

15

Application of New Classes of Mersenne Primes for

Fast Modular Reduction for Large-Integer

Multiplication

Suhas Sreehari, Huapeng Wu, and Majid Ahmadi

Department of Electrical and Computer Engineering

University of Windsor

Windsor, Canada

{sreehar, hwu, ahmadi}@uwindsor.ca

Abstract— This paper attempts to speed-up the modular

reduction as an independent step of modular multiplication,

which is the central operation in public-key cryptosystems. Based

on the properties of Mersenne and Quasi-Mersenne primes, we

have described four distinct sets of moduli which are responsible

for converting the single-precision multiplication prevalent in

many of today's techniques into an addition operation and a few

simple shift operations. We propose a novel revision to the

Modified Barrett algorithm presented in [3]. With the backing of

the special moduli sets, the proposed algorithm is shown to

outperform (speed-wise) the Modified Barrett algorithm by 80%

for operands of length 700 bits, the least speed-up being around

70% for smaller operands, in the range of around 100 bits.

Keywords–Large integer modular reduction; Mersenne primes;

Quasi-Mersenne primes; Barrett-based reduction.

I. INTRODUCTION

Modular multiplication forms the core of modular

exponentiation, which lies at the heart of cryptographical

operations. Therefore, speeding up modular multiplication

(especially of large integer operands) has been a much sought-

after outcome for researchers in the area of information

security. The given problem can be broken into two major

problems in themselves: (a) large integer multiplication, and

(b) modular reduction of large integers. Research has gone

into tackling both these problems individually and jointly (in

an interleaved fashion). The former approach is usually word-

serial or parallel, and rarely bit-serial (since trading off area

for time is not unusual in this field). However, the latter

approach tends to be word-serial.

The focus of this paper is speeding up the reduction part of

the problem, while the multiplication part is assumed to be

completed in the fastest compatible way possible. The

justification for separating modular reduction from

multiplication comes from [4], and is revisited in the next

section. The most important starting point for reduction-

oriented research can be traced back to the Montgomery

algorithm [1], in which trial division was circumvented for the

first time. An alternative algorithm based on quotient

estimation soon followed [2]. While the Montgomery

algorithm has been hugely successful and popular, it has been

plagued by residue-computation overhead, cost of the

Extended Euclidean algorithm, and multiplications of the

order of the modulus itself. The Barrett algorithm described in

[2] has faced issues with two multiplications of the order of

the modulus itself. Even though the folding proposed in [3]

cuts down the operational cost to five multiplications of half

the order of the modulus, there is still room for further

reduction in complexity, and can be readily achieved through

proper selection of the modulus. In this paper, we have

defined four sets of moduli for which the folding developed in

[3] can be more speedily realized. Apart from recommending

the moduli sets, we make adaptations to the folding so as to

reap the benefits of the special moduli. In our proposal as well

as in [3], the first stage is a partial reduction, from which point

onwards the burden of full reduction still lies on classic

Barrett algorithm. Therefore, the level of reduction in the first

stage of our algorithms is a direct indicator of the amount of

time required by the Barrett algorithm to carry on the

remaining reduction.

II. PROPOSED METHODOLOGY

A broad-based approach to solving the modular

multiplication problem defined in the previous section is to

analyze all components of the problem separately, and then

check if there is a fast algorithm to speed up each component.

Achieving a fast modular multiplier may not be as simple as

simply bringing together the sped-up components, which gives

rise to concerns over algorithmic compatibility. Therefore, it is

prudent to decide whether to adopt an integrated approach

(that makes use of interleaved partial multiplication and partial

reduction) or a serial approach (multiplication followed by

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):15-19

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

16

reduction), before going into the specifics of the algorithms

and the scope for improvements thereof.

A major reason to favor the serial approach is the freedom

in choosing algorithms for each part, independent of the other.

As long as it is made sure that the output of the multiplier

section forms a compatible input to the reduction section, this

independence is certainly a sought-after feature. However,

another factor to be considered is the impact of this choice (of

choosing the serial approach over the integrated) bears on the

performance of both sections together. Cetin Kaya Koc, Tolga

Acar, and Burton Kaliski Jr. have shown in [4] that the serial

approach (which they refer to as the “Separated Operand

Scanning” or simply SOS) is nearly as fast as the interleaved

approach (which they refer to as the “Coarsely Integrated

Operand Scanning” or just CIOS). This makes it rational to go

with the serial/separated approach. In this paper, we assume

that the multiplication has been performed in the fastest way

possible, and we have the product ready to be reduced. This

assumption makes the reduction completely parallel, rather

than bit-serial or word-serial.

A. The Moduli Sets

It is to be noted that the modular operations being

performed are in prime Galois fields, GF(p). The modulus

(represented by M henceforth) in consideration would then be

a prime number. The problem statement puts an additional

constraint on the modulus in terms of the maximum length,

restricting the prime modulus to n bits, i.e., such

that ∏ () , where () represents the positive

integral divisor of the argument .

The above representation is the most basic, broadest set of

possible moduli, which is essential to the problem statement.

However, going beyond the essentiality of this definition,

researchers have continually opened up paths to speed up the

reduction in GF(p). The most recent and significant example

of constricting the permitted moduli sets can be seen in [4],

wherein four sets of moduli are defined on the basis of

speeding up stemming out of Mersenne properties – two each

for Barrett-based reduction and Montgomery-based reduction.

We present in this paper four moduli sets, different – both in

representation and rationale – from those presented in [4]. Our

proposed moduli sets and algorithm are based on strict and

looser views of Mersenne numbers.

Let us start with the strict view of Mersenne numbers,

which we shall refer to plainly as Mersenne. Consider a

Mersenne number, . By definition,
 , where

 . A widely known property of Mersenne numbers is

that is prime for a prime value of r. For the sake of

convenience, let us assign r an open value of p, which just

indicates that a prime value is assigned to r. The notation we

shall adopt in the rest of the paper is for a general

Mersenne number (which may or may not be prime), and

for a Mersenne prime.

At this stage, we will introduce the four sets of moduli we

recommend for speeding up Barrett-based reduction, and

follow up with a short discussion of the density function of

each of these sets, in lieu of a lengthier treatment and

illustration of the mathematics behind the choice of these sets,

in view of brevity due to the space restrictions.

Set 1:
 (1)

Set 2: ()
 (2)

Set 3:
 (3)

Set 4: ()
 (4)

where,

 is a strict Mersenne prime.

 is a Mersenne composite, i.e., { } {
 }.

 is a loose Mersenne prime, which is any integral prime

divisor of a Mersenne composite.

 is a strict Quasi-Mersenne prime.

 is a Quasi-Mersenne composite, i.e., { } {
 }

 is a loose Quasi-Mersenne prime, which is any integral

prime divisor of a Quasi-Mersenne composite.

 These four sets together constitute a fairly large number of

prime numbers, thus ensuring there is sufficient choice in the

design of the system. The following note on the density

functions of each of the sets will serve as an intuitive aid in

understanding the coverage of primes by these sets.

 Let us start with a general assumption that the highest

allowed value that a modulus can take is making

V the highest possible Mersenne number attainable by the

modulus. The number of Mersenne numbers up to V

(including V) is n. Out of these n Mersenne numbers, only

 () are prime [5]. Therefore we can report the cardinality of

the strict Mersenne prime set as,

#(
) = () (5)

Note that: () () ∫

 ()

 (6)

Though (6) represents the generally adopted form of the

logarithmic integral in prime counting, a faster convergence

may be achieved [6] through:

 () ()

√ ∑
() ()

 ∑

⌊() ⌋
 (7)

where, is the Euler-Mascheroni constant.

 ∑ (

)

 (8)

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):15-19
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

17

Next, let us estimate the number of loose Mersenne primes

less than V+1. First, let us note the number of Mersenne

composites less than V+1,

 #() = () (9)

In order to estimate the distinct, non-repeated prime divisors

of the Mersenne composites, it would be useful to reduce the

set of Mersenne composites to a set H of h (#()) co-prime

numbers by iterative application of the parallelized I-G Binary

GCD algorithm, which is up to eight times faster than the

traditional Euclidean approach [7].

#(
) = ∑ ()

 such that () {

 } |

 ∏ () (10)

where, () gives the number of distinct prime divisors of the

argument .

 We now need to estimate the number of strict Quasi-

Mersenne primes. This is trickier than the previous cases,

mainly due to the unmanageable number of combinations and

prime tests thereof. However, we can see that Proth primes

(i.e., primes of the form:
 where <) make up

a considerable chunk of the
 set. This can be easily

visualized by plugging a difference of two powers of 2 into .

Fortunately, a Proth number can be rather easily checked if it

is indeed a prime number, as shown in [8]. Then, we have the

Solinas primes [9], of the form . If #()

indicates the number of Proth primes below V+1, and if #()

indicates the number of Solinas primes below V+1, we have

the lower and upper bounds on the number of strict Quasi-

Mersenne primes below V+1.

 #() #(
) #() (11)

[10] contains a section on counting the Solinas primes.

On similar lines of quantifying the number of loose Mersenne

primes, we can reduce the Quasi-Mersenne composites from

#()
 , to a set G of g (#()) co-prime numbers

(again via iterative use of the parallelized I-G Binary GCD

algorithm). Then, we simply pick the distinct prime factors of

each element of G.

 #(
) = ∑ ()

 | () {

 }; () {
 };

 () {
 } | ∏ () (12)

Let #() be the number of primes lesser than V+1, such that

they belong to one of the four sets outlined in (1), (2), (3), and

(4). Then, we have,

 #() = #(
) + #(

) + #(
) + #(

) (13)

The physical interpretation of (13) is simply that we have

#() number of choices to pick a prime number from as the

modulus for the multiplication and the subsequent reduction.

The forthcoming algorithms are framed with these four sets of

moduli in mind, and are shown in the last section to be faster

than the state-of-the-art algorithms.

B. The Algorithm

Input:

Output:

Pre-computations:

1.

2.

; .

3.

Step 1:

Step 2:
Step 3:

Step 4: Return .

Defining variables used in the algorithm:

 : The multiplicand, ≤ < .

 : The multiplier, ≤ < .

 : The product to be reduced, ≤ < .

 : The modulus, < .

 : The partially reduced result.

 : The smallest integer value such that reaches its

minimum value.

 : The portion of any variable , between and

including its th and th
 bits.

Brief analysis of the algorithm:

 The multiplication is put under pre-computation since the

focus of the algorithm is the modular reduction which follows

the multiplication.

 Step 1 computes the remainder of the division of the

product and the power of 2 (F), which is just a case of

masking the higher order bits, while choosing only the lower k

bits.

 Step 2 could either fold once more, or make the adjustment

to reduce the result with the actual modulus. In case of a

second fold (which is applicable only to moduli of sets 3 and

4), the unity adjustment occurs later in the step.

 Step 3 is basically the summation of the results of the first

two steps, which gives the partial reduction. It is this result

which is fed into the classical Barrett algorithm.

 The cost involved during the run-time of the algorithm is a

maximum of three shift operations, bit-masking, and two s-bit

addition operations (where s is at most 20% longer than the

modulus length).

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):15-19
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

18

 Average complexity of the algorithm can be worked out to

be Θ(⌈ ⌉).

III. RESULTS AND CONCLUSION

Before presenting the results, let us qualitatively see why

the algorithm has the potential to produce faster modular

reduction. It is clear that reducing any large number with a

power of 2 as the intermediate modulus is a simple case of bit

masking, and is a negligible hardware effort. Reducing the

partially reduced result further with the actual modulus costs a

single-precision multiplication [3]. However, if the actual

modulus is smaller than the intermediate modulus by unity (as

defined by moduli set 1), the need for the multiplication

vanishes, and is replaced by shift and addition/subtraction

operations. It should be noted that the actual modulus need not

just be unity short of the intermediate modulus; it may

alternatively be an integral prime divisor of unity less than the

intermediate modulus, thus leading to the moduli set 2. The

authors of [3] also propose one more level of partial reduction,

called a double-fold, which may bring further time reduction.

If the double-fold were to be applied to the algorithm

described in this paper, it would naturally necessitate the

usage of moduli sets 3 and 4.

The algorithm has been extensively tested for products that

range from 20 bits to 100 bits. The general rule followed in

testing the algorithm is that the length of the modulus is less

than or equal to half the product length in bits. The testing has

been carried out on Altera Quartus II, the device family being

Stratix III. 700 operand/moduli-pairs have been tested upon –

100 operands of width 100 bits, 100 of width 300 bits, and so

on till 700-bit operands. The mix of moduli has been made as

heterogeneous as possible, with roughly equal representation

from all four sets. For the purpose of comparison, we have

chosen the Modified Barrett algorithm (which appears in the

Fig. 1 as “Hasenplaugh”) of [3], since it is faster than

Montgomery and classical Barrett algorithms, and the

algorithm of [4] (which appears in the Fig. 1 as “Knezevic

(Belgium)”).

Figure 1. Time delay comparison of the proposed algorithm against
Hasenplaugh et al.’s Modified Barrett algorithm, and Knezevic et al.’s

algorithm.

Figure 2. Percentage improvement in time of the proposed algorithm over the

Modified Barrett algorithm.

 These results presented in figures 1 and 2 are over 45%

better (faster) than the original implementation presented in

[11] – mainly due to speed-optimized FPGA implementation

and a much larger test scheme, thereby representing real-life

results.

TABLE 1: Time delay comparison (measured in ns)

Bits Modified

Barrett [3]

Knezevic [4] Proposed

100 18.33 - 10.77

200 19.82 17.54 (128

bits)

11.39

300 21.80 24.05 (256

bits)

12.33

400 23.60 - 13.22

500 26.28 31.3 (512

bits)

14.64

600 28.58 - 15.87

700 31.62 - 17.54

 Knezevic algorithm has be tested for operands of power-of-

2 bit lengths, so that the words can be of power-of-2 bit

lengths.

 It has been made evident in this paper that by defining

moduli sets based on Mersenne, Quasi-Mersenne, and divisor

primes thereof, and by updating and tuning the Modified-

Barrett algorithm presented in [3], we achieve better speed (as

seen by an average of more than 80% decrease in time

requirements) for operands 700 bits long.

REFERENCES

[1] P. Montgomery, “Modular Multiplication Without Trial Division,”

Math. Computation, Vol. 44, pp. 519–521, 1985.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):15-19
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

http://en.wikipedia.org/wiki/Peter_Montgomery
http://www.jstor.org/stable/2007970

19

[2] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor,” Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer,
Heidelberg, 1987.

[3] W. Hasenplaugh, G. Gaubatz, and V. Gopal, “Fast Integer Reduction,”
18th IEEE Symposium on Computer Arithmetic (ARITH ’07), pp. 225–
229, 2007.

[4] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster Interleaved
Modular Multiplication Based on Barrett and Montgomery Reduction
Methods,” IEEE Transactions on Computers, Vol. 59, Issue 12, pp.
1715–1721, December 2010.

[5] D. Shanks, “Solved and Unsolved Problems in Number Theory, 4th
ed.,” New York: Chelsea, p. 15, 1993.

[6] B. C. Berndt, “Ramanujan's Notebooks, Part IV.,” New York: Springer-
Verlag, pp. 126-131, 1994.

[7] T. Jebelean, “Comparing Several GCD Algorithms,” Proceedings of the
11th Symposium on Computer Arithmetic, pp. 18 –185, 1993.

[8] E. W. Weisstein, “Proth's Theorem.” From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/ProthsTheorem.html

[9] J. A. Solinas, “Generalized Mersenne Numbers,” Technical Report
CORR 99-39, Centre for Applied Cryptographic Research, University of
Waterloo, 1999. http://cacr.uwaterloo.ca/techreports/1999/corr99-39.ps

[10] J. J. Angel and G. M- Luna, “Solinas primes of small weight for fixed
sizes,” Cryptology ePrint archive, February 2010.

[11] S. Sreehari, H. Wu, and M. Ahmadi, “Fast modular reduction for large-
integer multiplication for cryptosystem application,” 2nd International
Conference on Digital Information and Communication Technologies
and its Applications, May 2012.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):15-19
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

http://www.amazon.com/exec/obidos/ASIN/0828412979/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0828412979/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387941096/ref=nosim/weisstein-20
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/ProthsTheorem.html
http://cacr.uwaterloo.ca/techreports/1999/corr99-39.ps

