system calls is done through 

the use of Strace. The tool monitors and logs low-

level activity in kernel space in the Android SDK 

emulator. This method of monitoring low-level 

system calls ensure that all activity of the 

application is recorded. 3 However, the log data 

contains activity which are irrelevant for detection 

of malicious activity. With this problem of noise in 

the log data, the system utilizes a self-developed 

parser which can be customized as to which 

features are to be collected.  
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to log
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Application 
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Figure 2. Virtualization Submodule 

 

Features of the system are mapped to activities of 

the application which may indicate malicious 

activity. The following system calls are typically 

executed by Android Malware 34: 

 

Table 1. Mapping of System Calls to 

Application Activity 

Activity Monitored System Calls 

Incoming and outgoing 

network traffic in the 

application layer 

Read(), write(), Brk(), 

getpid(), Sigprocmask() 

Read and write 

operations on all 

storages 

Read(), Write(), Recv(), 

lseek(), getpid() 

Application 
Acquisition Module

Virtualization 
Submodule

Log Parsing

Android 
Applications

Feature Extraction 
Module

Virtual Logs
Behavior Based 
Analysis Module

Extracted 
Features
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Services and processes 

started 

Open(), Msgget(), 

Close(), getpid(), 

Semget(), Semop(),  

Clone(), System_224() 

File transfer through 

the network 

Dup(), Fork() 

Bypassed permissions Ioctl(), mprotect() 

 

Table 3. Detailed Description of System Calls 

[18] 

System Calls Definitions 

Read() 
reads from file 

descriptors 

Write() 
writes to a file 

descriptors 

Fork() and Clone() 
creates a child 

process 

Lseek() 
repositions read and 

write offsets 

getpid() and 

System_224() 

gets process/ thread 

information/ 

identification 

Dup() 
Duplicates open file 

descriptors 

Ioctl() 
controls input/output 

devices 

Clone() creates child process 

Sigprocmask() 
examine and change 

blocked signals 

mprotect() 

changes access 

protections for the 

process memory 

pages 

Semget() 

Returns the 

semaphore indentifier 

associated with the 

given key 

Semop() 

Used in semaphore 

operations such as 

signalling and waiting 

Brk() 

change the amount of 

space allocated for a 

process 

Recv() 
Receive message from 

a socket. 

Open() 
Returns a file 

descriptor 

Close() 
Closes a file 

descriptor 

Msgget() 

Creates or return 

results from a 

message queue. 

 

C. Behavior-based Analysis Module 

The Behavior-based Analysis Module is 

responsible for classifying Android applications as 

either benign or malicious. This is done by 

employing machine learning algorithms for the 

generation of behavior models of malicious and 

benign applications. A training phase, separate 

from the system, is the one which identifies the 

behavior of the applications. This module 

identifies Android applications into four 
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classifications namely: Virus, Trojan, Spyware, 

Exploit or Benign. 

 

For the training phase, behavior models for each 

type of Android application are generated by 

sampling a number of applications per each 

classification to run on different algorithms. 

Features of applications extracted from the 

previous module are translated into an .arff file 

format for Weka to be able to process the collected 

data. Currently, the module only generates the 

accuracy results of the chosen algorithms given 

feature sets from each type of malware and of the 

benign applications. 

 

Feature-extraction 

Module

Features of 

test application

Behavior-based 

Analysis Module

Training Phase

Behavior models

Of the initial training set

Application 

Classification Reports  
 

Figure 3. Behavior-based Analysis Module 

 

The algorithms used for this module include the 

Naïve Bayes algorithm for high bias in small data 

sets, the Decision Tree algorithms for its low bias 5 

and the Logistic Regression algorithm to 

accommodate for adjustments in the features. 6 

Based on studies which used a similar system setup 

for malware detection, the aforementioned 

algorithms performed best based on the garnered 

False Positive Ratings and True Positive Ratio 

from the tests. 7 8. The best performing algorithm 

based on percentage of correctly classified 

instances, Kappa statistic, precision, true positive 

rate and false positive rate. 

 

 
 

Figure 4. Weka Statistics Result 

 

In the statistics summary above (Fig. 4), the 

percentage of the correct classified instances is 

64% and for the incorrect is 36%. The correctly 

and incorrectly classified instances, often called 

accuracy or sample accuracy, are the percentage of 

the test instances that were correctly and 

incorrectly classified. These also refer to the case 

where the instances are used as test data. When it 

comes to classification, correctly and incorrectly 

classified instances are the most important figures 

and will be used in the study. [17] With these 

figures, correctness of the classification of the 

applications to the different class labels can be 

determined.  The numbers of applications and the 

classification are shown in the Confusion Matrix 

below, where a, b, c and d are the class labels 

which in the study’s case, the malware types. 

There were 50 samples, so when you add up, a + b 

+ c + d = 14 + 14 + 14 + 8. 

 

 
 

Figure 5. Weka Confusion Matrix 

 

Kappa statistic (see Fig. 4) measures the 

agreement of prediction between the true classes 

and the classifications. A value greater than 0.0 

means that the classifier is doing better than the 

chance and a value of 1.0 signifies complete or 

perfect agreement. However, the error rates are 

used for numeric prediction rather than 

classification tasks which are not relevant in the 

study. 
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Figure 6. Weka Detailed Accuracy Result 

 

The True Positive (TP) rate is the proportion of 

applications which were truly classified to a certain 

class and how much part of the class was captured. 

It is also equal to the Recall. The percentage of 

Trojan-labeled applications that are classified as 

Trojans could be determined using TP. False 

Positive (FP) rate is the proportion of examples 

which were classified to a certain class but belongs 

to a different class. With FP, the percentage of the 

application classified as Trojans but are Virus-

labeled can be generated. The Precision is the 

proportion of the examples which truly belong to a 

class among those where classified to a specific 

class. The F-Measure is simply 

(2*Precision*Recall/(Precision + Recall), a 

combined measure for Recall and Precision. This 

could actually be interpreted as the weighted 

average of Precision and Recall.  [19] ROC, on the 

other hand, is the measure of certainty of the 

algorithm with the classification made. 

3 MACHINE LEARNING 

D. Naïve Bayes 

Naïve Bayes is the simplest form of Bayesian 

Network wherein given a class variable, all 

attributes are assumed to be independent. 9 The 

algorithm is able to classify by calculating the 

maximum likelihood of the attributes belonging to 

a certain class. Even with the interaction of certain 

attributes, the Naïve Bayes assumption does not 

lose predictive accuracy even if the actual 

probabilities are different. 10  

 

An understanding of the Bayes classifier (1) is 

required to also understand the Naïve Bayes 

classifer. C is the class of an unobserved random 

variable to be learned. X denotes a feature vector 

variable while x denotes the value of the variable. 

Given the Bayes Classifer, 

 

 

 
Equation 1. Bayes Classifier 

 

which determines the maxmim a posteriori 

probability (MAP) given example x, proves 

difficult in providing direct estimation when there 

is high-dimensionality in feature space. This is 

because the Bayes classfier considers a class-

conditional probability distribution (CPD) defined 

in   which relies on the dependence 

of each feature vector to another. Equation (2) 

describes a simplified assumption of the 

independence of features given the class. 15 

 

 
Equation 2. Naive Bayes Classifier 

 

E. Decision Trees 

Decision Trees base the classification of 

instances by sorting feature vectors. In a decision 

tree, a node represents a feature to be classified and 

a branch represents the next possible value of a 

node. Decision trees may be interpreted as a set of 

rules for each path from the root to each leaf of the 

tree. 11  The rules employed by decision trees 

define how a split is created and how cases are 

classified as to what leaf is reached 13 These rules 

may also be derived from training data to be used 

for actual testing. 11 

 

 
 

Figure 7. Decision Tree Sample 

 

F. J48 

J48 is an open source Java-based 

implementation of the C4.5 Decision Tree 

Algorithm. The algorithm splits the data set to 

build a certain node for a tree. The data with the 
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highest information gain would be the one that 

most effectively splits the data set onto one class or 

another so this certain data is chosen. After 

choosing the data, a decision node is created to 

split based on the data chosen. The sublist obtained 

by splitting on the data with the highest 

information gain is the recursed and then added as 

children of the decision node. 11 

G. Random Forest 

Random Forest utilizes many classification trees 

to be able to classify an object based on the 

majority vote of classification generated by the 

trees. A tree is grown by first sampling a random 

number of N cases in the training set. For each 

input variable M, a number value m is used for 

each node to select randomly from the input 

variable to be used to split a node. After, the 

generated tree is fully grown as deep as possible. 

13 

 

H. Multinomial Logistic Regression 

Since the study classifies more than two types 

of an Android application, Multinomial Logistic 

Regression (MLR) has to be utilized to produce 

polychotomous results over Logistic Regression 

(LR) which only produces a dichotomous result. In 

this note, MLR is an extension of LR which 

provides regression models by comparison of an 

arbitrary reference category to categories of an 

unordered response variable. Simply put, MLR 

utilizes multiple logistic regressions on a multi-

category response variable that is unordered. 

Equation (3) illustrates a general multinomial 

logistic regression model where  is an identified 

variable and  is the reference variable.  is an 

explanatory variable affects the resulting model.  

14 

 

 
 

Equation 3. General Equation for MLR 

 

4 TESTING 

The process of downloading applications, testing 

and choosing the algorithm, and classification of 

application are as follows: 

 

a. Learning Data Acquisition 

 

Known-malware applications with types of Trojan, 

Virus, Spyware and Exploit are gathered manually 

from the expert system VirusTotal which provides 

credibility for the learning data. VirusTotal uses an 

observed minimum of forty Anti-virus engines 

which scans the applications. Applications 

downloaded from VirusTotal are tagged as 

malware by at least ten anti-virus engines. 

  

For the known-benign applications, they 

are gathered through the official Android Market 

using a mobile phone running on Gingerbread 

2.3.3 Android OS. The applications are extracted 

from the mobile phone through the use of a File 

Manager application called Astro. Each application 

extracted produces an .apk file format of the 

application and these files are forwarded to 

VirusTotal to verify their status as benign 

applications. 

 
Table 1. Count of Applications Downloaded 

 

 The table shows an imbalanced distribution 

of applications downloaded for each classification 

from VirusTotal. When the applications are 

processed through the API, most applications are 

classified as Trojan, instead of the tagged 

classification. 
 

 

 

 

 

b. Application Acquisition 

 

A webcrawler is used to download applications 

from alternative markets. Some sites involve 

javascript download links which cannot be 

accessed by the crawler. Because of this, there are 

Type Number of 

Apps Collected 

from 

VirusTotal 

Number of 

Apps used 

for Training 

Benign 135 50 

Trojan 2334 50 

Virus 257 50 

Spyware 87 50 

Exploit 184 50 
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chosen markets where the webcrawler could work 

since they have the direct download links. Each 

market has a different webcrawler program to 

satisfy different settings. 

 

Table 2. Count of Applications from Alt. 

Market 
Alternative 

Android 

Market 

Cell11 Appchina Slideme 

no. of 

applications 

downloaded 

30 26 26 

  

 

c. Application Virtualization 

Applications are run inside an emulator to 

collect for logs of the behavior of these 

applications to be used by Weka.  

 

A tool, Strace, is used to obtain the system calls 

made by the application that is running. These 

system calls that have been collected are then 

stored into a separate file along with its 

classification as benign or as one of the types of 

malware. 

 

The systems calls to be collected are as follows: 

recv(), close(), brk(), open(), write(), msgget(), 

read(), lseek(), sigprocmask(), fork(), dup(), ioctl(), 

mprotect(), SYS_224. 

 

d. Application Log Parsing 

The application logs that have been generated 

by Strace are collected and injected into the parser 

program.  

 

This parser program generates the ARFF 

(Attribute Relation File-Format) file to be used by 

Weka in classifying the applications. The program 

searches for specific system calls made by the 

application inside the log file. The count of these 

system calls are taken and then appended into the 

ARFF file. This is done for all desired system calls 

to be taken for all the application logs. 

 

e. Algorithm Testing 

The ARFF file generated by the parser program 

is fed into Weka for the classification of the 

applications. Different algorithms are tested to see 

whether which algorithm fares better.  

 

The metrics to be checked for are the following:  

1) True Positive Rate 2) Kappa Statistic 3) 

Receiver Operating Characteristic (ROC)  

 

Whilst the algorithms to be tested are the 

following: 1) J48 (J48graft) 2) Random Forest 3) 

Multinomial Logistic Regression 4) Naive Bayes. 

 

f. Application Log Parsing 

 

    The behavior logs of test applications are 

produced and then processed through the use of the 

parser for test applications. The parser works with 

a set dictionary of relevant features based from the 

features of the behavior model from the training 

phase. An ARFF file for each test application is 

produced by the parser which is used for 

comparison with the behavior-model of the most 

accurate algorithm.  

 

    The applications for this test are downloaded 

from different sources. These test applications 

came from VirusTotal and as well as form 

alternative Android markets namely: Slideme, 

Cell11 and Appchina.  

 

g. Application Log Parsing 

    The behavior logs of test applications are 

produced and then processed through the use of the 

parser for test applications. The parser works with 

a set dictionary of relevant features based from the 

features of the behavior model from the training 

phase. An ARFF file for each test application is 

produced by the parser which is used for 

comparison with the behavior-model of the most 

accurate algorithm.  

 

    The applications for this test are downloaded 

from different sources. These test applications 

came from VirusTotal and as well as form 

alternative Android markets namely: Slideme, 

Cell11 and Appchina.  
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h. Application Log Parsing 

 

AMDA application classification results stored in 

the database are compared to the classification 

report from VirusTotal. AMDA collates the results 

and uses a counting mechanism as to how many 

tags of applications are made by the AV engines as 

Trojan, Spyware, Exploit, Virus and Unclassified. 

 

    Again, the performance of the system is 

measured by the True Positive Rate, Kappa 

Statistic and the Receiver Operating Characteristic 

(ROC Curve). 

 

5 ALGORITHM AND CLASSIFICATION 

RESULTS 

The training phase for the system undergoes a 

rigorous process for being able to generate the best 

behavior model for the system. There is a total of 

80 number of tests made. As mentioned in the 

earlier section, each algorithm is tested with three 

different feature selection methods and without a 

feature selection method used. This is done five 

times and for each test, the number of applications 

used varied in number. 

 
Table 3. Number of Applications per Training Phase 

 

Training Phase Number of Applications 

Test 1 50 

Test 2 100 

Test 3 150 

Test 4 200 

Test 5 250 

 

    For the training set, the Random Forest 

algorithm in Test 1 with Gain Ratio as the feature 

selection method and Test 5 with no feature 

selection method (See Figure. 8) garnered the best 

accuracy through measurement by True Positive 

Rate. Both tests achieved 78% accuracy. In 

addition, the Random Forest algorithm consistently 

outperformed the other algorithms. The behavior 

model from Training Phase Test 5 is chosen to be 

used for the system since it performed well even 

with a larger number of applications used and the 

test garnered a higher rate of ROC which means 

that the algorithm is definite with its 

classifications. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Summarized Results of Machine 

Learning Algorithms 

   After knowing the best algorithm for 

classification through the training phase, gathering 

and processing of test applications follows. 

 

Table 4. Applications Classified by AMDA 

 

Type of Android 

Application 

Number of 

Applications Classified 

Benign 35 

Trojan 41 

Spyware 54 

Exploit 81 

Virus 13 

  

There are a total of 224 applications parsed by the 

system. The results are compared to the 

classification report from VirusTotal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Information Verification Results 

 

When the results of the AMDA System are 

validated to the results garnered through 

VirusTotal, TP Rate measurement exacted to 

46.2%, Kappa Statistic to 27.17% and the ROC 

Area measured 67.5%. The results above constitute 

quite a low accuracy for classification of the types 

of Android applications. The ROC Area, being 
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above the 50% mark, means that the system is 

mostly certain of its classifications. A low measure 

was garnered by the Kappa Statistic which means 

that the system encountered a dataset with mostly 

random attributes. 

 

Further checking deep into the system calls is 

made to identify other measurement of analysis 

and problems. It is found that fourteen of the 

system call features exhibit the same 

characteristics for pairs of malware types. Virus 

and Exploit applications typically measure the 

same for these system calls. Trojan and Spyware 

applications are paired for the mentioned system 

calls. 

 

With that information, it can be derived that 

malware applications exhibit the same behaviors 

which explains why the results of the classification 

is low. Instead of having 4 classifications for 

Malware, it is simplified into just Malware versus 

Benign classifications. 

 

 
Figure 10. Malware vs. Benign Results 

 

The TP Rate measurement increased to 

74.7%, the Kappa Statistic to 23.17% and the ROC 

area as 72.1%. The TP Rate achieved a 

significantly higher value percentage compared to 

the previous result which indicates that the system 

is able to better correctly classify the applications. 

The Kappa Statistic measured is almost the same 

as the previous test. This is expected since the 

same dataset is used as with the previous test. The 

ROC Area still achieved a high measurement 

which indicates that the system is mostly certain of 

the classifications made.  

 

6 CONCLUSION 

 

The system, given the capability to classify 

unknown applications based from its data, can be 

used to categorize different Android applications in 

the market. With the web crawler at hand, the 

system has the potential to automatically download 

and classify new applications uploaded to the 

different alternative markets. Other than these, the 

system has the ability to classify malware to 

different types using behavior-based analysis. With 

this at hand, the system can act as an Anti-Virus 

that could easily provide classification results to 

users.  

     However, expert systems or different 

classification sources change classifications from 

time to time. This happens when more Anti-virus 

engines are able to classify applications as from 

when the application was first classified or because 

there are more and more malware families being 

identified. With this, there is a clear lack of 

standards in the classification scheme of 

applications. This lack of standards contributes to 

the futility of classifying malware into different 

classifications other than just classifying it as 

malware. 

 

Another factor would be that malware families 

would have variants of other malware families 

which makes it even more difficult to distinguish 

between malware types [20].   

    

7 FUTURE WORK 

Further work to be done is the ability to detect 

advanced malware attacks such as Zero-day attack. 

Implementation of Behavior-based analysis with 

permission-based can also be done to determine 

malicious Android applications. Administrative 

User interface and an AMDA Android Application 

will allow easier analysis and access of the system.  
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