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Abstract— The access specification language RASP extends 

traditional role-based access control (RBAC) concepts to provide 

greater expressive power often required for fine-grained access 

control in sensitive information systems. Existing formal models 

of RBAC are not sufficient to describe these extensions. 

In this paper, we define a new model for RBAC which formalizes 

the RASP concepts of controlled role appointment and 

transitions, object attributes analogous to subject roles and a 

transitive role/attribute derivation relationship. 
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I.  INTRODUCTION 

In general, each of the users of an information system needs 
to be able to view or manipulate only some of the information 
stored in the system. Ideally, the appropriate access for each 
user will be specified in the form of an access policy during the 
analysis phase of the software development and then enforced 
via access control mechanisms during the execution of the 
implemented system. As the use of information systems for 
sensitive data continues to grow in areas such as e-health, it is 
becoming increasingly important, both for security and for 
privacy reasons, that the specification of the access control is 
precise and clear enough to express and satisfy strict minimal 
(need-to-know) policy requirements. This ensures both that 
valid users of a system will not misuse their access and that 
intruders who have illegitimately managed to assume the 
identity of a valid user will be restricted in what they can do 
within the system. Both of these factors are vital for the 
strengthening of cyber-security. 

An access control policy can be understood as consisting of 
two components. The first is control over the membership of 
the subject groups of interest in the application domain. The 
second is a mapping from each of these groups to permissions 
which allow certain operations to be performed on the data by 
members of the groups. These operations may just be ‘read’ 
and ‘write’ as in traditional database systems or may be based 
on the methods of object classes as first suggested in [8]. 

Both components of access control have been approached 
in a number of different ways. In the simplest case, an access 
control list (ACL) for each object contains an entry for each 
subject or group of subjects. The owner of the object (or a 
system administrator) can assign subjects to groups. More 

recently, Role Based Access Control (RBAC) models have 
been defined which allow the first component of access control 
to be based on the roles played by individuals in the 
organisations making use of an information system. This 
means that there is a (dynamic) mapping from subjects to roles 
and then a (relatively static) mapping from roles to 
permissions. These models recognise the complex nature of 
permissions in real organisations and have been shown to 
subsume both conventional discretionary access control models 
and mandatory access control models such as Bell-LaPadula 
[1].  

Formally, given: 

� – a set of subjects  

ℝ – a set of roles 

� – a set of objects and 

� – a set of operations (methods) on objects 

we can define an RBAC system as consisting of the pair: 

(H, X) 

where  

H ⊆ �×ℝ is a set of role assignments and 

X ⊆ ℝ×�×� is a set of permissions. 

A pair (s, r) ∊ H specifies that the subject s has the role r 

while a triple (r, o, m) ∊ X specifies that a subject with the role 

r can access the object o via the method m. 

While RBAC is an improvement over an ACL approach, 
case studies such as [2][6][18] have demonstrated that the 
access control requirements of real-world information systems 
are considerably more complex than the simple role-based 
approach described above can handle. For this reason, a 
number of different RBAC models have been proposed with 
varying degrees of additional expressive power. These 
additions include role hierarchies [15], parameterized roles [7] 
and control over role acquisition [17].  

One very useful extension, as implemented in access 
control systems such as [9], is to allow objects to be labeled 
with attributes in much the same way that subjects acquire 
roles. Formally, we introduce the additional set: 
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� – a set of attributes with which objects can be labeled. 

The permissions in such a system then give access to an 
object on the basis of it having a particular attribute or set of 
attributes rather than to objects directly. This is line with the 
argument in [3] that objects and environments need ‘roles’ just 
as subjects do. 

The author has defined an access control specification 
language called RASP (Role and Attribute-based Specification 
of Protection ) [5] which is based on both roles of subjects and 
attributes of objects and which gives fine-grained control over 
initial role and attribute acquisition as well as subsequent 
transitions. In this paper we give a formal definition for an 
access control model which supports the RASP extensions to 
RBAC. In particular, it supports: 

• Subject roles 

• Object attributes 

• Control over appointment to roles 

• Control over labeling of objects with attributes 

• Control over dynamic acquisition of further roles 
and attributes 

The model uses a transitive approach which supports role 
hierarchies, appointment based on external certificates and role 
and attribute revocation. No existing RBAC model has the 
expressive power to support these requirements. 

The following section discusses related work on role-based 
and attribute-based access control while section III gives a brief 
overview of the access control specification language RASP. 
Section IV gives a formal definition of the access rules in our 
model and section V defines the instantaneous state of the 
RBAC model together with the four operations for 
transforming the state. Section VI describes the transitive 
acquisition of roles and attributes and defines the function 

allow for checking whether an operation on an object is 
permitted. Section VII defines some further useful constructs 
of RASP and section VIII addresses some issues of efficient 
implementation. We conclude with a summary of the findings 
and contributions of the paper. 

II. RELATED WORK 

Both the object-based access control paradigm [8] and the 
role-based access control paradigm [14] are well-known 
approaches as is the combination of the two to define access to 
an object in terms of the methods which can be invoked by 
subjects acting in a certain role. A number of significant 
extensions to the basic RBAC model have been suggested in 
order to adequately handle the complexities of minimal access 
control requirements in real-world scenarios. These include 
role hierarchies [15] and role parameters [7]. 

A question which has received much less attention is how 
to group objects so that the access constraints for the whole 
group can be specified in a single place rather than repeating 
them for each and every object. The Ponder policy 
specification language [4] supports a hierarchical structure of 
domains and sub-domains of objects similar to a file system 

hierarchy. The leaves of the tree are references to objects rather 
than the objects themselves so that an object can appear in a 
number of different domains. This approach assumes that the 
domains are relatively static and that an administrator will 
place objects into domains via some mechanism external to the 
language. Case studies have shown, however, that the domains 
of an object may depend on object attributes which change in 
the same way that the role of a subject may change. These 
transitions require the same level of specification as to who can 
effect the change as is required for role changes. The approach 
of Generalized Role-Based Access Control [3] recognizes the 
need for symmetry between subject roles and object roles but 
does so on the basis of a very simple model which does not 
support role parameters or control over role transitions. 

Attribute-based access control (ABAC) [19][20] was 
developed to support access to web services based on provable 
attributes of a user rather than the identity of the user. This is 
important for anonymity in using such services but is not 
appropriate for organizations or systems where fine-grained 
access-control policies are based on identity and roles.  ABAC 
has been extended to include attributes for resources as well as 
subjects but does not address attribute transitions. 

A further important question concerns the acquisition of 
access rights. Ponder is a delegation-based system. It provides 
for delegation policies which limit which access rights a 
subject can pass to another subject but the basic assumption is 
that the possessor of a right decides if and when another subject 
should gain that right. Case studies show that it is often 
necessary that access rights be granted by someone who does 
not possess them him/herself. The OASIS Role Definition 
Language [17] allows for this kind of appointment-based 
acquisition of access rights and for role acquisition pre-
conditions based on external certificates known as auxiliary 
credential certificates. OASIS RDL does not however allow for 
a distinction between the case where a new role is replacing a 
previous role and the case where the new role is additional. 
This distinction has been found to be useful both for role 
transitions and for object attribute transitions. OASIS RDL also 
does not allow for the generation of new credential certificates 
as a result of operations performed within the system. 

Ponder supports both positive and negative authorizations. 
In fact, it has two forms of negative access control clause: 
negative authorization policies and refrain policies. So, for 
example, a set of access rights can be granted to a group of 
subjects via a positive authorization policy and then one of the 
rights can later be revoked from a certain member of the group 
via a negative authorization policy. Negative authorizations 
lead to the problem of potential inconsistencies and loopholes 
in an access control system. A more elegant way to express this 
kind of partial revocation is to use role transition to transfer a 
subject from one role into a new role which has a more 
restricted set of rights. 

The access control specification languages and mechanisms 
described in this section represent the state-of-the-art in fine-
grained access control. Many of them have no formal definition 
at all and none of them can support all of the requirements 
which case studies show to be required. A formal definition of 
role hierarchies is given in [15] and role parameters are 
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formally defined in [7] but no formal definition of a symmetric 
approach to role and attribute transitions has been given in the 
literature to date. 

III. OVERVIEW OF RASP 

The three main constructs of the RASP access specification 

language are the appoint clause, the attribute clause 

and the allow clause. The appoint clause specifies that a 

subject with a certain role can appoint someone else to have a 
certain role. The precondition for this is that the person being 
appointed already possesses a certain role before the 
appointment. So, for example: 

appoint manager: staff -> deptHead; 

expresses the appointment rule that someone who is a manager 
can appoint someone who is already a staff member to be a 
head of department. 

The attribute clause is used to label an object in the 

system with a certain attribute. This is done by specifying what 
role a subject must possess to be able to do this and the 
precondition that the object must already have a certain 
attribute. So, for example: 

attribute admin: document -> obsolete; 

expresses the attribute rule that someone who is an 
administrator can label a document as being obsolete. 

For both the appoint and the attribute clauses, the 

transition symbol ‘->’ indicates that the old role or attribute 
should be retained in addition to the new one, whereas the 

transition symbol ‘/->’ can be used to express that the old 
role or attribute should be relinquished.  

The third main construct is the allow clause. This 
specifies that someone with a certain role can invoke a certain 
operation on objects with a certain attribute or set of attributes. 
So, for example: 

allow deptHead!obsolete.delete; 

expresses the access rule that a head of department can delete 
an obsolete document. 

RASP also provides a conflict clause which can be 
used to express the rule that two roles are in conflict with each 
other (if possessed by the same subject at the same time) and a 

unique clause which expresses the rule that a certain role 

may only be possessed by one subject at a time. 

This overview of RASP will suffice for the purposes of this 
paper but for more detail on the rationale for and the design of 
the RASP language, the reader is referred to [5]. A summary of 
the syntax of the constructs discussed in this paper can be 
found in Appendix A. 

IV. ACCESS RULES 

We now extend the RBAC formalism sketched in the 
introduction to a more powerful model which is capable of 
expressing the semantics of the RASP constructs described 
above. In this section, we define the relatively static aspect of 

our access control model, i.e. what access does a subject with a 
certain role have to an object with a certain set of attributes, 
who has the authority to appoint subjects to roles and who has 
the authority to label objects with attributes. 

We define this as the 5-tuple: 

 (X, P, T, L, U) 

where 

X ⊆ ℝ×2�×� is a set of permissions 

P ⊆ ℝ3 is a set of appointment rules 

T ⊆ ℝ3 is a set of role transition rules 

L ⊆ ℝ×�2 is a set of attribute labeling rules and 

U ⊆ ℝ×�2 is a set of attribute transition rules. 

A permission triple (r, A, m) ∊ X,  A⊆� specifies that a 

subject with the role r can access an object via the method m if 

that object has all of the attributes in the set A. Examples are: 

(admin, {thisFacility, patientPersonalDetails}, update)  

(secretCleared, {secret}, read) 

These  express the semantic value of the RASP syntax: 

allow admin! 

   {thisFacility, patientPersonalDetails}. 

   update;   and 
 

allow secretCleared!secret.read; 

respectively (given the obvious mapping from an identifier 
‘admin’ to the role radmin ∊ ℝ etc.). 

An appointment triple (r1, r2, r3) ∊ P specifies that a 

subject with the role r1 can appoint a subject with the role r2 to 

additionally have the role r3. In this context, we denote the null 

role (always possessed by all subjects) as ∅. So, for example 
we can have: 

(manager, ∅, employee) 

(manager, employee, admin) 

(manager, doctor, doctorAtThisFacility) 

These  express the semantic value of the RASP syntax: 

appoint manager: someone -> employee; 

appoint manager: employee -> admin; 

appoint manager: doctor -> 

  doctorAtThisFacility; 

where the identifier ‘someone’ is used to denote the null role . 

Similarly, an attribute labeling triple (r, a1, a2) ∊ L 

specifies that a subject with the role r can label an object with 

the attribute a1 as also having the attribute a2. Again, we 

denote a null attribute as ∅. For example: 

(sysadmin, ∅, thisFacility) 

(sysadmin, thisFacility, patientPersonalDetails) 

These  express the semantic value of the RASP syntax: 
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attribute sysadmin: 

    something -> thisFacility;    

attribute sysadmin: thisFacility -> 

    patientPersonalDetails;    

A role transition triple (r1, r2, r3) ∊ T specifies that a 

subject with the role r1 can cause a subject with the role r2 to 

lose that role and take on the role r3 instead. For example, 

(manager, traineeEmployee, employee) 

(clearanceOfficer, secretCleared, topSecretCleared) 

(manager, employee, ∅) 

These  express the semantic value of the RASP syntax: 

appoint manager: traineeEmployee /->  

  employee; 

appoint clearanceOfficer: secretCleared  

  /-> topSecretCleared; 

appoint manager: employee /-> someone; 

Note that in the last example, this kind of role transition is 
used to remove a role from a subject. 

Finally, an attribute transition triple (r, a1, a2) ∊ U 

specifies that a subject with the role r can cause an object with 

the attribute a1 to lose that attribute and take on the attribute a2 
instead. For example: 

(admin, draftReport, report) 

(manager, thisFacility, thatFacility) 

(declassificationOfficer, secret, unclassified) 

These  express the semantic value of the RASP syntax: 

attribute admin: 

    draftReport /-> report;    

attribute manager: thisFacility /-> 

    thatFacility; 

attribute declassificationOfficer: 

    secret /-> unclassified;    

V. ACCESS STATE 

We now define the second part of the model, which 
determines for some point in time, which subject has which 
roles and which object has which attributes. This is represented 
via a set of role appointment certificates and a set of attribute 
labeling certificates. Formally, the state of the access control 
system is given by: 

(C, D) 

where 

C ⊆ �×ℝ2 is a set of appointment certificates and 

D ⊆ �×�2 is a set of label certificates. 

The certificate (s, r1, r2) ∊ C specifies that if the subject s 

has the role r1, then that subject also has the role r2. Thus: 

(Fred, ∅, traineeEmployee) 

(Fred, employee, admin) 

Similarly, the certificate (o, a1, a2) ∊ D specifies that if the 

object o has the attribute a1, then that object also has the 

attribute a2. 

We define four functions which update the state of the 

access control system. Function addRole(C, s, r1, r2) is 
used to add an appointment certificate to C and is defined as: 

addRole(C, s, r1, r2)  = C ∪ {(s, r1, r2)} 

Function modRole(C, s, r1, r2) is used to change some 

of the appointment certificates in C and can be defined 
recursively as: 

if C contains an appointment certificate of the form 

 (s, r, r1), for some r∊ℝ then 

modRole(C, s, r1, r2) = 

{(s, r, r2)} ∪ modRole(C \ {(s, r, r1)}, s, r1, r2) 

otherwise 

modRole(C, s, r1, r2) = C 

So, for example, if C contains the certificate: 

(Fred, ∅, traineeEmployee) 

then modRole(C, Fred, traineeEmployee, employee) will 
instead contain the certificate: 

(Fred, ∅, employee) 

Function addAttr(D, o, a1, a2) is used to add a label 
certificate to D and is defined as: 

addAttr(D, o, a1, a2)  = D ∪ {(o, a1, a2)} 

Finally, function modAttr(D, o, a1, a2) is used to change 
some of the label certificates in D and is defined as: 

if D contains a label certificate of the form 

 (o, a, a1), for some a∊ � then 

modAttr(D, o, a1, a2) = 

{(o, a, a2)} ∪ modAttr(D \ {(o, a, a1)}, o, a1, a2) 
otherwise 

modAttr(D, o, a1, a2) = D 

Note that a subject s may invoke addRole(C, s1, r1, r2) 

only if s has a role r such that (r, r1, r2) ∊ P. Similarly, s can 

invoke modRole(C, s1, r1, r2) only with a role r such that 

(r, r1, r2) ∊ T. Likewise, s can invoke addAttr(D, o, a1, 

a2) only if s has a role r where (r, a1, a2) ∊ L and  

modAttr(D, o, a1, a2) only with a role r such that (r, a1, a2) 
∊ U. The exact definition of ‘having a role’ is given in the next 
section. 

VI. DETERMINING ROLES AND ATTRIBUTES 

From the definitions in the previous section, it can be seen 
that, rather than just representing the set of roles possessed by a 
subject at some point in time, our model represents the role 
from which each role is derived. We define the notation 
〈r, rʹ〉s to represent that the subject s has the role rʹ 

conditional on having the role r, i.e.: 
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∃r1…rn∊ℝ. (s, r, r1) ∊ C ∧ (s, r1, r2) ∊ C … 

∧ (s, rn-1, rn) ∊ C ∧ (s, rn, rʹ) ∊ C 

It can be seen that this conditional possession of roles is 
then a transitive relationship, i.e. 

〈r1, r2〉s ∧ 〈r2, r3〉s ⇒ 〈r1, r3〉s 

The actual possession of a role can then expressed as: 

〈∅, r〉s 

 

Similarly, for attributes of objects, we define 〈a, aʹ〉o to 

mean that the object o has the attribute aʹ conditional on 

having the attribute a. So, an object actually possesses an 

attribute if: 

〈∅, a〉o 

Finally, we can define the allow function which 

determines whether a subject s can access an object o via a 

method m as: 

allow(s, m, o)  =  ∃r∊ℝ, A⊆�. 

〈∅, r〉s ∧ ∀a∊A.〈∅, a〉o ∧ (r, A, m)∊X 

 
The fact that the model represents the possession of a role 

or attribute as conditional on possession of another role or 
attribute is very important for an adequate level of access 
control in real-world information systems. Suppose, for 
example, the set C contains the appointment certificates: 

(Fred, ∅, doctor)  and 

(Fred, doctor, doctorAtThisFacility) 

If Fred were to lose the role of ‘doctor’ (for example by 
being ‘struck off’ the medical register for some reason), we 
would want him to also automatically lose the role of 
‘doctorAtThisFacility’ with all its associated permissions. This 
is only possible if the model represents the derivation of the 
second role from the first. Similarly, for the labeling 
certificates: 

(DocumentAbc, ∅, Australian)  and 

(DocumentAbc, Australian, Sydney) 

we want the document to automatically lose the attribute 
‘Sydney’ if it loses the attribute ‘Australian’. This illustrates 
that the transitive nature of our model can be used to support 
specialization hierarchies of roles and attributes. An example 
for roles is: 

(Fred, ∅, sysadmin)  and 

(Fred, sysadmin, linuxSysadmin) 

A further advantage of our approach is that the order of 
adding roles becomes more flexible. So, for example, if we 
have the certificates: 

(Fred, ∅, traineeEmployee) and 

(Fred, employee, admin) 

then this represents the fact that “Fred does not yet have the 
‘admin’ role but will acquire that role as soon as he becomes a 
(fully fledged) employee”. The operation: 

modRole(C, Fred, traineeEmployee, employee) 

will then make him an ‘admin’ as well as an ‘employee’. 

Lastly, our representation of role appointment certificates 
supports explicit certificates which represent a precondition 
(e.g. for employment) which is imported from, or accessed at, 
an external source. For example, the certificate: 

 (Fred, ∅, doctor) 

should ideally be maintained by an external body such as a 
national medical association rather than in the organization 
where the doctor is working. Our model provides for an 
explicit representation of such an external qualification 
certificate. (Of course, in an implementation which transfers or 
accesses this from an external site, it would need to be secured 
by a mechanism such as public-key cryptography, digital 
signatures and unique subject identifiers.) 

VII. FURTHER FEATURES OF RASP 

The main constructs of RASP are the appoint, the 

attribute and the allow clauses as defined above but we 
can also use the formal model to define the semantics of two 
other constructs which can be important for restricting role 
appointments in the information systems of real organizations. 

The first of these is a clause which specifies that it is a 
conflict for someone to be fulfilling two certain roles in the 
organization at the same time. So, for example, it may be 
considered a conflict for someone to be both a student and a 
staff member of a university at the same time. The syntax for 
expressing this in RASP is: 

conflict staff, student; 

We can formally describe the semantics of this by defining 

functions addRoleCheckConflict(C, s, r1, r2) and 

modRoleCheckConflict(C, s, r1, r2) which extend 

addRole(C, s, r1, r2) and modRole(C, s, r1, r2) by adding 

a check for a breach of the constraint whenever the set of 
appointment certificates is updated. The definitions of these 

functions for the conflict roles role_id1 and role_id2 are 
then: 

        addRolecheckconflict(C, s, r1, r2)  =  

              if   ∃s∊� . 〈∅, rrole_id1〉s ∧  〈∅, rrole_id2〉s in 

                           addRole(C, s, r1, r2) then: 

                      error 

                otherwise: 

                   addRole(C, s, r1, r2) 

 

International Journal of Cyber-Security and Digital Forensics (IJCSDF)  1(2): 152-159
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

156



        and 

 

        modRolecheckconflict(C, s, r1, r2)  =  

              if   ∃s∊� . 〈∅, rrole_id1〉s ∧  〈∅, rrole_id2〉s in 

                           modRole(C, s, r1, r2) then: 

                      error 

                otherwise: 

                   modRole(C, s, r1, r2) 

 
The second construct is a clause that specifies that only a 

single subject may have a certain role at one time. So, for 
example, we can specify that these can only be one subject 

with the role manager at one time by the clause: 

unique manager; 

Again, we can formally define this construct by defining 

the functions addRoleCheckUnique(C, s, r1, r2) and 

modRoleCheckUnique(C, s, r1, r2) which check for a 

breach of the constraint whenever the set of appointment 
certificates is updated. The definitions for a unique role 

role_id are: 

        addRolecheckunique(C, s, r1, r2)  =  

            if   ∃s1∊�,s2≠s1∊�  .  

                          〈∅, rrole_id〉s1 ∧  〈∅, rrole_id〉s2 in 

                           addRole(C, s, r1, r2) then: 

                      error 

              otherwise: 

                   addRole(C, s, r1, r2) 

 

        and 

 

        modRolecheckunique(C, s, r1, r2)  =  

            if   ∃s1∊�,s2≠s1∊�  .  

                          〈∅, rrole_id〉s1 ∧  〈∅, rrole_id〉s2 in 

                           modRole(C, s, r1, r2) then: 

                      error 

              otherwise: 

                   modRole(C, s, r1, r2) 

 
One concept of RASP that the model presented in this 

paper does not yet support is that of role parameters. We have 
deliberately excluded this concept, not because we consider it 
to be unnecessary or unimportant, but for the sake of brevity 
and of clearly describing the basic model without this 
complicating factor. Role parameters can however be 
integrated into our model and a future paper will discuss this. 
Existing models for role parameters such as in [7] are not 
sufficient for RASP since they do not describe role transitions 
or transitive role relationships and also do not relate the role 
parameters to attributes of the protected objects.  

A summary of the mappings from RASP syntax to their 
semantics as expressed in the formal model is given in 
Appendix B. 

VIII. IMPLEMENTATION CONSIDERATIONS 

While this paper is concerned with a general model rather 
than a specific implementation, it is nevertheless important that 
any access control scheme be implementable with realistic 
overheads for the checking of permissions. If the definition of 

the allow(s, m, o) function in the previous section were to be 

evaluated in that form for every attempted invocation of a 
method on an object, then unacceptable delays would be 
incurred. Similarly, if the rules were to be preprocessed to a 
central access control matrix for all subjects and all objects 
then that would incur a high overhead each time a certificate 
was added or changed. 

Fortunately, neither of these extremes is necessary. Firstly, 
most subjects will be interested in only a small fraction of the 
total number of objects and secondly, the system need only be 
concerned with the subjects who are currently using it. Thirdly, 
although the number of subjects and objects in an organization 
may be large, the number of roles and attributes and therefore 
the number of rules will generally be fairly small, even for a 
fine-grained access scheme. Also the kinds of operations to 
which the scheme is applied will generally be high-level 
operations like, ‘read’, ‘edit’ or ‘update’ on documents or 
databases and so will not be extremely frequent.  

Finally, rather than calculate the entire set of roles allowed 
for a subject, it is actually preferable for each subject to acquire 
only the ∅ role when they start a session and then explicitly 
request any further role they wish to adopt for that session. 
This means that only those roles need be checked against the 
rules rather than all possible roles for that subject. The reason 
this is preferable is that it allows a log to be maintained of 
exactly who is acting in which role at what time. 

An implementation could thus work along the following 
lines: 

• assign the role ∅ to a subject who starts a session 

• when a subject requests to act in a further role: 

o check for a certificate which allows this 

o if allowed, determine the attribute sets 
associated with this role in the permission 
rules 

• allow a subject to searches for objects with those  
sets of attributes: 

• when a subject selects a certain object 

o use the permission rules for the current 
roles to determine which operations can 
be performed on the object 

Given appropriate index tables for the rule and certificate 
information, none of these individual steps need incur an 
unacceptable overhead. 

IX. CONCLUSION AND FUTURE WORK 

Case studies show that information systems often require a 
degree of access control which cannot be expressed simply as a 
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static mapping from subjects to roles and from roles to 
operations on objects. 

In this paper, we have formally defined a role-based access 
control model which has a much greater expressive power and 
which, in particular, can be used to formally describe the 
semantics of the RASP access specification language.  

The model supports controlled dynamic acquisition of new 
roles, transitions from one role to another and role revocation. 
It also supports labeling of objects with attributes in a way 
analogous to appointing subjects to roles and defines 
permissions in terms of roles and attribute sets. 

We have defined the access control model in two parts. The 
first represents the rules for role appointment and attribute 
labeling as well as role and attribute transitions and access 
permissions. The second part of the model represents the 
instantaneous state of the access system in terms of a set of 
appointment certificates and a set of labeling certificates. We 
have defined four functions for updating these sets. 

A significant aspect of the model is the use of transitive 
relationships whereby a certificate represents the fact that the 
possession of a role or attribute may be conditional on the 
possession of another role or relationship. This allows the 
model to support role and attribute specialization hierarchies, 
controlled revocation of derived roles/attributes and flexibility 
in the addition of roles. 

No existing formal model for role-based access control 
supports all the concepts captured in our model.  
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Appendix A – Concrete syntax of relevant RASP 

constructs 
 

 
clause: appoint_clause | 

        attribute_clause | 

        allow_clause | 

        conflict_clause | 

        unique_clause 

 

appoint_clause: 'appoint' 

        role_id ':' 

        role_id transition role_id ';' 

 

 

 

transition: '->' | '/->' 

 

attribute_clause: 'attribute' 

       role_id ':' 

       attribute_id transition 

       attribute_id ';' 

 

allow_clause: 'allow' role_id '!' 

        action ';' 
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action: attribute_id ‘.’ operation_id 

 

action: ‘{‘ attribute_list ‘}’ ‘.’ 

operation_id 

 

attribute_list: attribute_id 

{ ‘,’ attribute_id } 

 

conflict_clause: 'conflict' 

       role_id ',' role_id ';' 

 

unique_clause: 'unique' role_id ';' 

 

 

Appendix B – Summary of semantic mappings 
 

 
‘appoint’ role_id1 ‘:’ 

   role_id2 ‘->’ role_id3  ⇒ 

 
        P’ = P ∪ # (rrole_id1, rrole_id2, rrole_id3) } 

 

 
‘appoint’ role_id1 ‘:’ 

   role_id2 ‘/->’ role_id3  ⇒ 

 
        T’ = T ∪ # (rrole_id1, rrole_id2, rrole_id3) } 

 

 
‘attribute’ role_id ‘:’ 

   attr_id1 ‘->’ attr_id2  ⇒ 

 
        L’ = L ∪ # (rrole_id, aattr_id1, rattr_id2) } 

 

 
‘attribute’ role_id ‘:’ 

   attr_id1 ‘/->’ attr_id2  ⇒ 

 

        U’ = U ∪ # (rrole_id, aattr_id1, rattr_id2) } 

 

 
‘allow’ role_id ‘!’ 

   attr_id ‘.’ op_id ‘;’ ⇒ 

 

        X’ = X ∪ # (rrole_id, #aattr_id}, mop_id) } 

 

‘allow’ role_id ‘!’ 

   ‘{‘ attr_id1 ‘,’ 

       attr_id2 ‘,’ … 

       attr_idn ‘}’ 

   ‘.’ op_id ‘;’ ⇒ 

 
        X’ = X ∪ # (rrole_id, #aattr_id1, aattr_id2, … aattr_idn}, mop_id) } 

 

 

‘conflict’ role_id1 ‘,’ role_id2 ;’  ⇒ 

 
        addRolecheckconflict(C, s, r1, r2)  =  

              if   ∃s∊� . 〈∅, rrole_id1〉s ∧  〈∅, rrole_id2〉s in 

                           addRole(C, s, r1, r2) then: 

                      error 

                otherwise: 

                   addRole(C, s, r1, r2) 

 

        and 

 

        modRolecheckconflict(C, s, r1, r2)  =  

              if   ∃s∊� . 〈∅, rrole_id1〉s ∧  〈∅, rrole_id2〉s in 

                           modRole(C, s, r1, r2) then: 

                      error 

                otherwise: 

                   modRole(C, s, r1, r2) 

 

 

‘unique’ role_id ‘;’  ⇒ 

 
        addRolecheckunique(C, s, r1, r2)  =  

            if   ∃s1∊�,s2≠s1∊�  .  

                          〈∅, rrole_id〉s1 ∧  〈∅, rrole_id〉s2 in 

                           addRole(C, s, r1, r2) then: 

                      error 

              otherwise: 

                   addRole(C, s, r1, r2) 

 

        and 

 

        modRolecheckunique(C, s, r1, r2)  =  

            if   ∃s1∊�,s2≠s1∊�  .  

                          〈∅, rrole_id〉s1 ∧  〈∅, rrole_id〉s2 in 

                           modRole(C, s, r1, r2) then: 

                      error 

              otherwise: 

                   modRole(C, s, r1, r2) 
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