

Mark Evered

School of Science and Technology

University of New England

Armidale, Australia

mevered@une.edu.au

Abstract— The access specification language RASP extends

traditional role-based access control (RBAC) concepts to provide

greater expressive power often required for fine-grained access

control in sensitive information systems. Existing formal models

of RBAC are not sufficient to describe these extensions.

In this paper, we define a new model for RBAC which formalizes

the RASP concepts of controlled role appointment and

transitions, object attributes analogous to subject roles and a

transitive role/attribute derivation relationship.

Keywords: security, access control, model, role, attribute

I. INTRODUCTION

In general, each of the users of an information system needs
to be able to view or manipulate only some of the information
stored in the system. Ideally, the appropriate access for each
user will be specified in the form of an access policy during the
analysis phase of the software development and then enforced
via access control mechanisms during the execution of the
implemented system. As the use of information systems for
sensitive data continues to grow in areas such as e-health, it is
becoming increasingly important, both for security and for
privacy reasons, that the specification of the access control is
precise and clear enough to express and satisfy strict minimal
(need-to-know) policy requirements. This ensures both that
valid users of a system will not misuse their access and that
intruders who have illegitimately managed to assume the
identity of a valid user will be restricted in what they can do
within the system. Both of these factors are vital for the
strengthening of cyber-security.

An access control policy can be understood as consisting of
two components. The first is control over the membership of
the subject groups of interest in the application domain. The
second is a mapping from each of these groups to permissions
which allow certain operations to be performed on the data by
members of the groups. These operations may just be ‘read’
and ‘write’ as in traditional database systems or may be based
on the methods of object classes as first suggested in [8].

Both components of access control have been approached
in a number of different ways. In the simplest case, an access
control list (ACL) for each object contains an entry for each
subject or group of subjects. The owner of the object (or a
system administrator) can assign subjects to groups. More

recently, Role Based Access Control (RBAC) models have
been defined which allow the first component of access control
to be based on the roles played by individuals in the
organisations making use of an information system. This
means that there is a (dynamic) mapping from subjects to roles
and then a (relatively static) mapping from roles to
permissions. These models recognise the complex nature of
permissions in real organisations and have been shown to
subsume both conventional discretionary access control models
and mandatory access control models such as Bell-LaPadula
[1].

Formally, given:

� – a set of subjects

ℝ – a set of roles

� – a set of objects and

� – a set of operations (methods) on objects

we can define an RBAC system as consisting of the pair:

(H, X)

where

H ⊆ �×ℝ is a set of role assignments and

X ⊆ ℝ×�×� is a set of permissions.

A pair (s, r) ∊ H specifies that the subject s has the role r

while a triple (r, o, m) ∊ X specifies that a subject with the role

r can access the object o via the method m.

While RBAC is an improvement over an ACL approach,
case studies such as [2][6][18] have demonstrated that the
access control requirements of real-world information systems
are considerably more complex than the simple role-based
approach described above can handle. For this reason, a
number of different RBAC models have been proposed with
varying degrees of additional expressive power. These
additions include role hierarchies [15], parameterized roles [7]
and control over role acquisition [17].

One very useful extension, as implemented in access
control systems such as [9], is to allow objects to be labeled
with attributes in much the same way that subjects acquire
roles. Formally, we introduce the additional set:

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

152

A Formal Semantic Model for the Access

Specification Language RASP

� – a set of attributes with which objects can be labeled.

The permissions in such a system then give access to an
object on the basis of it having a particular attribute or set of
attributes rather than to objects directly. This is line with the
argument in [3] that objects and environments need ‘roles’ just
as subjects do.

The author has defined an access control specification
language called RASP (Role and Attribute-based Specification
of Protection) [5] which is based on both roles of subjects and
attributes of objects and which gives fine-grained control over
initial role and attribute acquisition as well as subsequent
transitions. In this paper we give a formal definition for an
access control model which supports the RASP extensions to
RBAC. In particular, it supports:

• Subject roles

• Object attributes

• Control over appointment to roles

• Control over labeling of objects with attributes

• Control over dynamic acquisition of further roles
and attributes

The model uses a transitive approach which supports role
hierarchies, appointment based on external certificates and role
and attribute revocation. No existing RBAC model has the
expressive power to support these requirements.

The following section discusses related work on role-based
and attribute-based access control while section III gives a brief
overview of the access control specification language RASP.
Section IV gives a formal definition of the access rules in our
model and section V defines the instantaneous state of the
RBAC model together with the four operations for
transforming the state. Section VI describes the transitive
acquisition of roles and attributes and defines the function

allow for checking whether an operation on an object is
permitted. Section VII defines some further useful constructs
of RASP and section VIII addresses some issues of efficient
implementation. We conclude with a summary of the findings
and contributions of the paper.

II. RELATED WORK

Both the object-based access control paradigm [8] and the
role-based access control paradigm [14] are well-known
approaches as is the combination of the two to define access to
an object in terms of the methods which can be invoked by
subjects acting in a certain role. A number of significant
extensions to the basic RBAC model have been suggested in
order to adequately handle the complexities of minimal access
control requirements in real-world scenarios. These include
role hierarchies [15] and role parameters [7].

A question which has received much less attention is how
to group objects so that the access constraints for the whole
group can be specified in a single place rather than repeating
them for each and every object. The Ponder policy
specification language [4] supports a hierarchical structure of
domains and sub-domains of objects similar to a file system

hierarchy. The leaves of the tree are references to objects rather
than the objects themselves so that an object can appear in a
number of different domains. This approach assumes that the
domains are relatively static and that an administrator will
place objects into domains via some mechanism external to the
language. Case studies have shown, however, that the domains
of an object may depend on object attributes which change in
the same way that the role of a subject may change. These
transitions require the same level of specification as to who can
effect the change as is required for role changes. The approach
of Generalized Role-Based Access Control [3] recognizes the
need for symmetry between subject roles and object roles but
does so on the basis of a very simple model which does not
support role parameters or control over role transitions.

Attribute-based access control (ABAC) [19][20] was
developed to support access to web services based on provable
attributes of a user rather than the identity of the user. This is
important for anonymity in using such services but is not
appropriate for organizations or systems where fine-grained
access-control policies are based on identity and roles. ABAC
has been extended to include attributes for resources as well as
subjects but does not address attribute transitions.

A further important question concerns the acquisition of
access rights. Ponder is a delegation-based system. It provides
for delegation policies which limit which access rights a
subject can pass to another subject but the basic assumption is
that the possessor of a right decides if and when another subject
should gain that right. Case studies show that it is often
necessary that access rights be granted by someone who does
not possess them him/herself. The OASIS Role Definition
Language [17] allows for this kind of appointment-based
acquisition of access rights and for role acquisition pre-
conditions based on external certificates known as auxiliary
credential certificates. OASIS RDL does not however allow for
a distinction between the case where a new role is replacing a
previous role and the case where the new role is additional.
This distinction has been found to be useful both for role
transitions and for object attribute transitions. OASIS RDL also
does not allow for the generation of new credential certificates
as a result of operations performed within the system.

Ponder supports both positive and negative authorizations.
In fact, it has two forms of negative access control clause:
negative authorization policies and refrain policies. So, for
example, a set of access rights can be granted to a group of
subjects via a positive authorization policy and then one of the
rights can later be revoked from a certain member of the group
via a negative authorization policy. Negative authorizations
lead to the problem of potential inconsistencies and loopholes
in an access control system. A more elegant way to express this
kind of partial revocation is to use role transition to transfer a
subject from one role into a new role which has a more
restricted set of rights.

The access control specification languages and mechanisms
described in this section represent the state-of-the-art in fine-
grained access control. Many of them have no formal definition
at all and none of them can support all of the requirements
which case studies show to be required. A formal definition of
role hierarchies is given in [15] and role parameters are

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

153

formally defined in [7] but no formal definition of a symmetric
approach to role and attribute transitions has been given in the
literature to date.

III. OVERVIEW OF RASP

The three main constructs of the RASP access specification

language are the appoint clause, the attribute clause

and the allow clause. The appoint clause specifies that a

subject with a certain role can appoint someone else to have a
certain role. The precondition for this is that the person being
appointed already possesses a certain role before the
appointment. So, for example:

appoint manager: staff -> deptHead;

expresses the appointment rule that someone who is a manager
can appoint someone who is already a staff member to be a
head of department.

The attribute clause is used to label an object in the

system with a certain attribute. This is done by specifying what
role a subject must possess to be able to do this and the
precondition that the object must already have a certain
attribute. So, for example:

attribute admin: document -> obsolete;

expresses the attribute rule that someone who is an
administrator can label a document as being obsolete.

For both the appoint and the attribute clauses, the

transition symbol ‘->’ indicates that the old role or attribute
should be retained in addition to the new one, whereas the

transition symbol ‘/->’ can be used to express that the old
role or attribute should be relinquished.

The third main construct is the allow clause. This
specifies that someone with a certain role can invoke a certain
operation on objects with a certain attribute or set of attributes.
So, for example:

allow deptHead!obsolete.delete;

expresses the access rule that a head of department can delete
an obsolete document.

RASP also provides a conflict clause which can be
used to express the rule that two roles are in conflict with each
other (if possessed by the same subject at the same time) and a

unique clause which expresses the rule that a certain role

may only be possessed by one subject at a time.

This overview of RASP will suffice for the purposes of this
paper but for more detail on the rationale for and the design of
the RASP language, the reader is referred to [5]. A summary of
the syntax of the constructs discussed in this paper can be
found in Appendix A.

IV. ACCESS RULES

We now extend the RBAC formalism sketched in the
introduction to a more powerful model which is capable of
expressing the semantics of the RASP constructs described
above. In this section, we define the relatively static aspect of

our access control model, i.e. what access does a subject with a
certain role have to an object with a certain set of attributes,
who has the authority to appoint subjects to roles and who has
the authority to label objects with attributes.

We define this as the 5-tuple:

 (X, P, T, L, U)

where

X ⊆ ℝ×2�×� is a set of permissions

P ⊆ ℝ3 is a set of appointment rules

T ⊆ ℝ3 is a set of role transition rules

L ⊆ ℝ×�2 is a set of attribute labeling rules and

U ⊆ ℝ×�2 is a set of attribute transition rules.

A permission triple (r, A, m) ∊ X, A⊆� specifies that a

subject with the role r can access an object via the method m if

that object has all of the attributes in the set A. Examples are:

(admin, {thisFacility, patientPersonalDetails}, update)

(secretCleared, {secret}, read)

These express the semantic value of the RASP syntax:

allow admin!

 {thisFacility, patientPersonalDetails}.

 update; and

allow secretCleared!secret.read;

respectively (given the obvious mapping from an identifier
‘admin’ to the role radmin ∊ ℝ etc.).

An appointment triple (r1, r2, r3) ∊ P specifies that a

subject with the role r1 can appoint a subject with the role r2 to

additionally have the role r3. In this context, we denote the null

role (always possessed by all subjects) as ∅. So, for example
we can have:

(manager, ∅, employee)

(manager, employee, admin)

(manager, doctor, doctorAtThisFacility)

These express the semantic value of the RASP syntax:

appoint manager: someone -> employee;

appoint manager: employee -> admin;

appoint manager: doctor ->

 doctorAtThisFacility;

where the identifier ‘someone’ is used to denote the null role .

Similarly, an attribute labeling triple (r, a1, a2) ∊ L

specifies that a subject with the role r can label an object with

the attribute a1 as also having the attribute a2. Again, we

denote a null attribute as ∅. For example:

(sysadmin, ∅, thisFacility)

(sysadmin, thisFacility, patientPersonalDetails)

These express the semantic value of the RASP syntax:

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

154

attribute sysadmin:

 something -> thisFacility;

attribute sysadmin: thisFacility ->

 patientPersonalDetails;

A role transition triple (r1, r2, r3) ∊ T specifies that a

subject with the role r1 can cause a subject with the role r2 to

lose that role and take on the role r3 instead. For example,

(manager, traineeEmployee, employee)

(clearanceOfficer, secretCleared, topSecretCleared)

(manager, employee, ∅)

These express the semantic value of the RASP syntax:

appoint manager: traineeEmployee /->

 employee;

appoint clearanceOfficer: secretCleared

 /-> topSecretCleared;

appoint manager: employee /-> someone;

Note that in the last example, this kind of role transition is
used to remove a role from a subject.

Finally, an attribute transition triple (r, a1, a2) ∊ U

specifies that a subject with the role r can cause an object with

the attribute a1 to lose that attribute and take on the attribute a2
instead. For example:

(admin, draftReport, report)

(manager, thisFacility, thatFacility)

(declassificationOfficer, secret, unclassified)

These express the semantic value of the RASP syntax:

attribute admin:

 draftReport /-> report;

attribute manager: thisFacility /->

 thatFacility;

attribute declassificationOfficer:

 secret /-> unclassified;

V. ACCESS STATE

We now define the second part of the model, which
determines for some point in time, which subject has which
roles and which object has which attributes. This is represented
via a set of role appointment certificates and a set of attribute
labeling certificates. Formally, the state of the access control
system is given by:

(C, D)

where

C ⊆ �×ℝ2 is a set of appointment certificates and

D ⊆ �×�2 is a set of label certificates.

The certificate (s, r1, r2) ∊ C specifies that if the subject s

has the role r1, then that subject also has the role r2. Thus:

(Fred, ∅, traineeEmployee)

(Fred, employee, admin)

Similarly, the certificate (o, a1, a2) ∊ D specifies that if the

object o has the attribute a1, then that object also has the

attribute a2.

We define four functions which update the state of the

access control system. Function addRole(C, s, r1, r2) is
used to add an appointment certificate to C and is defined as:

addRole(C, s, r1, r2) = C ∪ {(s, r1, r2)}

Function modRole(C, s, r1, r2) is used to change some

of the appointment certificates in C and can be defined
recursively as:

if C contains an appointment certificate of the form

 (s, r, r1), for some r∊ℝ then

modRole(C, s, r1, r2) =

{(s, r, r2)} ∪ modRole(C \ {(s, r, r1)}, s, r1, r2)

otherwise

modRole(C, s, r1, r2) = C

So, for example, if C contains the certificate:

(Fred, ∅, traineeEmployee)

then modRole(C, Fred, traineeEmployee, employee) will
instead contain the certificate:

(Fred, ∅, employee)

Function addAttr(D, o, a1, a2) is used to add a label
certificate to D and is defined as:

addAttr(D, o, a1, a2) = D ∪ {(o, a1, a2)}

Finally, function modAttr(D, o, a1, a2) is used to change
some of the label certificates in D and is defined as:

if D contains a label certificate of the form

 (o, a, a1), for some a∊ � then

modAttr(D, o, a1, a2) =

{(o, a, a2)} ∪ modAttr(D \ {(o, a, a1)}, o, a1, a2)
otherwise

modAttr(D, o, a1, a2) = D

Note that a subject s may invoke addRole(C, s1, r1, r2)

only if s has a role r such that (r, r1, r2) ∊ P. Similarly, s can

invoke modRole(C, s1, r1, r2) only with a role r such that

(r, r1, r2) ∊ T. Likewise, s can invoke addAttr(D, o, a1,

a2) only if s has a role r where (r, a1, a2) ∊ L and

modAttr(D, o, a1, a2) only with a role r such that (r, a1, a2)
∊ U. The exact definition of ‘having a role’ is given in the next
section.

VI. DETERMINING ROLES AND ATTRIBUTES

From the definitions in the previous section, it can be seen
that, rather than just representing the set of roles possessed by a
subject at some point in time, our model represents the role
from which each role is derived. We define the notation
〈r, rʹ〉s to represent that the subject s has the role rʹ

conditional on having the role r, i.e.:

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

155

∃r1…rn∊ℝ. (s, r, r1) ∊ C ∧ (s, r1, r2) ∊ C …

∧ (s, rn-1, rn) ∊ C ∧ (s, rn, rʹ) ∊ C

It can be seen that this conditional possession of roles is
then a transitive relationship, i.e.

〈r1, r2〉s ∧ 〈r2, r3〉s ⇒ 〈r1, r3〉s

The actual possession of a role can then expressed as:

〈∅, r〉s

Similarly, for attributes of objects, we define 〈a, aʹ〉o to

mean that the object o has the attribute aʹ conditional on

having the attribute a. So, an object actually possesses an

attribute if:

〈∅, a〉o

Finally, we can define the allow function which

determines whether a subject s can access an object o via a

method m as:

allow(s, m, o) = ∃r∊ℝ, A⊆�.

〈∅, r〉s ∧ ∀a∊A.〈∅, a〉o ∧ (r, A, m)∊X

The fact that the model represents the possession of a role

or attribute as conditional on possession of another role or
attribute is very important for an adequate level of access
control in real-world information systems. Suppose, for
example, the set C contains the appointment certificates:

(Fred, ∅, doctor) and

(Fred, doctor, doctorAtThisFacility)

If Fred were to lose the role of ‘doctor’ (for example by
being ‘struck off’ the medical register for some reason), we
would want him to also automatically lose the role of
‘doctorAtThisFacility’ with all its associated permissions. This
is only possible if the model represents the derivation of the
second role from the first. Similarly, for the labeling
certificates:

(DocumentAbc, ∅, Australian) and

(DocumentAbc, Australian, Sydney)

we want the document to automatically lose the attribute
‘Sydney’ if it loses the attribute ‘Australian’. This illustrates
that the transitive nature of our model can be used to support
specialization hierarchies of roles and attributes. An example
for roles is:

(Fred, ∅, sysadmin) and

(Fred, sysadmin, linuxSysadmin)

A further advantage of our approach is that the order of
adding roles becomes more flexible. So, for example, if we
have the certificates:

(Fred, ∅, traineeEmployee) and

(Fred, employee, admin)

then this represents the fact that “Fred does not yet have the
‘admin’ role but will acquire that role as soon as he becomes a
(fully fledged) employee”. The operation:

modRole(C, Fred, traineeEmployee, employee)

will then make him an ‘admin’ as well as an ‘employee’.

Lastly, our representation of role appointment certificates
supports explicit certificates which represent a precondition
(e.g. for employment) which is imported from, or accessed at,
an external source. For example, the certificate:

 (Fred, ∅, doctor)

should ideally be maintained by an external body such as a
national medical association rather than in the organization
where the doctor is working. Our model provides for an
explicit representation of such an external qualification
certificate. (Of course, in an implementation which transfers or
accesses this from an external site, it would need to be secured
by a mechanism such as public-key cryptography, digital
signatures and unique subject identifiers.)

VII. FURTHER FEATURES OF RASP

The main constructs of RASP are the appoint, the

attribute and the allow clauses as defined above but we
can also use the formal model to define the semantics of two
other constructs which can be important for restricting role
appointments in the information systems of real organizations.

The first of these is a clause which specifies that it is a
conflict for someone to be fulfilling two certain roles in the
organization at the same time. So, for example, it may be
considered a conflict for someone to be both a student and a
staff member of a university at the same time. The syntax for
expressing this in RASP is:

conflict staff, student;

We can formally describe the semantics of this by defining

functions addRoleCheckConflict(C, s, r1, r2) and

modRoleCheckConflict(C, s, r1, r2) which extend

addRole(C, s, r1, r2) and modRole(C, s, r1, r2) by adding

a check for a breach of the constraint whenever the set of
appointment certificates is updated. The definitions of these

functions for the conflict roles role_id1 and role_id2 are
then:

 addRolecheckconflict(C, s, r1, r2) =

 if ∃s∊� . 〈∅, rrole_id1〉s ∧ 〈∅, rrole_id2〉s in

 addRole(C, s, r1, r2) then:

 error

 otherwise:

 addRole(C, s, r1, r2)

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

156

 and

 modRolecheckconflict(C, s, r1, r2) =

 if ∃s∊� . 〈∅, rrole_id1〉s ∧ 〈∅, rrole_id2〉s in

 modRole(C, s, r1, r2) then:

 error

 otherwise:

 modRole(C, s, r1, r2)

The second construct is a clause that specifies that only a

single subject may have a certain role at one time. So, for
example, we can specify that these can only be one subject

with the role manager at one time by the clause:

unique manager;

Again, we can formally define this construct by defining

the functions addRoleCheckUnique(C, s, r1, r2) and

modRoleCheckUnique(C, s, r1, r2) which check for a

breach of the constraint whenever the set of appointment
certificates is updated. The definitions for a unique role

role_id are:

 addRolecheckunique(C, s, r1, r2) =

 if ∃s1∊�,s2≠s1∊� .

 〈∅, rrole_id〉s1 ∧ 〈∅, rrole_id〉s2 in

 addRole(C, s, r1, r2) then:

 error

 otherwise:

 addRole(C, s, r1, r2)

 and

 modRolecheckunique(C, s, r1, r2) =

 if ∃s1∊�,s2≠s1∊� .

 〈∅, rrole_id〉s1 ∧ 〈∅, rrole_id〉s2 in

 modRole(C, s, r1, r2) then:

 error

 otherwise:

 modRole(C, s, r1, r2)

One concept of RASP that the model presented in this

paper does not yet support is that of role parameters. We have
deliberately excluded this concept, not because we consider it
to be unnecessary or unimportant, but for the sake of brevity
and of clearly describing the basic model without this
complicating factor. Role parameters can however be
integrated into our model and a future paper will discuss this.
Existing models for role parameters such as in [7] are not
sufficient for RASP since they do not describe role transitions
or transitive role relationships and also do not relate the role
parameters to attributes of the protected objects.

A summary of the mappings from RASP syntax to their
semantics as expressed in the formal model is given in
Appendix B.

VIII. IMPLEMENTATION CONSIDERATIONS

While this paper is concerned with a general model rather
than a specific implementation, it is nevertheless important that
any access control scheme be implementable with realistic
overheads for the checking of permissions. If the definition of

the allow(s, m, o) function in the previous section were to be

evaluated in that form for every attempted invocation of a
method on an object, then unacceptable delays would be
incurred. Similarly, if the rules were to be preprocessed to a
central access control matrix for all subjects and all objects
then that would incur a high overhead each time a certificate
was added or changed.

Fortunately, neither of these extremes is necessary. Firstly,
most subjects will be interested in only a small fraction of the
total number of objects and secondly, the system need only be
concerned with the subjects who are currently using it. Thirdly,
although the number of subjects and objects in an organization
may be large, the number of roles and attributes and therefore
the number of rules will generally be fairly small, even for a
fine-grained access scheme. Also the kinds of operations to
which the scheme is applied will generally be high-level
operations like, ‘read’, ‘edit’ or ‘update’ on documents or
databases and so will not be extremely frequent.

Finally, rather than calculate the entire set of roles allowed
for a subject, it is actually preferable for each subject to acquire
only the ∅ role when they start a session and then explicitly
request any further role they wish to adopt for that session.
This means that only those roles need be checked against the
rules rather than all possible roles for that subject. The reason
this is preferable is that it allows a log to be maintained of
exactly who is acting in which role at what time.

An implementation could thus work along the following
lines:

• assign the role ∅ to a subject who starts a session

• when a subject requests to act in a further role:

o check for a certificate which allows this

o if allowed, determine the attribute sets
associated with this role in the permission
rules

• allow a subject to searches for objects with those
sets of attributes:

• when a subject selects a certain object

o use the permission rules for the current
roles to determine which operations can
be performed on the object

Given appropriate index tables for the rule and certificate
information, none of these individual steps need incur an
unacceptable overhead.

IX. CONCLUSION AND FUTURE WORK

Case studies show that information systems often require a
degree of access control which cannot be expressed simply as a

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

157

static mapping from subjects to roles and from roles to
operations on objects.

In this paper, we have formally defined a role-based access
control model which has a much greater expressive power and
which, in particular, can be used to formally describe the
semantics of the RASP access specification language.

The model supports controlled dynamic acquisition of new
roles, transitions from one role to another and role revocation.
It also supports labeling of objects with attributes in a way
analogous to appointing subjects to roles and defines
permissions in terms of roles and attribute sets.

We have defined the access control model in two parts. The
first represents the rules for role appointment and attribute
labeling as well as role and attribute transitions and access
permissions. The second part of the model represents the
instantaneous state of the access system in terms of a set of
appointment certificates and a set of labeling certificates. We
have defined four functions for updating these sets.

A significant aspect of the model is the use of transitive
relationships whereby a certificate represents the fact that the
possession of a role or attribute may be conditional on the
possession of another role or relationship. This allows the
model to support role and attribute specialization hierarchies,
controlled revocation of derived roles/attributes and flexibility
in the addition of roles.

No existing formal model for role-based access control
supports all the concepts captured in our model.

REFERENCES

[1] D.E. Bell and L.J. La Padula, “Secure computer systems: unified
exposition and Multics interpretation”, MTR-2997, The MITRE
Corporation, 1975.

[2] B. Blobel, “Authorisation and access control for electronic health record
systems”, International Journal of Medical Informatics, 73, 2004.

[3] M.J. Covington, M.J. Moyer and M. Ahamad, “Generalized role-based
access control for securing future applications”, Proc. 23rd National
Information Systems Security Conference, Baltimore, 2000.

[4] N. Damianou, N. Dulay, E. Lupu and M. Sloman, “Ponder: A language
for specifying security and management policies for distributed
systems”, The Language Specification Version 2.3, Imperial College
Research Report DoC 2000/1, 2000.

[5] M. Evered, “Rationale and Design of the Access Specification Language
RASP”, Intl. Journal of Cyber-Security and Forensics, 1, 1, 2012.

[6] M. Evered and S. Bögeholz, “A case study in access control
requirements for a health information system”, Proc. Australasian
Information Security Workshop, Dunedin, 2004.

[7] J.H. Hine, W. Yao, J. Bacon and K. Moody, “An architecture for
distributed OASIS services”, Proc. Middleware 2000, Lecture Notes in
Computer Science, Vol. 1795, Springer-Verlag, Heidelberg/New York,
2000.

[8] A. Jones and B. Liskov, “A language extension for expressing
constraints on data access”. Communications of the ACM, 21(5):358-
367, May, 1978.

[9] T. Moses (Ed.), Extensible Access Control Markup Language (XACML)
Version 2.0, OASIS Consortium, 2005.

[10] Object Management Group, Resource Access Decision Facility
Specification, Version 1.0, 2001.

[11] Object Management Group, Object Constraint Language Specification
Version 2.0, 2006.

[12] G. Russello, C. Dong and N. Dulay, “Authorisation and conflict
resolution in hierarchical domains”, Proc. 8th IEEE Workshop on
Policies for Distributed Systems and Networks, Bologna, 2007.

[13] J.H. Saltzer, “Protection and the control of information sharing in
Multics”, Symposium on Operating System Principles, Yorktown
Heights, NY, 1973.

[14] R. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman, “Role based
access control models”, IEEE Computer 29 (2), 1996.

[15] R. Sandhu, “Role activation hierarchies”, Proc. 3rd ACM Workshop on
Role-Based Access Control, Fairfax, 1998.

[16] M.C. Tschantz and S. Krishnamurthi, S. “Towards reasonability
properties for access conrol policy languages”, Proc. 11th ACM
Symposium on Access Control Models and Technologies, Lake Tahoe,
2006.

[17] W. Yao, K. Moody and J. Bacon, “A model of OASIS role-based access
control and its support for active security”, ACM Transactions on
Information and System Security, 5, 4, 2001.

[18] P. Yu and H. Yu, H., “Lessons learned from the practice of mobile
health application development”, Proc. 28th Annual International
Computer Software and Applications Conference, Hong Kong, 2004.

[19] T. Yu, X. Ma and M. Winslett, “Prunes: an efficient and complete
strategy for automated trust negotiation over the internet”, Proc. 7th
ACM conference on Computer and communications security.ACM
Press, 2000.

[20] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services”, Proc. IEEE International Conference on Web Services, 2005.

Appendix A – Concrete syntax of relevant RASP

constructs

clause: appoint_clause |

 attribute_clause |

 allow_clause |

 conflict_clause |

 unique_clause

appoint_clause: 'appoint'

 role_id ':'

 role_id transition role_id ';'

transition: '->' | '/->'

attribute_clause: 'attribute'

 role_id ':'

 attribute_id transition

 attribute_id ';'

allow_clause: 'allow' role_id '!'

 action ';'

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

158

action: attribute_id ‘.’ operation_id

action: ‘{‘ attribute_list ‘}’ ‘.’

operation_id

attribute_list: attribute_id

{ ‘,’ attribute_id }

conflict_clause: 'conflict'

 role_id ',' role_id ';'

unique_clause: 'unique' role_id ';'

Appendix B – Summary of semantic mappings

‘appoint’ role_id1 ‘:’

 role_id2 ‘->’ role_id3 ⇒

 P’ = P ∪ # (rrole_id1, rrole_id2, rrole_id3) }

‘appoint’ role_id1 ‘:’

 role_id2 ‘/->’ role_id3 ⇒

 T’ = T ∪ # (rrole_id1, rrole_id2, rrole_id3) }

‘attribute’ role_id ‘:’

 attr_id1 ‘->’ attr_id2 ⇒

 L’ = L ∪ # (rrole_id, aattr_id1, rattr_id2) }

‘attribute’ role_id ‘:’

 attr_id1 ‘/->’ attr_id2 ⇒

 U’ = U ∪ # (rrole_id, aattr_id1, rattr_id2) }

‘allow’ role_id ‘!’

 attr_id ‘.’ op_id ‘;’ ⇒

 X’ = X ∪ # (rrole_id, #aattr_id}, mop_id) }

‘allow’ role_id ‘!’

 ‘{‘ attr_id1 ‘,’

 attr_id2 ‘,’ …

 attr_idn ‘}’

 ‘.’ op_id ‘;’ ⇒

 X’ = X ∪ # (rrole_id, #aattr_id1, aattr_id2, … aattr_idn}, mop_id) }

‘conflict’ role_id1 ‘,’ role_id2 ;’ ⇒

 addRolecheckconflict(C, s, r1, r2) =

 if ∃s∊� . 〈∅, rrole_id1〉s ∧ 〈∅, rrole_id2〉s in

 addRole(C, s, r1, r2) then:

 error

 otherwise:

 addRole(C, s, r1, r2)

 and

 modRolecheckconflict(C, s, r1, r2) =

 if ∃s∊� . 〈∅, rrole_id1〉s ∧ 〈∅, rrole_id2〉s in

 modRole(C, s, r1, r2) then:

 error

 otherwise:

 modRole(C, s, r1, r2)

‘unique’ role_id ‘;’ ⇒

 addRolecheckunique(C, s, r1, r2) =

 if ∃s1∊�,s2≠s1∊� .

 〈∅, rrole_id〉s1 ∧ 〈∅, rrole_id〉s2 in

 addRole(C, s, r1, r2) then:

 error

 otherwise:

 addRole(C, s, r1, r2)

 and

 modRolecheckunique(C, s, r1, r2) =

 if ∃s1∊�,s2≠s1∊� .

 〈∅, rrole_id〉s1 ∧ 〈∅, rrole_id〉s2 in

 modRole(C, s, r1, r2) then:

 error

 otherwise:

 modRole(C, s, r1, r2)

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

159

