

FREE VIBRATION ANALYSIS OF LAMINATED COMPOSITE SHALLOW SHELLS

SUNU MARIAM SAJI¹ & PRABHA C²

¹Computer Aided Structural Engineering, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India ²Assistant Professor, Department of Civil Engineering, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India

ABSTRACT

Shell structures constituted a major component of today's aerospace, submarine, automotive and other machine or structural elements. They were used in aircraft, spacecraft, rockets, cars, computers, submarines, boats, storage tanks and the roofs of buildings. With the progress of composite materials, shallow shells constructed by composite laminas were extensively used in many fields of modern engineering practices. If external vibrations coincided with natural frequency of the material, resonance and subsequent failure result. Therefore free vibrations leading to the notions of the natural vibration frequency was to be studied.

This thesis work focused on the free vibrations of shallow thin composite shells of various shapes, modulus ratios, span-to-thickness ratios, boundary conditions and lay-up sequences. Most of the previous studies on this subject were confined to the classical boundary conditions. So the effect of elastically restrained edges on various shell curvatures including spherical and cylindrical shell was also studied.

KEYWORDS: Spherical Shell, Cylindrical Shell, Normalised Frequency Parameter, Natural Frequency

INTRODUCTION

General

Shell structures constitute a major component of today's aerospace, submarine, automotive and other machine or structural elements. They can be used for aerodynamic, aesthetic and/or other reasons. They are used in aircraft, spacecraft, rockets, cars, computers, submarines, boats, storage tanks and the roofs of buildings. In the last decade, the continuous development of material science and engineering, along with the increasing demand to produce light-weight structures, has led to the use of advanced materials (laminated composites and functionally graded materials (FGMs)) in designing shell structures. Composite laminates are widely used in demanding applications, as for example in aerospace structures, where large dynamic loads occur and the temperature varies.

With the progress of composite materials, shallow shells constructed by composite laminas are extensively used in many fields of modern engineering practices requiring high strength-weight and stiffness-weight ratios such as aircraft structures, space vehicles and deep-sea engineering equipments. Shallow shells are open shells that have small curvatures (i.e. large radii of curvatures compared with other shell parameters such as length and width). They can have circular, rectangular, triangular or any other planform. They can be singly-curved (i.e. cylindrical) or doubly curved (e.g. spherical). They can also have their principal radii of curvature not align with the geometric boundaries, introducing a radius of twist (e.g. turbo machinery blades).

Objectives of Thesis Work

- Study of free vibrations of shallow thin composite shells of various shapes, modulus ratios, span-to-thickness ratios, boundary conditions and lay-up sequences.
- Study the effect of boundary conditions on dynamic characteristics of composite shallow shells.
- Study the influence of curvature, panel thickness and fibre orientation on the shells' dynamics.

FREE VIBRATION ANALYSIS OF LAMINATED COMPOSITE SHALLOW SHELL General

From the practical point of view, it is essential to have knowledge of the free vibration characteristics of shells in structures required for space missions. The destructive effect of resonance may be avoided if we know beforehand the fundamental frequencies of the structures. Finite element modelling is an art and is not governed by hard and fast rules. The results obtained from finite element method are approximate to the physical system, which is represented by a discrete mathematical model. The physical system has infinite degrees of freedom whereas the finite element model has finite numbers of degrees of freedom. The degree of approximation in the calculated results depends on how closely the physical system is modelled. The modelling process involves many possibilities – the element shape and types, the number of elements and boundary conditions. Error in each of these factors may cause the misrepresentation of the actual physical system.

ANSYS is a finite element analysis (FEA) software package. It uses a pre-processor software engine to create geometry. Then it uses a solution routine to apply loads to the meshed geometry. Finally it outputs desired results in post-processing. The subspace iteration procedure is used to solve for the natural frequency and eigen vectors.

In order to analyse the model in ANSYS, SHELL281 element is selected. The thickness for each ply and its orientations are defined. Then the orthotropic material property and density for analysis are defined. In order to model cylindrical structure – CSYS, 1 and spherical structure – CSYS, 2 are used. Then the model is meshed to provide accurate numerical solution. Then the specific boundary conditions are applied on each side. Model is analysed. After solving, we get natural frequency in 'Hertz' and its mode shapes. Material taken for analysis is free graphite/epoxy shell. The properties of shell considered are:

Property	Value
Young's Modulus-Longitudinal, E _x	138GPa
Young's Modulus-Transverse, E _y	8.96GPa
Shear Modulus, G	7.1GPa
Poisson's Ratio, µ	0.3
Mass Density, p	1500kg/m ³

Table 1: Material Properties of Shell

EFFECT OF PARAMETERS ON NATURAL FREQUENCY

Effect of Lay-Up Sequence on Natural Frequency

To study the effect of ply orintation, kept the value of a/b=1, R_x/a=2, h/a=1/100 and the frequencies are expressed in non dimensional parameter as $\Omega = \omega a^2 \sqrt{(\rho/E_x h^2)}$.

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	32.944	33.334	33.621	34.007	41.964	43.363	44.307	45.250
0/45/0	27.731	31.819	35.615	36.975	40.317	6.5305	43.794	44.461
0/90/90/0	32.368	33.440	33.666	35.113	40.464	41.867	42.822	43.399
0/90	28.698	30.312	30.708	32.217	37.217	37.914	38.739	39.926
90/45/-45/90	31.460	36.032	37.696	37.984	40.095	41.502	43.333	45.453
0/90/45/-45/0/90	35.788	36.542	37.429	38.250	42.686	44.108	45.480	48.297

Spherical Shell

Table 2: Normalised Frequency Parameter with Clamped Condition

Table 3: Normalised Frequency Parameter with Simply Supported Condition

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	30.515	31.506	32.841	33.400	38.359	40.773	41.316	42.306
0/45/0	24.515	28.633	32.545	33.497	38.235	38.676	42.541	42.626
0/90/90/0	29.526	30.342	32.731	33.663	38.084	38.395	38.895	40.759
0/90	27.262	27.393	29.961	30.119	34.325	34.910	36.415	37.269
90/45/-45/90	29.511	32.496	36.331	36.533	39.278	39.780	41.901	42.876
0/90/45/-45/0/90	34.627	35.547	35.694	36.765	39.571	40.895	41.565	44.306

For clamped condition, [0/90/45/-45/0/90] spherical shallow shell may be thought to be the stiffest in this study. For example, the first mode of the spherical shallow shell with [0/90/45/-45/0/90] is 29.1% greater than shell with [0/45/0]. In this case [0/90] is the most flexible one except the first mode of the spherical shell. It can be seen that first, fifth, sixth and seventh modal frequencies of [45/-45/45/-45] shell is higher than [90/45/-45/90]. The lowest first frequency exist in [0/45/0] ply layout sequence.

Also for simply supported condition, [0/90/45/-45/0/90] spherical shallow shell is the stiffest one. So for spherical shallow shell with given condition, [0/90/45/-45/0/90] lay-up sequence is the best one. Except the first mode, we can see from Table 3 that the [0/90] lay-up is the flexible one. By comparing the spherical shallow shell with clamped condition and simply supported condition, clamped one gives good results than second one .

Cylindrical Shell

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	18.968	20.453	25.783	27.334	28.315	31.312	33.170	34.766
0/45/0	20.743	26.677	29.417	31.060	33.943	35.475	39.751	40.503
0/90/90/0	18.990	24.455	26.419	28.905	31.190	33.437	39.109	39.435
0/90	12.655	16.382	19.916	21.025	28.031	28.421	28.517	32.317
90/45/-45/90	14.034	14.165	20.468	21.033	24.659	24.771	26.923	27.963
0/90/45/-45/0/90	18.157	22.735	26.827	28.507	33.911	36.315	37.089	37.820

Table 4: Normalised Frequency Parameter with Clamped Condition

Cable 5: Normalised Frequency Parame	ter with Simply Supported Condition
--------------------------------------	-------------------------------------

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	17.761	17.805	24.683	26.022	26.499	28.541	28.720	29.228
0/45/0	16.923	23.528	25.172	27.196	31.328	32.141	37.113	37.810
0/90/90/0	14.310	20.840	22.663	25.280	27.531	29.861	34.957	35.977
0/90	9.971	13.055	17.227	17.250	22.396	24.002	24.724	25.350
90/45/-45/90	11.558	12.760	16.964	20.103	20.425	20.791	23.444	23.819
0/90/45/-45/0/90	15.241	18.755	23.781	24.078	32.285	32.323	32.688	33.045

In cylindrical shell with clamped condition, the lay-up sequence [0/45/0] shows the critical condition. Then [0/90/90/0] lay-up sequence is the second one. In this case [0/90/45/-45/0/90] might not be the stiffest one when compared to [0/45/0] lay-up sequence. Except the first 3 modes, the flexible lay-up is [90/45/-45/90]. By comparing Table 3 and Table 4 it can be concluded that depending upon their curvatures variations, lay-up sequences which gives stiffness may supposed to change. In cylindrical shell with simply supported condition, only the first mode of [45/-45/45/-45] lay-up sequence is 4.95% higher than the [0/45/0] lay-up sequence. After the first mode, [0/45/0] lay-up sequence is supposed to be stiffer than all other lay-up sequence. From the Table 5 we can see that except the first mode [90/45/-45/90] lay-up sequence is the flexible one. In this case also by comparing the spherical shallow shell with clamped condition and simply supported condition, clamped one gives good results than second one.

Effect of Thickness on Natural Frequency

The natural frequency of shell for h/a=1/100 was studied in the previous chapter. To know the effect of frequency with the variation of thickness, h/a=1/50 ratio was taken for analysis, where the value of 'a' kept as constant. That is thickness is greater than previous one. Also kept the value of a/b=1, $R_x/a=2$ and the frequencies were expressed in non dimensional parameter as $\Omega = \omega a^2 \sqrt{(\rho/E_x h^2)}$. In the equation 'h' is in denominator. If frequency parameter gets increase, natural frequency will decreases with thickness otherwise, it will increase with thickness.

Spherical Shell

Table 6: Normalised Frequency Parameter with Clamped Condition for h/a=1/50

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	20.365	20.472	20.549	24.798	27.086	28.230	33.519	33.885
0/45/0	20.217	21.376	22.668	23.675	25.164	26.906	28.180	32.236
0/90/90/0	19.320	21.293	23.221	23.906	25.485	28.472	30.401	34.711
0/90	18.449	18.503	18.958	20.329	24.531	24.949	25.752	26.509
90/45/-45/90	21.160	21.329	21.419	23.723	24.886	27.019	28.597	32.471
0/90/45/-45/0/90	21.431	21.974	22.222	25.177	30.045	32.168	32.962	34.443

Table 7	': Norma	lised Fr	equency	Parameter	with Simp	ly Sur	oported	Condition	for h	ı/a=1/	50
			•			•/					

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	18.517	19.627	19.731	20.960	24.939	26.084	29.137	29.491
0/45/0	16.121	19.216	21.455	22.630	22.938	23.706	25.166	27.586
0/90/90/0	18.166	18.796	19.766	20.124	23.546	24.476	26.380	28.600
0/90	16.197	16.399	16.941	18.523	21.009	21.540	22.809	24.713
90/45/-45/90	17.520	20.585	20.847	21.918	22.825	24.011	25.609	28.203
0/90/45/-45/0/90	19.226	19.925	21.299	21.886	25.729	27.333	27.562	28.578

In Table 6, [0/90/45/-45/0/90] lay-up sequence is 16.2% stiffer than [0/90]. Comparing Table 2 and Table 6 frequency parameter gets decreases. That is natural frequency increases with thickness.

Cylindrical Shell

Table 8: Normalised Fre	auencv Parameter wi	th Clamped C	ondition for h/a=1/50

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode6	Mode 7	Mode 8
45/-45/45/-45	13.112	14.199	16.665	21.564	21.773	23.830	29.130	30.263
0/45/0	17.980	18.815	20.034	21.018	22.477	25.058	26.325	30.068
0/90/90/0	16.311	17.107	18.252	20.247	22.693	25.513	30.025	32.297

Table 8: Contd.,										
0/90	10.304	13.776	15.208	16.838	20.003	22.384	22.407	22.597		
90/45/-45/90	10.440	10.975	14.050	18.888	19.386	20.100	22.538	26.246		
0/90/45/-45/0/90	14.782	15.216	19.609	20.900	25.874	28.639	29.554	30.533		

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	11.708	12.720	14.650	17.497	18.382	19.969	24.414	25.926
0/45/0	12.865	16.535	18.837	19.421	20.953	21.251	24.197	25.554
0/90/90/0	11.781	15.147	16.071	17.177	20.185	20.235	24.890	26.086
0/90	7.028	11.362	12.714	14.838	15.495	16.259	17.890	19.871
90/45/-45/90	8.206	9.049	11.614	14.835	15.140	15.381	17.381	21.468
0/90/45/-45/0/90	10.574	14.636	16.022	17.111	19.647	22.499	23.756	24.287

Table 9: Normalised Frequency Parameter with Simply Supported Condition for h/a=1/50

In Table 8, the first mode frequency of [0/45/0] lay-up sequence is 42.7% greater than [0/90]. In Table 9, it is 45.4%. When the value of thickness increases since 'h' is in denominator value of normalised frequency parameter gets decrease. In fact the natural frequency keeps on increasing, when thickness increases. For any type of curvature when thickness increases, natural frequency increases.

Effect of Radius of Curvature on Natural Frequency

The natural frequency of shell for $R_x/a=2$ was studied in previous chapter. In this chapter to know the variation of natural frequency with radius of curvature, $R_x/a=3$ was taken, where 'a' is same as above. Here radius of curvature is greater than previous one. Also kept the value of a/b=1, h/a=1/100 and the frequencies were expressed in non dimensional parameter as $\Omega=\omega a^2\sqrt{(\rho/E_xh^2)}$.

Comparing the highest frequencies of Table 2 and Table 10, [0/90/45/-45/0/90] lay-up sequence of $R_x/a=2$ is 22.4% stiffer than $R_x/a=3$. Also for simply supported condition, comparing the highest frequencies of Table 3 and Table 11, [0/90/45/-45/0/90] lay-up sequence of $R_x/a=2$ is 23% stiffer than $R_x/a=3$.

Spherical Shell

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	24.890	25.026	25.133	27.483	31.838	33.645	37.310	37.465
0/45/0	22.750	25.458	27.648	28.864	29.925	31.300	32.868	35.746
0/90/90/0	24.088	26.014	26.154	27.078	31.601	31.724	34.224	37.269
0/90	21.672	22.862	23.016	24.882	28.658	28.882	29.132	31.338
90/45/-45/90	24.636	27.138	27.147	29.201	29.564	31.642	33.080	36.352
0/90/45/-45/0/90	26.159	26.803	27.743	29.054	34.139	36.462	36.962	37.474

Table 10: Normalised Frequency Parameter with Clamped Condition for R_x/a=3

Table 11: Normalised Frequency Parameter with Simply Supported Condition for $R_x/a=3$

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	23.696	23.831	23.918	24.478	30.382	32.086	32.957	33.265
0/45/0	18.797	22.619	25.862	26.927	28.795	29.261	31.016	31.870
0/90/90/0	22.095	23.301	23.443	24.966	28.050	30.574	31.092	31.487
0/90	13.770	20.113	22.342	23.357	24.486	24.676	27.285	29.775
90/45/-45/90	21.420	25.812	26.704	26.848	28.098	29.154	30.763	32.493
0/90/45/-45/0/90	24.524	25.183	26.036	27.013	29.995	31.418	32.159	34.110

Cylindrical Shell

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	15.825	16.288	19.609	23.279	23.941	26.353	31.145	32.932
0/45/0	19.221	22.814	24.002	24.874	27.480	28.035	31.247	33.323
0/90/90/0	18.020	20.475	21.822	22.365	26.546	27.580	33.609	34.668
0/90	11.070	15.362	16.748	19.077	23.913	24.329	25.463	25.719
90/45/-45/90	11.702	12.496	15.978	19.600	21.530	21.810	23.989	27.221
0/90/45/-45/0/90	15.956	18.747	22.909	23.150	27.965	31.566	32.005	33.006

Table 12: Normalised Frequency Parameter with Clamped Condition for $R_x/a=3$

For cylindrical shell, comparing the highest frequencies of Table 4 and Table 12, [0/45/0] lay-up sequence of $R_x/a=2$ is 17.7% stiffer than $R_x/a=3$. Also for simply supported condition, comparing the highest frequencies of Table 5 and Table 13, [0/45/0] lay-up sequence of $R_x/a=2$ is 21.8% stiffer than $R_x/a=3$.

Ply Layout	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
45/-45/45/-45	13.775	15.501	17.953	19.637	21.055	22.387	26.299	27.928
0/45/0	14.144	19.103	22.465	23.307	24.927	26.350	29.389	29.576
0/90/90/0	12.654	16.995	19.921	21.345	22.565	24.451	27.342	28.633
0/90	7.885	12.868	13.133	16.220	19.948	20.313	21.272	22.328
90/45/-45/90	9.844	10.032	14.550	15.617	17.206	17.234	18.898	22.389
0/90/45/-45/0/90	12.046	17.294	18.496	20.745	22.744	24.718	26.877	27.373

Table 13: Normalised Frequency Parameter with Simply Supported Condition for $R_x/a=3$

Thus, it can be seen that when radius of curvature increases normalised frequency parameter get decreases. When radius of curvature increases without changing panel dimension, it becomes flatter than above. That is its structural behaviour will more similar to plate. From this we can conclude that the natural frequency gets decrease, when radius of curvature increases.

EFFECT OF ELASTICALLY RESTRAINED EDGES ON NATURAL FREQUENCY

Elastically restrained laminated composite shallow shells are widely encountered in many engineering practices. The vibration analyses of these shells with such boundary conditions are necessary and of great significance. Thus in this part, the present formulations are applied to investigate the free vibration behaviors of laminated composite shallow shells with elastic supports. Elastically restrained edges are given by E_1 and E_2 . E_1 specifies normal, tangential, and transverse directions are elastically restrained. E_2 specifies normal, tangential, transverse and rotation directions are elastically restrained. E_2 specifies normal, tangential, transverse and rotation directions are elastically restrained. $E_2 = a_1/100$, $R_x/a=2$ and the frequencies were expressed in non dimensional parameter as $\Omega = \omega a^2 \sqrt{(\rho/E_x h^2)}$.

Spherical Shell

Table 14: Spherical Shell with Elastically Restrained Edges of [0/90/45/-45/0/90] Lay-Up Sequence

	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
$E_1 - E_1 - E_1 - E_1$	9.942	10.905	13.273	14.391	14.894	15.365	16.130	16.398
$E_2-E_2-E_2-E_2$	12.639	14.845	15.597	17.118	20.385	21.775	24.055	29.309

Cylindrical Shell

	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Mode 7	Mode 8
$E_1 - E_1 - E_1 - E_1$	2.763	5.282	7.342	8.526	9.239	10.883	13.096	14.136
$E_2 - E_2 - E_2 - E_2$	8.060	9.989	12.562	13.487	14.593	17.837	19.766	21.523

Table 15: Cylindrical Shell with Elastically Restrained Edges of [0/45/0] Lay-Up Sequence

When comparing the tables by giving the stiffness value for translations and rotations, i.e, if it is elastically restrained, the frequency is very much less than classical boundary conditions. Usually in most of the practical cases, the structure may hardly subjected to arbitary boudary conditions. Based on our requirements we can change the value of stiffness of boundary conditions. It is obvious that due to the considered shallow shells are elastic restrained, their displacements at the boundaries are distinct.

CONCLUSIONS

For any type of shell, ply orientation which gives critical natural frequency may vary with boundary conditions, curvature of shells, other parameters like span to thickness ratios etc, For spherical shallow shell with h/a=1/100, edges are clamped, the ply orientation which gives greater stiffness is [0/90/45/-45/0/90]. But for cylindrical shell with same parameters, the critical one is [0/45/0]. Thus by appropriately orientating the fibres in each lamina of the laminated composite shallow shells, desired strength and stiffness parameters can be achieved.

Keeping parameters like thickness, ply orientation and curvatures constant, clamped conditions improve the natural frequency of shell than simply supported conditions. But always we are not capable to provide classical boundary conditions depending on several factors. The clamped and simply supported boundary conditions cannot be completely realised practically, hence it is essential to access the performance with more realistic boundary conditions. Hence the shell has been analysed using elastically restrained boundary conditions. In elastically restrained boundary conditions, stiffness of each degrees of freedom can be varied according to the realistic conditions. So we adopt elastic boundary condition which is more common than classical boundary conditions today. But frequency may distinct from classical boundary conditions.

For spherical shell, since the ratio of radii of curvature is +1, it takes load effectively than cylindrical. But spherical shell is not suitable for all cases due to the pecularity of places or due to some reasons. When thickness of shell increases, natural frequency also increases. Thus by increasing the thickness of shell comparable with its base dimensions, curvatures etc., we can increase the stiffness of shell to an extent. Thus thickness of shell has considerable effect on its natural frequency.

When radius of curvature to base dimension ratio increases, natural frequency decreases. The reason is when radius of curvature increases without changing the base dimension, the shell is more resembles to plate. Thus its stiffness gets reduced as its inplane load carrying capacity decreases. Thus the shell dynamic characteristics can be improved by optimising the radius of curvature of shell. Spherical shell was effective than cylindrical shell if we are not considering height constraints. i.e, doubly curved shell gives good result than singly curved shell keeping all other parameters constant.

REFERENCES

- 1. Book Geoff Eckold, Classical Lamination Theory, Chapter 3, May, 2000, pp. 65-99.
- Auricchio. F, Sacco. E, Refined First-Order Shear Deformation Theory Models for Composite Laminates, Journal of Applied Mechanics, Vol. 70, May, 2003, pp. 381-390.
- 3. Rastgaar Aagaah M, Third Order Shear Deformation Theory For Modeling Of Laminated Composite Plates, International Congress and Exposition on Experimental and Applied Mechanics, June, 2004.
- 4. Reddy J. N., Mechanics of Laminated Composites Plates and Shells, Second Edition, CRC Press, 2004.
- Seren Akavci, The First Order Shear Deformation Theory For Symmetrically Laminated Composite Plates On Elastic Foundation, The Arabian Journal for Science and Engineering, Vol. 32, June, 2007, pp. 341-348.
- Alexander Tessler et al, A Consistent Refinement Of First-Order Shear Deformation Theory For Laminated Composite And Sandwich Plates Using Improved Zigzag Kinematics, Journal of Mechanics of Materials and Structures, Vol. 5, February, 2010, pp. 341-361.
- Zhang X. M, Parametric Analysis of Frequency of Rotating Laminated Composite Cylindrical Shells with the Wave Propagation Approach, Computer methods in Applied Mechanics and Engineering, Vol. 191, March, 2002, pp. 2029-2043.
- 8. Ribeiro P, Jansen E, Non-Linear Vibrations of Laminated Cylindrical Shallow Shells under Thermo mechanical Loading, Journal of Sound and Vibration, Vol. 315, February, 2008, pp. 626–640.
- Nguyen-Van et al, Buckling and Vibration Analysis of Laminated Composite Plate/Shell Structures via a Smoothed Quadrilateral Flat Shell Element with In-plane Rotations, Computers and Structures, Vol. 89, February, 2011, pp. 612–625.
- 10. Mohamad Qatu S, Ebrahim Asadi, Vibration of doubly curved shallow shells with arbitrary boundaries, Applied Acoustics, Vol. 73, July, 2012, pp. 21–27.
- Tiangui et al, Free Vibration Analysis of Laminated Composite Shallow Shells with General Elastic Boundaries, Composite Structures, Vol. 106, July, 2013, pp. 470-490.
- 12. Reddy J. N., Laminated Shells, Journals of Engineering Mechanics, Vol. 110, No. 5.
- 13. Ever Barbero J, Finite Element Analysis of Composite Materials, CFC Press, Taylor and Francis Group, 2011.
- 14. University of Alberta, Application of Joints and Springs in Ansys, Ansys Tutorials, 2001.
- 15. Ansys 2004, Ansys Structural Analysis Guide, Release 10.0, Ansys Inc.