

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us

STATE-OF-THE ART DIFFERENCES BETWEEN TRADITIONAL SO FTWARE

ENGINEERING (TSE) AND SERVICE-ORIENTED SOFTWARE ENG INEERING (SOSE)

MUSA M. AHMED

Department of Science Education, Modibbo Adama University of Technology, Yola, Nigeria

ABSTRACT

To gain insight into the challenges of SOSE issues, a good understanding of its features is imperative, this paper

reports a systematic study of the difference between the Traditional Software Engineering, TSE, and Service-Oriented

Software Engineering, SOSE. While TSE follows the SDLC formally, SOSE uses services as building blocks.

In TSE, group of programmers work together through “Design-Development-Testing” circles, SOSE’s roles are divided

into service consumer, service broker and service provider and employs “Discovery-Decomposition-Evaluation” circles.

Services are dynamically discovered and composed in SOSE whereas requirements are set at the beginning and delivered

at the end of the project in the case of TSE. Seven of such differences are identified in tabular format and followed by

some recommendations.

KEYWORDS: Differences, Service-Oriented Software Engineering, Software Engineering, Traditional Software

Engineering

INTRODUCTION

The inspiration of software development methodologies is engineering discipline such as civil or mechanical

engineering, such disciplines put a lot of emphasis on planning before you build. Such engineers will work on a series of

drawings that precisely indicate what needs to be built and how these things need to be put together. Many design

decisions, such as how to deal with load on a bridge are made as the drawings are produced. The drawings are then handed

over to a different group, often a different company to be built. It’s assumed that the construction processes will follow the

drawings. In practice, the constructor will run into some problems but these are usually small. Since the drawings specify

the pieces and how they need to be put together, they act as the foundation for a detailed construction plan. Such plans

figure out the tasks that need to be done and dependencies exist between these tasks. This allows for a reasonable

predictable schedule and budget for construction. It also says in detail how the people doing the construction work should

do their work. This allows the construction to be less skilled intellectually, although they are often very skilled manually,

(Fowler, 2000)

There are two fundamentally different activities in engineering processes. Design which is difficult to predict and

requires expensive and creative people, and construction which is easier to predict. Once we have design, we can deal with

the construction in a much more predictable way. Therefore, we need to figure out how the design for software so that the

construction can be straight forward. In software engineering, Different stakeholders in the development process must

assume different roles. As such, the development process can benefit from a separation of concerns that acknowledges the

difference between the two key activities software engineers perform in Software development. During conceptualization

IMPACT: International Journal of Research in
Engineering & Technology (IMPACT: IJRET)
ISSN(E): 2321-8843; ISSN(P): 2347-4599
Vol. 2, Issue 6, Jun 2014, 175-180
© Impact Journals

176 Musa M. Ahmed

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

and analysis, software engineers elicit requirements that clarify the business needs. Design, development, and testing is an

iterative set of phases in traditional software engineering while Service software engineers discover services, decomposes

and evaluate software. Service-centric system-management life cycle is modular. You can split it into three aggregate

phases: Business-process management, design-time software engineering, and runtime software engineering, and different

stakeholders can manage these aggregate phases (Blake, 2007).

Most SOSE methodologies have been proposed in both academia and industry aiming at providing approaches,

methods and tools for researchers and practitioners to engineer SBAs. However, without being fully understood,

a methodology is less valuable no matter how perfect it is. This is particularly relevant to SOSE methodologies as they are

more complex than TSE ones, having to deal with new challenges while keeping the principles of TSE. With the aim of

understanding SOSE features, this paper presents in tabular format the difference between SOSE and TSE.

Traditional Software Engineering, An Overview

As a results of the new paradigm for software development gain favor at the NATO conference in 1968,

(Randel, 1968). It considered software development as a form of engineering. The hope is that if software development can

develop as an engineering discipline then it would be possible to develop complex and large software development projects

on-time, on-budget, with fewer bugs and to meet most(if not all) of the requirements, (Aitken and Ilango, 2013).

Engineering is generally thought of as processes for using knowledge to achieve objectives, usually in building

(or at least designing) complex systems or structures. Engineers puts a great deal of effort into predicting and planning

their work and generally work with fixed requirements, that is, they know what they are supposed to build at the

commencement of the projects.

Software Engineering according to Wikipedia (2014) is the establishment and use of sound engineering principles

in order to economically obtain software that is reliable and work efficiently on real machines. In other words, software

should be maintainable, dependable and acceptable. Software engineering is the application of a systematic and disciplined

approach to the development, testing and maintenance of a program, (Wu, 2004). Software engineering presents a broad

perspective on software systems engineering, concentrating on widely used techniques for developing large-scale systems.

Software Engineering may be defined as the systematic design and development of software products and the

management of the software process (Mills, 1980). Software Engineering has as one of its primary objectives the

production of programmes that meet specifications, and are demonstrably accurate, produced on time and within budget.

Software Engineering is the branch of system engineering concerned with the development of large and complex software

intensive system (Finkelstein and Kramer, 2000). It focuses on:

• A real-world goals for services provided by and constraints on such systems;

• The precise specification of system structure and behavior, and the implementation of these specifications;

• The activities required in order to develop an assurance that the specifications and real-world goals have been

met;

• The evolution of such systems over time and across system families.

• It is also concerned with the:

State-of-the Art Differences between Traditional Software Engineering (TSE) 177
and Service-Oriented Software Engineering (SOSE)

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us

• Process

• Method

• Tools

For development of software intensive systems in an economics and timely manner.

Service-Oriented Software Engineering, An Overview

 Service-Oriented software Engineering is a software engineering methodology focused on the development of

software systems by composition of reusable services often provided by other service providers, the essential elements is

the dynamic nature of the connection between the service users to the service providers to provide a leading edge

IT solution. Service engineering generalizes the development of so-called valued-added services, the traditional services

bridging the gap between technology and the end user known from telecommunication and reactive systems. Recently, the

trend in software development has shifted from developing software systems to developing service-oriented systems that

are composed of ready to use services. The service-oriented architecture (SOA) architectural style has been widely adopted

in industries thanks to its ability to providing seamless integration among software services (Erl, 2005). If the services are

well-specified, loosely coupled, and coherent, implementing a SOA can bring many benefits to an enterprise, including:

reduced IT costs, and increased organizational agility (Erl, 2005).

 This new paradigm computing utilizes services as the basic construct to support the development of rapid,

low-cost and easy composition of distributed applications even in heterogeneous environments. The visionary promise of

service-oriented computing is a world of cooperating services where application components are assembled with little

effort into a network of services that can be loosely coupled to create flexible dynamic business processes and agile

applications that may span organizations and computing platforms, (Papazolou, et al, 2003). The subject of

service-oriented computing is vast and enormously complex, spanning many concepts and technology that find their

origins in diverse disciplines that are woven together in an intricate need to merge technology with understanding of

business processes and organizational structures, a combination of recognizing an enterprise’s pain points and the potential

solutions that can be applied to correct them. The ability to layer solutions and support heterogeneity allows for gradual

migration to service-based solutions.

The relevant key concepts in SOSE (Munro et al, 2000) include but not limited to the following:

• An open market place for services,

• Dynamic provision of software in response to changing requests,

• The potential for one-time execution followed by unbinding,

• A services supply network where service providers may subcontract to provide their services,

• Delivery transparency to software users, whose interest lies in its use.

The term service-oriented software has now been applied to the older technologies of DCOM and CORBA,

More recently to J2EE and .NET deployments and of course to Web services. There’s no reason why the technology has to

178 Musa M. Ahmed

Index Copernicus Value: 3.0 - Articles can be sent to editor@impactjournals.us

be a discriminating feature in SOA. Standards such as SOAP for web services help to ensure that heterogeneity of solutions

poses no problems (Munro et al, 2000).

Traditional Software Engineering verses Service-Oriented Software Engineering

Below are the Differences between Traditional Software Engineering and Service-Oriented Software Engineering

Table 1

S/No Traditional Software Engineering Service-Oriented Software Engineering
1. Process and tools driven Services are the building blocks

2.
Does not well-come changing requirements
during projects progress

Open services driven, architecture of service-oriented
system can be changed or even determined at run time since
service are the building blocks.

3.
Follow the phases of SDLC formally,
encourages formal analysis and planning.

Additional development roles are involved in development;
these roles are rather split into three essential roles: Service
consumer, Service provider and Service broker.

4.
All requirements decided in the requirements
gathering phases should be delivered by the final
software built.

Services are engineered with multiple sets of requirements
to fulfill different groups of potentials consumers with
different quality requirements.

5.
Documents driven, every activity is measured by
intensive documentation or deliverances.

It provides software solutions dynamically in response to
changing requests.

6.
Software engineering life-cycles involves
“Design-Development-Testing” repetitions.

Service-Oriented Software engineering life-cycles involves
“Discovery-Decomposition-Evaluation” repetitions.

7.
Requirements are set at the beginning and
delivered at the end of the Project.

Requirements are dynamically generated; as such changes
can easily be made and composed.

CONCLUSIONS

One of the major advantages of SOSE is the ease to making changes; the flexibility that gives this approach the

potential to ease the evolution problem creates new difficulties in software understanding. The main contribution of this

paper come from an overview of both the TSE and SOSE being recognized in the research community and their differences

classified in tabular format. In contrast to TSE’s SDLC formality, SOSE methodology uses services as its building blocks,

and development roles are categories into three: Service consumer, service broker and service providers (sub-provider).

To improve the understandability of SOSE methodology, a number of its service life cycles are compared with that of

TSE and the differences are highlighted.

RECOMMENDATION

• Service providers should develop user-friendly services that are easily discoverable and understandable.

• Managing trust within the automated procurement process of SOSE will be more difficult, however, automated

methods for negotiating such non numerical and human-oriented concepts will require further research before

they are sufficiently mature to be incorporated into everyday business practices.

• A legal framework within which to form contracts is another major challenge for an automated and global

solution, setting a legal framework within which to form contracts is crucial.

REFERENCES

1. Finkelstein and J. Kramer (2000), “Software Engineering: A Road map” in “the future of software Engineering”.

ACM press.

State-of-the Art Differences between Traditional Software Engineering (TSE) 179
and Service-Oriented Software Engineering (SOSE)

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us

2. Aitken, A. and Ilango, V. (2013), A comparative Analysis of traditional Software engineering and Agile Software

Engineering.

3. T. Wu (2004), An introduction to object-oriented programming with java, updated third edition. Mc Graw Hill

Higher Education.

4. H. D. Mills (1980), The management of Software Engineering; Part I: Principles of Software Engineering.

IBM systems journal vol 19 issue 4 pg 414-420

5. M. B. Blake (2007), Decomposing Composition: Service-Oriented Software Engineers. IEEE Computer Society

Vol. 24 No 6

6. M. Fowler (2000), The New Methodology. www.martinfowler.com/articles/newmethodologyoriginal.html

7. M. P. Papazolou, P. Traverso, S. Dustdar and F. Leymann (2003), service –oriented computing. Communication

of the ACM VOL 46 Pg 25-2.

8. N. Gold, A. Mohan, C. Knight and M. Munro (2000), Understanding Service-oriented Software.

www.computer.org/publications/dlib

9. Nano, P. and Raindell, B. (1968), Software Engineering: Report of a conference sponsored by the NATO science

committee (2-11 Oct. 1968). Brussels, scientific Affairs Division, NATO.

10. T. Erl(2005), Service-oriented architecture: concepts, technology and design. Prentice Hall Wikipedia (2014),

Software Engineering. Wikimedia Foundation Inc. http://en.wikipedia.org/wiki/softwareengineering

