
1

Rationale and Design of the Access Specification Language RASP

Mark Evered

School of Science and Technology

University of New England

Armidale, 2351, Australia

mevered@une.edu.au

ABSTRACT

In this paper we describe the formal

specification language RASP for expressing

fine-grained access control constraints in

information systems. The design of the

language is motivated by a number of IS

case studies which demonstrate the

complexity of the access constraints which

arise if minimal (need-to-know) access is to

be strictly enforced. RASP supports

modularity, parameterization, role

acquisition, constraint expressions and a

symmetrical approach to role transitions and

attribute transitions. No existing access

control specification language supports all

of these complex, realistic requirements.

KEYWORDS

security, access control, specification, roles,

attributes

1 INTRODUCTION

In general, each of the users of an
information system needs to be able to
view or manipulate only some of the
information stored in the system. Ideally,
the appropriate access for each user will
be specified in the form of an access
policy during the analysis phase of the
software development and then enforced
via access control mechanisms during the
execution of the implemented system.

An access control specification
language of this kind can be used for a
variety of purposes. These include:

 Analysis: The specification
language can capture the
requirements for a new information
system and be used to validate the
design.

 Generation of test cases: The
formal specification can be used to
generate test cases for verifying
whether a new system fulfils the
access control requirements.

 Testing of existing systems: The
desired access requirements can be
formulated for an information
system already in existence so that
test cases can be generated to
determine whether the access
control is adequate.

 Generation of access control code:
In some cases, the access control
code may be able to be generated
automatically from the specification.

 Proof of access control properties:
A formal specification can serve as
the basis for formal proofs that
certain security or privacy properties
are satisfied by a system which
implements that specification.

An access control policy can be
understood as consisting of two
components. The first is control over the
membership of the subject groups of
interest in the application domain. The
second is a mapping from each of these
groups to permissions which allow
certain operations to be performed on the
data by members of the groups.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

2

In database systems this second
component has traditionally been
restricted to a simple read/write
permission on the fields of the records.
An object-based approach has the benefit
of allowing access to be based on the
permission to execute methods
corresponding to high-level operations
on objects meaningful in the application
domain. This object-based approach
dates back to [8] and has now been
integrated into most common component
models.

The first component of access control
has also been approached in a number of
different ways. In the simplest case, an
access control list for each object
contains an entry for each subject or
group of subjects. The owner of the
object (or a system administrator) can
assign subjects to groups. More recently,
Role Based Access Control models have
been defined which allow this first
component of access control to be based
on the roles played by individuals in the
organisations making use of an
information system. This means that
there is a (dynamic) mapping from
subjects to roles and then a (relatively
static) mapping from roles to
permissions. These models recognise the
complex nature of permissions in real
organisations and have been shown to
subsume both conventional discretionary
access control models and mandatory
access control models such as Bell-
LaPadula [1].

A number of different RBAC models
have been proposed with varying degrees
of additional complexity. These additions
include role hierarchies [13],
parameterized roles [7], constraints on
role acquisition [15] and roles for objects
and environments as well as for subjects
[3]. As with any kind of model, there is a
tension here between simplicity on the
one hand and expressive power on the
other. A lack of expressive power in an

overly simple security specification
model may lead to either compromises in
the specification of the required security
or to specifications which are artificially
long and complex and therefore difficult
to validate with stakeholders. Since both
of these outcomes are undesirable, we
argue here for expressive power over
simplicity as long as the specification
language itself does not become too
complex to validate and verify as a
result. This is of course a somewhat
subjective assessment and must therefore
be informed by real case studies.

In this paper we use four case studies
to illustrate requirements for an access
control specification language which has
sufficient expressive power to adequately
support the principle of least privilege for
complex information systems such as
Health Information Systems. The more
comprehensive of these is an information
system for managing the data associated
with residents at an aged-care facility.
This case study was used in a previous
paper [6] to investigate requirements for
access control mechanisms but the focus
here is on an abstract access control
specification language. This case study
was chosen because of the complex
constraints which arise from what
appears to be a relatively simple system
if the principle of least privilege is taken
seriously. In this it is typical of the
complexities which occur in the area of
access control for Health Information
Systems.

In the following section we describe the

two case studies and some of the

complex access control constraints

which they imply. The third section

constitutes the bulk of the paper and

generalizes the constraints to identify

requirements for an adequate access

control specification language. The

RASP (Role and Attribute-based

Specification of Protection) notation for

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

3

each of the requirements is given. The

fourth section compares this work to

related work on role-based access

specification languages and shows that

no existing specification language is

sufficient in providing support for all of

the requirements. We conclude with a

summary of the findings and

contributions of the paper.

2 ACCESS CONSTRAINTS

2.1 Case Studies

1. Aged-care facility

The information system in this case
study manages the personal, financial,
clinical and medical data of the residents
at a small aged-care facility in rural New
South Wales. Subjects include staff such
as the manager, administrative staff,
health care workers and volunteers and
visiting professionals such as doctors and
physiotherapists. A particular doctor is
assigned to each resident but in
unforeseen circumstances, a different
doctor can be allowed access to the
medical data of a resident. Residents
themselves are also subjects since they
have access to the information stored
about them.

Access rules must cover the normal
day-to-day running of the facility but
also the admittance procedure for new
residents, the death or departure of a
resident and also emergency situations.
In emergency situations, it is essential
that the access rules in force for normal
situations do not prevent relevant
information from being accessed.

Some access is dependent on signed
statements from subjects. This includes a
statement of consent from residents and a
confidentiality agreement from staff. In a
fully paperless system, these signatures,
and the witnessing of them, can be

realized as operations within the
information system.

For further details on this system, see
[6].

2. eSteps

This is a system for the development
of questionnaires for health data, the
collection of the data on mobile devices
and the accumulation of the data at a
central point. The system also allows the
importing and exporting of data in the
standard EpiData format and the
tranmission of the data to other parties
for use in analysis.

The system was developed in
conjunction with the WHO and has been
used in the collection of information on
non-communicable diseases. The original
system was developed without
consideration for access control issues
and the case study involves a post-priori
definition the constraints required for the
system, including various levels of
confidentiality requirements.

For further details on this system, see
[16].

3. Multi-level security

This case study involves the
classification of documents into security
levels from unclassified to top-secret and
access to the documents by subjects
granted a certain level of security
clearance. It is based on the well-known
Bell-LaPadula model [1].

The main constraints are for
permission to view only documents at a
level equal to or below the level of
clearance and permission to modify and
create only documents at a level equal to
or above the level of clearance (the *-
property). „Trusted subjects‟ are not
restricted by the *-property. Documents
can be declassified by trusted subjects
and subjects can be cleared to a higher
level by a security manager.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

4

Documents can also be given
attributes, such as being associated with
a certain project and access is then
conditional on subjects being assigned to
that project.

4. Electronic funds transfer

This system is for managing a set of
accounts for a banking system or for an
e-commerce system such as PayPal. The
main operation on the data is the transfer
of funds from one account to another but
there are further operations for
administrative purposes. There are also
„deposit‟ and „withdraw‟ operations for
transferring funds to and from an
external form (such as cash).

The subjects in the system are the
owners of accounts and the
administrative staff managing the
system. As well as transferring funds
from his/her own account to another
account, an account owner may wish to
give another account owner permission
to transfer a certain amount to their own
account on a regular basis (e.g. monthly).

For further details on this system, see
[5] which discusses an access mechanism
for the system but does not address the
question of an adequate specification
language.

2.2 Example Constraints

The following is a list of some of the
more challenging access constraints
which have arisen from the case studies.
Over-simplistic RBAC models are not
able to adequately handle constraints
such as these.

 The manager of the aged-care facility
will generally assign subjects to roles
but should not be able to assign just
anyone to the role of doctor. This
should only be possible if a
qualification for the subject is

presented and is signed by an
appropriate authority.

 A new staff member will initially
have a role which enables them to
sign a confidentiality agreement.
Once they have done so, they can
gain the role of „staff member‟ but
should thereby automatically lose the
role of „applying staff member‟. This
illustrates the need for role
transitions.

 A doctor can be assigned to be the
„doctor for a particular resident‟ but
only with the permission of both the
manager and the resident (or the
„responsible person‟ for the resident).

 A person cannot be both the
signatory and the witness to a
confidentiality agreement.

 Only one person can be the doctor
assigned to a certain resident. This
illustrates a uniqueness requirement.

 Health care staff can view the recent
medical information of a resident but
not older information (realized in this
particular aged-care facility as „more
than twelve months old‟).

 The manager and the resident should
be alerted if someone invokes
emergency access to the medical
information of the resident. This
illustrates the need for alerts in the
system.

 The manager can delete the
information about a resident but not
until seven years after the resident
has left the facility (or nine years for
a resident of indigenous descent).

 Access to a document in a multi-level
security system depends not only on
the confidentiality level but on the
particular patient/case with which the
document is associated. This

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

5

illustrates the need for object
attributes as well as subject roles.

 A subject in a multi-level security
system can be raised to a higher
clearance level but not dropped to a
lower level.

 The documents as well as the
subjects must be able to be assigned
to new confidentiality levels. This
shows the need for dynamic
attributes as well as dynamic roles.

 Access to an instance of a
questionnaire in the eSteps system is
dependent on being the „data
collector‟ allocated to use the PDA
device for that instance.

 An inexperienced staff member in the
electronic banking system is only
allowed to perform a limited set of
tasks and can only perform these
tasks with a limited set of parameter
values (e.g. transfers of small
amounts).

2.3 General Principles

As well as providing the expressive
power to convey the above kinds of
constraints, an access control
specification language should conform to
a number of general principles
appropriate in all security applications.
We consider most of these to be self-
evident. A possible exception is the
principle of positivity. This will be
further discussed later in the paper.

 Conciseness: Commonly occurring
kinds of constraints should be
expressible in a straightforward
manner.

 Clarity: Ideally it should be apparent
at a glance that a constraint is
expressing the correct intent.

 No repetition: A single constraint or
access concept should only need to
be expressed in a single place.

 Modularity: Since the total set of
roles and constraints can be very
extensive, it must be possible to
formulate them as a combination of
smaller, understandable sub-units.

 Aspect-orientation: The access
control aspect of a system should be
expressible in a way which is
completely separate from other
aspects such as functionality,
synchronization and architectural
aspects.

 Positivity: The constraints should be
purely in the form of allowing access,
not in the form of denying access. As
well as preventing conflicts this
prevents situations where the denial
of access may be overlooked for
some subject or role and therefore
unwanted access inadvertently
allowed.

 Reasonability: The semantics of the
access language should be formally
defined and allow reasoning about
properties of an access control policy
formulated in the language.

 Efficient implementation: A certain
overhead will always be involved in
performing access control checks but
this overhead should be kept at a
reasonable level. If this is not
achieved then there will be a
temptation to compromise on the
degree of security in order to
improve system performance.

3 LANGUAGE REQUIREMENTS

Based on our case study examples and

general principles for security
mechanisms, we now formulate some
requirements for an adequate access

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

6

control specification language. We will
consider various aspects of the language
definition in turn. We use a form of
pseudo-code in the examples to
communicate the concepts without the
need for a discussion of syntax.

3.1 Modules and Parameterization

One basic question in the design of
such a language is the construct or
constructs used to group constraints and
to form modules. One possibility, for
example, would be to offer a construct
which groups all constraints relating to a
certain role. An alternative would be to
offer a construct which groups all
constraints relating to a certain object. A
module could consist of one such
construct or a number of them specified
in a single source file.

In the above case studies, we have
found that the kind of grouping which
provides the clearest description for a
certain application is neither strictly role-
based nor strictly object-based but is
determined by the particular rules and
procedures of the organization. So, for
example, in the aged-care case study, it is
convenient to group most of the
constraints associated with health care
workers together with other constraints
relating to the access required by staff
during normal day-to-day operations.
Other constraints for health care workers,
however, will be grouped together with
the constraints describing the special
access that subjects should be granted in
emergency situations. In other words
there will be a module for „normal
operation‟ and a module for „emergency
situations‟.

Because of this need for flexibility in
the grouping of constraints, it is best if
access constructs are simple clauses
which can be freely combined into
modules on whatever basis the software

engineer determines to be appropriate.
Some examples of such clauses in RASP
are:

allow volunteer!

residents.addNotes;

(A ‘Volunteer’ may invoke the
‘addNotes’ operation of an object with
the ‘Residents’ attribute.)

and:

allow

volunteerActingInEmergency!

residents.getMedicalEntry;

(A ‘VolunteerActingInEmergency’
may invoke the ‘getMedicalEntry’
operation of an object with the
‘Residents’ attribute.)

where „Volunteer‟ and „VolunteerActing
InEmergency‟ are assumed to be roles in
the system.

A second question relating to the
basic constructs of the language is how
much of the complexity of the constraints
is built into the role acquisition
component of the language and how
much is expressed as more complex
access rules for each role. In the above
example, it is assumed that a subject
acquires a new role to act in an
emergency. Alternatively, we could have
used a clause of the form:

allow volunteer !

residents.getMedicalEntry

#(isEmergency);

(A ‘Volunteer’ may invoke the
‘getMedicalEntry’ operation of an object
with the ‘Residents’ attribute if there is
an emergency.)

where a condition has been attached to
the access clause. In the case studies, we
have found that it is clearer both for
specification and for auditing purposes to
identify distinct roles wherever possible.
In fact these often correspond to
recognized roles within an organization.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

7

A third basic question is whether roles
need to be parameterized. Given that
roles need to be defined as precisely as
possible in order to accurately reflect the
roles used in organizations and ensure
minimal access, we have found it
necessary that roles can be given
parameters. So instead of just:

allow doctor!residents.

addMedicalEntry;

we need:

allow doctor(someone)!

residents.

addMedicalEntry(someone);

(The ‘Doctor’ of ‘Someone’ may
invoke the ‘addMedicalEntry’ operation
for that ‘Someone’.)

which parameterizes the role and relates
the role parameter value to the value of a
parameter of the operation on the object.

3.2 Role Acquisition

In any access control scheme, a
fundamental consideration concerns the
question of who has the right to assign
rights. More specifically, in a role-based
scheme, who has the right to assign a
subject to a certain role and/or to remove
a subject from a role? In the simplest
case, this is handled by a manager or
even just a system administrator who has
full control over access rights. In general,
a much finer-grained approach is
necessary. For example, it is not
appropriate for the manager of the aged-
care facility to be able to assign
him/herself to the role of doctor.

One possibility for finer-grained
control is a delegation-based approach in
which a subject with certain rights can
pass those rights on to other subjects.
This is however not generally desirable.
For example, it is not appropriate for a
Health Care Worker to assign another

person to be a Health Care Worker. That
is the job of the manager of the facility.

In general it is necessary to specify for
each role who (i.e. members of which
role) has the right to appoint subjects to a
role. So, for example:

appoint manager:someone ->

healthCareWorker;

(The ‘Manager’ can appoint
‘Someone’ to be a ‘HealthCareWorker’.)

This does not yet, however, solve the
problem of who can appoint a Doctor.
The manager needs to make the
appointment but should not be allowed to
appoint just anyone. Ideally, we would
want a constraint that the subject is
qualified as a doctor, i.e. an appropriate
certificate from a trusted third party. This
idea of appointment combined with
certificates was suggested in [15]. We
can express this in RASP as:

appoint manager,

medicallyQualified{someone}:

someone -> doctor;

(The ‘Manager’ can appoint
‘Someone’ to be a ‘Doctor’ in the facility
if he/she has a medical qualification
certificate.)

where
„medicallyQualified{someone}‟
signifies a check for the presence of a
digitally-signed certificate from an
appropriate authority.

Finally, approval from more than one
person may sometimes be required for an
appointment. For example:

appoint manager,someone:

doctor -> doctor(someone);

(The ‘Manager’ and a ‘Someone’
together can appoint a ‘Doctor’ to be the
‘Doctor for that Someone’.)

3.3 Constraints and Reasonability

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

8

The appointment of a subject to a role
may be dependent not just on permission
and certificates, but also on further
conditions involving parameter values of
an operation or the current state of the
objects in the system. For example, in a
multi-level security scenario, the
manager of the system can appoint
someone cleared at a certain level to be
cleared at a different level, but only if the
new level is higher than the old level.

Other appointment constraints involve
limits on the time for which the
appointment is to remain valid. This may
be an absolute time value such as one
day or may be specified as lasting for a
single session. For example:

appoint manager: doctor ->

initialExaminer(someone)

#time(session);

These kinds of more complex
constraints have advantages and
disadvantages for a formal access-control
model. They can be used to more
accurately and therefore more strictly
express the constraints required for a
certain information system. On the other
hand, they make the model itself more
complex and constraints which depend
on the state of the system may make it
difficult or even impossible to prove
properties of the access-control by
automatic reasoning. Since our aim is to
support the expression of minimal
required access, we maintain that such
constraints must be allowed. (The
consequence is then simply that more
properties may be provable for systems
which do not require such constraints
than for systems which do.)

A further kind of constraint in role-
based systems is associated with the
notion of conflicts, whether this
represents an actual „conflict of interest‟
or simply a situation which does not
make sense. So, for example, a resident

cannot be allowed to witness their own
signature.

conflict someone,

witnessFor(someone);

A certain combination of rules may
constitute a conflict statically or
dynamically. That is, it may be a conflict
for a single person to be appointed to
both roles or it may only be a conflict for
a person to be acting in both roles in a
single session.

A similar kind of constraint is that
only a single person should be allowed to
have a certain role. Again this may be
static or dynamic. For example:

unique session manager;

(The ‘Manager’ role can only be

adopted by one person at a time.)

3.4 Role Transitions and Hierarchies

A further key question in role
acquisition is the relationship between a
new role to which a person is being
appointed and the roles that person
already possesses. Sometimes this simply
involves adding a role to the set of roles
already possessed. In other cases, the
new role may be a specialization of a role
already possessed. This allows for role
hierarchies. So, for example in:

appoint manager: doctor ->

initialExaminer(someone);

the general role of „doctor‟ is retained
but the subject now has the special role
as well.

A third possibility not generally
supported in RBAC systems is that the
new role is replacing a role already
possessed. This is the case in:

appoint manager:

intensiveCareNurse /->

maternityWardNurse;

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

9

where „/->‟ signifies that the former role
is lost. An example from a multi-level
security system is:

appoint accessManager:

secretCleared /->

topSecretCleared;

where someone with the role
„secretCleared‟ is given the role
„topSecretCleared‟. In terms of a Bell-
LaPadula-type scheme, it is essential that
the old role is relinquished at the same
time the new role is allocated so that the
*-property can be properly enforced.

To accommodate these possibilities,
an access control specification language
needs two forms of appointment clause:
one which specifies that a person with a
certain role can gain a new role as well,
and one which specifies that a person
with a certain role can change to a
different role. Note that the former
provides for specialization as well as
simple addition of roles.

This concept of changing roles can be
used for other purposes as well. One
example is a natural progression within
an information system such as from
„ApplyingStaffMember‟ to
„StaffMember‟ to „FormerStaffMember‟,
each of which will have different access
rights.

A clause expressing this concept can
also be used to revoke some of the access
rights of a person by changing them to a
new role. For example,

appoint manager: nurse /->

restrictedNurse;

Used in this way, the clause can even
be used for removing a role from a
person entirely by indicating that the role
be changed to a „null‟ role as in:

appoint

manager:healthCareWorker /->

nobody;

It should be noted that this use of role

transition obviates the need for

„negative‟ access rules which list the

operations that someone is not allowed

to perform.

3.5 Object Groupings

In the simplest case, an access clause
will allow someone with a certain role to
invoke certain operations on a particular
object. If the number of objects in a
system is large, however, this can lead to
an explosion in the number of access
clauses required and in the overhead
involved in changing access rights. Often
the access allowed for a certain role
should be the same for a whole group of
objects and it is laborious and error-
prone to specify each separately.

In Ponder [4], objects can be grouped
into hierarchical folders and access can
be specified for all the objects of a folder
(and its sub-folders). This is sufficient
for some systems but not for others. In a
multi-level security system, for example,
the security level of a document may be
independent of its location in a folder
hierarchy. We propose a more general
approach in which attributes can be
assigned to objects and an access clause
specifies the access allowed by a role to
all objects with a certain attribute. In fact
the attributes possessed by an object can
be seen as analogous to the roles
possessed by a subject and may require
the same level of complexity, including
„appointment‟, parameters and
transitions. So, for example, we may
have:

appoint accessManager:

someone ->

confidentialClearedStaffMember;

attribute accessManager:

document ->

confidentialDocument;

allow

confidentialClearedStaffMember!

confidentialDocument.read;

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

10

This example illustrates the three
main kinds of RASP clause. A subject is
given a role, an object is given an
attribute and a subject with a certain role
is given access to an operation on objects
with a certain attribute.

This similarity in the way roles and

attributes are handled for subjects and

objects makes the model more uniform

and simpler to understand while greatly

increasing its expressive power.

4 RELATED WORK

Both the object-based access control
paradigm [8] and the role-based access
control paradigm [12] are well-known
approaches as is the combination of the
two to define access to an object in terms
of the methods which can be invoked by
subjects acting in a certain role. A
number of significant extensions to the
basic RBAC model have been suggested
in order to adequately handle the
complexities of minimal access control
requirements in real-world scenarios.
These include role hierarchies [13] and
role parameters [7].

A question which has received much
less attention is how to group objects so
that the access constraints for the whole
group can be specified in a single place
rather than repeating them for each and
every object. The Ponder policy
specification language [4] supports a
hierarchical structure of domains and
sub-domains of objects similar to a file
system hierarchy. The leaves of the tree
are references to objects rather than the
objects themselves so that an object can
appear in a number of different domains.
This approach assumes that the domains
are relatively static and that an
administrator will place objects into
domains via some mechanism external to
the language. In our case studies, the
domains of an object may depend on

object attributes which change in the
same way that the role of a subject may
change. These transitions require the
same level of specification as to who can
effect the change as is required for role
changes. The approach of Generalized
Role-Based Access Control [3]
recognizes the need for symmetry
between subject roles and object roles
but does so on the basis of a very simple
model which does not support role
parameters or pre-conditions for role
transitions.

Attribute-based access control
(ABAC) [17][18] was developed to
support access to web services based on
provable attributes of a user rather than
the identity of the user. This is important
for anonymity in using such services but
is not appropriate for organizations or
systems where fine-grained access-
control policies are based on identity and
roles. ABAC has been extended to
include attributes for resources as well as
subjects but does not address attribute
transitions.

A further important question concerns
the acquisition of access rights. Ponder is
a delegation-based system. It provides
for delegation policies which limit which
access rights a subject can pass to
another subject but the basic assumption
is that the possessor of a right decides if
and when another subject should gain
that right. In our case studies, it is often
necessary that access rights be granted by
someone who does not possess them
him/herself. The OASIS Role Definition
Language [15] allows for this kind of
appointment-based acquisition of access
rights and for role acquisition pre-
conditions based on external certificates
known as auxiliary credential
certificates. OASIS RDL does not
however allow for a distinction between
the case where a new role is replacing a
previous role and the case where the new
role is additional. In our case studies, this

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

11

distinction has been found to be useful
both for role transitions and for object
attribute transitions. OASIS RDL also
does not allow for the generation of new
credential certificates as a result of
operations performed within the system.

Ponder supports both positive and
negative authorizations. In fact, it has
two forms of negative access control
clause: negative authorization policies
and refrain policies. So, for example, a
set of access rights can be granted to a
group of subjects via a positive
authorization policy and then one of the
rights can later be revoked from a certain
member of the group via a negative
authorization policy. Negative
authorizations lead to the problem of
potential inconsistencies and loopholes in
an access control system. A more elegant
way to express this kind of partial
revocation is to use role transition to
transfer a subject from one role into a
new role which has a more restricted set
of rights.

Generalized Role-Based Access
Control proposes that, in addition to
subject roles and object roles, there
should also be „environment roles‟ [3]
which classify the state of the
environment in an access control
scenario. So, for example, there may be
time or location roles such as „Monday‟
or „downstairs‟. This provides a simple
form of constraint for RBAC but more
complex constraints are often necessary.
OASIS RDL allows for the matching of a
role parameter with a method parameter
before a method is invoked. Ponder
allows for the full expressive power of
the UML Object Constraint Language
[10] in formulating the additional access
constraints of „when-clauses‟. XACML
[9] similarly allows constraints to be
formulated in terms of expressions which
invoke arbitrary object methods of
objects in the system. Our case studies
confirm that this expressive power is

sometimes required for real access
control scenarios even though it may
hinder formal proofs of security
properties.

The access control specification
languages and mechanisms described in
this section represent the state-of-the-art
in fine-grained access control but, as
demonstrated above, none of them can
support all of the requirements which
arise from the case studies.

5 IMPLEMENTATION

A proof-of-concept implementation of

the access control specification language
RASP is currently being undertaken.
This implementation has been developed
in the context of a web-based document
retrieval system.

A RASP specification describing the
roles, attributes and access rules
associated with the users and documents
is analyzed by a parser implemented
using the jjtree compiler-compiler. If
error-free, the parse tree is used to
generate a Linux directory structure for
access to the documents and the access
rules are implemented via .htaccess files
within the Apache web server.

When a user logs in to the system,
he/she initially has only the role
„someone‟. Based on the constraints of
the RASP specification rules, the user
can then:

 invoke a program to access a

document

 explicitly take on further roles

 appoint someone to a role

 label an object with an attribute

The first of these is accomplished by
representing the programs as methods in
the RASP rules and he last three are
implemented as dynamic updates to the
Apache access files.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

12

6 CONCLUSION AND FUTURE

WORK

This work is based on case studies of

information systems which require very
fine-grained access control. We have
outlined two case studies and given
examples of some of the complex access
constraints which arise if minimal access
is to be guaranteed. We have then
generalized these to formulate specific
requirements for an access control
specification language. We have
considered requirements in the areas of
modules and parameterization, role
acquisition, constraint expressions, role
transitions and hierarchies and object
groupings.

No existing access control
specification language fulfils all the
requirements resulting from this analysis
and therefore none is adequate in
specifying the minimal access rules for
the case studies. In particular, a major
contribution of this research has been to
identify the usefulness of the concept of
role transitions and the symmetry
between roles and role transitions on the
one hand and attributes and attribute
transitions on the other.

The RASP specification language
allows the formulation of minimal access
rights for use in information systems
analysis and design and for verification
and the formal proof of security and
privacy properties. A full syntax of the
language can be found at in Appendix A.

Further work includes the completion
of the proof-of-concept implementation
and validating the specification language
through further case studies.

7 REFERENCES

1. D.E. Bell and L.J. La Padula, “Secure

computer systems: unified exposition and

Multics interpretation”, MTR-2997, The
MITRE Corporation, 1975.

2. B. Blobel, “Authorisation and access control
for electronic health record systems”,
International Journal of Medical
Informatics, 73, 2004.

3. M.J. Covington, M.J. Moyer and M.
Ahamad, “Generalized role-based access
control for securing future applications”,
Proc. 23rd National Information Systems
Security Conference, Baltimore, 2000.

4. N. Damianou, N. Dulay, E. Lupu and M.
Sloman, “Ponder: A language for specifying
security and management policies for
distributed systems”, The Language
Specification Version 2.3, Imperial College
Research Report DoC 2000/1, 2000.

5. M. Evered, “Opsis: A distributed object
architecture based on bracket capabilities”,
Proc. Conference on Technology of Object-
Oriented Languages and Systems, Sydney,
2002.

6. M. Evered and S. Bogeholz, “A case study
in access control requirements for a health
information system”, Proc. Australasian
Information Security Workshop, Dunedin,
2004.

7. J.H. Hine, W. Yao, J. Bacon and K. Moody,
“An architecture for distributed OASIS
services”, Proc. Middleware 2000, Lecture
Notes in Computer Science, Vol. 1795,
Springer-Verlag, Heidelberg/New York,
2000.

8. A. Jones and B. Liskov, “A language
extension for expressing constraints on data
access”. Communications of the ACM,
21(5):358-367, May, 1978.

9. T. Moses (Ed.), Extensible Access Control
Markup Language (XACML) Version 2.0,
OASIS Consortium, 2005.

10. Object Management Group, Object
Constraint Language Specification Version
2.0, 2006.

11. J.H. Saltzer, “Protection and the control of
information sharing in Multics”, Symposium
on Operating System Principles, Yorktown
Heights, NY, 1973.

12. R. Sandhu, E.J. Coyne, H.L. Feinstein and
C.E. Youman, “Role based access control
models”, IEEE Computer 29 (2), 1996.

13. R. Sandhu, “Role activation hierarchies”,
Proc. 3rd ACM Workshop on Role-Based
Access Control, Fairfax, 1998.

14. M.C. Tschantz and S. Krishnamurthi, S.
“Towards reasonability properties for access
conrol policy languages”, Proc. 11th ACM
Symposium on Access Control Models and
Technologies, Lake Tahoe, 2006.

15. W. Yao, K. Moody and J. Bacon, “A model
of OASIS role-based access control and its
support for active security”, ACM
Transactions on Information and System
Security, 5, 4, 2001.

16. P. Yu and H. Yu, H., “Lessons learned from
the practice of mobile health application
development”, Proc. 28th Annual

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

13

International Computer Software and
Applications Conference, Hong Kong, 2004.

17. T. Yu, X. Ma and M. Winslett, “Prunes: an
efficient and complete strategy for
automated trust negotiation over the
internet”, Proc. 7th ACM conference on
Computer and communications
security.ACM Press, 2000.

18. E. Yuan and J. Tong, “Attributed based
access control (ABAC) for web services”,
Proc. IEEE International Conference on
Web Services, 2005.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

14

Appendix A – Formal syntax of RASP

clause: appoint_clause |

 attribute_clause |

 allow_clause |

 conflict_clause |

 unique_clause |

 log_clause

appoint_clause: 'appoint'

 precondition

 {',' precondition } ':'

 role transition role

 [time] [alert] ';'

precondition: role |

 certificate |

 condition

role: id ['(' id {',' id} ')']

certificate: id '{' id

 {',' id} '}'

transition: '->' | '/->'

time: '#' 'time' '('

 [constant] unit ')'

unit: 'session' | 'day' |

 'month' | 'year'

alert: '@' 'alert' role

 { ',' role }

attribute_clause: 'attribute'

 precondition

 {',' precondition } ':'

 attribute transition

 attribute

 [time] [alert] ';'

attribute: id ['(' id

 {',' id} ')']

allow_clause: 'allow' role '!'

 action {',' action}

 [condition]

 [':' certificate] ';'

action: attribute operation

operation: '.' id '('

 [par {',' par}] ')'

par: id | constant |

 role | 'self'

condition: '#' '(' expression ')'

conflict_clause: 'conflict'

 ['session']

 role [',' role] ';'

unique_clause: 'unique'

 ['session'] role ';'

log_clause: 'log' [role '!']

 attribute

 [operation]

 [condition] ';

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(1):1-14
The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

