RIGHT REVERSE DERIVATIONS ON PRIME RINGS

C. JAYA SUBBA REDDY \& K. HEMAVATHI

Department of Mathematics, S. V. University, Tirupati, Andhra Pradesh, India

Abstract

In this paper some results concerning to right reverse derivations on prime rings with char $\neq 2$ are presented. If R be a prime ring with a non zero right reverse derivation d and U be the left ideal of R then R is commutative.

KEYWORDS: Prime Ring, Derivation, Reverse Derivation

\section*{INTRODUCTION}

Bresar and Vukman [1] have introduced the notion of a reverse derivation. The reverse derivations on semi prime rings have been studied by Samman and Alyamani [2].

\section*{PRELIMINARIES}

Through out, R will represent a prime ring with char $\neq 2$. We write $[x, y]$ for $x y-y x$. Recall that a ring R is called prime if $a R b=0$ implies $a=0$ or $b=0$. An additive mapping d from R into itself is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$ and is called a reverse derivation if $d(x y)=d(y) x+y d(x)$ for all $x, y \in R$.

MAIN RESULTS

Theorem 1

Let R be a prime ring with char $\neq 2$, U a non-zero left ideal of R and d be a right reverse derivation of R. If U is non-commutative such that $[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$ for all $x \in U$, then $\mathrm{d}=0$.

Proof

By linearizing the equation $[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$ which gives
$[y, x] d(x)=0$, for all $x, y \in U$
We replace y by zy in equ.(1) and using (1), we get,
$\Rightarrow[\mathrm{zy}, \mathrm{x}] \mathrm{d}(\mathrm{x})=0$
$\Rightarrow(\mathrm{z}[\mathrm{y}, \mathrm{x}]+[\mathrm{z}, \mathrm{x}] \mathrm{y}) \mathrm{d}(\mathrm{x})=0$
$\Rightarrow \mathrm{z}[\mathrm{y}, \mathrm{x}] \mathrm{d}(\mathrm{x})+[\mathrm{z}, \mathrm{x}] \mathrm{yd}(\mathrm{x})=0$
$\Rightarrow[z, x] y d(x)=0$, for all $x, y, z \in U$

By writing y by $\mathrm{yr}, \mathrm{r} \in \mathrm{R}$ in equation (2), we obtain,
$\Rightarrow[z, x] y r d(x)=0$, for all $x, y, z \in U$ and $r \in R$.
If we interchange r and y, then we get,
$\Rightarrow[z, x] r y d(x)=0$, for all $x, y, z \in U$ and $r \in R$.
By primeness property, either $[\mathrm{z}, \mathrm{x}]=0($ or $) \mathrm{d}(\mathrm{x})=0$.
Since U is non-commutative, then $\mathrm{d}=0$.

Theorem 2

Let R be a prime ring with char $\neq 2$, U a left ideal of R and d be a non-zero right reverse derivation of R. If $[d(y), d(x)]=[y, x]$ for all $x, y \in U$, then $[x, d(x)]=0$ and hence R is commutative.

Proof

Given that $[d(y), d(x)]=[y, x]$, for all $x, y \in U$
By taking yx instead of y in the hypothesis, then we get,
$\Rightarrow[y x, x]=[d(y x), d(x)]$
$\Rightarrow y[x, x]+[y, x] x=[(d(x) y+d(y) x), d(x)]$
$\Rightarrow[y, x] x=(d(x) y+d(y) x) d(x)-d(x)(d(x) y+d(y) x)$
$\Rightarrow[y, x] x=d(x) y d(x)+d(y) x d(x)-d(x) d(x) y-d(x) d(y) x$
Adding and subtracting $\mathrm{d}(\mathrm{y}) \mathrm{d}(\mathrm{x}) \mathrm{x}$
$\Rightarrow[y, x] x=d(x) y d(x)+d(y) x d(x)-d(x) d(x) y-d(x) d(y) x+d(y) d(x) x-d(y) d(x) x$
$\Rightarrow[y, x] x=d(x) y d(x)-d(x) d(x) y+d(y) x d(x)-d(y) d(x) x+d(y) d(x) x-d(x) d(y) x$
$\Rightarrow[y, x] x=d(x)[y d(x)-d(x) y]+d(y)[x d(x)-d(x) x]+[d(y) d(x)-d(x) d(y)] x$
$\Rightarrow[y, x] x=d(x)[y, d(x)]+d(y)[x, d(x)]+[d(y), d(x)] x$
$\Rightarrow[y, x] x=d(x)[y, d(x)]+d(y)[x, d(x)]+[y, x] x$
$\Rightarrow[y, x] x-[y, x] x=d(x)[y, d(x)]+d(y)[x, d(x)]$
$\Rightarrow d(x)[y, d(x)]+d(y)[x, d(x)]=0$, for all $x, y \in U$
We replace y by $\mathrm{cy}=\mathrm{yc}$, where $\mathrm{c} \in \mathrm{Z}$ and using equation (3), we get,
$\Rightarrow \mathrm{d}(\mathrm{x})[\mathrm{cy}, \mathrm{d}(\mathrm{x})]+\mathrm{d}(\mathrm{cy})[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow \mathrm{d}(\mathrm{x})(\mathrm{c}[\mathrm{y}, \mathrm{d}(\mathrm{x})]+[\mathrm{c}, \mathrm{d}(\mathrm{x})] \mathrm{y})+(\mathrm{d}(\mathrm{y}) \mathrm{c}+\mathrm{d}(\mathrm{c}) \mathrm{y})[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow d(x) c[y, d(x)]+d(x)[c, d(x)] y+d(y) c[x, d(x)]+d(c) y[x, d(x)]=0$
$\Rightarrow \mathrm{cd}(\mathrm{x})[\mathrm{y}, \mathrm{d}(\mathrm{x})]+\mathrm{d}(\mathrm{x})[\mathrm{c}, \mathrm{d}(\mathrm{x})] \mathrm{y}+\mathrm{cd}(\mathrm{y})[\mathrm{x}, \mathrm{d}(\mathrm{x})]+\mathrm{d}(\mathrm{c}) \mathrm{y}[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow-c d(y)[x, d(x)]+d(x)[c, d(x)] y+c d(y)[x, d(x)]+d(c) y[x, d(x)]=0$
$\Rightarrow \mathrm{d}(\mathrm{x})[\mathrm{c}, \mathrm{d}(\mathrm{x})] \mathrm{y}+\mathrm{d}(\mathrm{c}) \mathrm{y}[\mathrm{x}, \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow d(c) y[x, d(x)]=0$, for all $x, y \in U$

Since $0 \neq d(c) \in Z$ and U is a left ideal of R, then we have, $[x, d(x)]=0$, for all $x \in U$.
By using the similar procedure as in Theorem: 1, then, we get, either $[\mathrm{z}, \mathrm{x}]=0($ or $) \mathrm{d}(\mathrm{x})=0$.
Since d is non-zero, then $[\mathrm{z}, \mathrm{x}]=0$.
Hence R is commutative.

Theorem 3

Let R be a prime ring with char $\neq 2, U$ a left ideal of R and d be a non-zero right reverse derivation of R. If $[d(y), d(x)]=0$, for all $x, y \in U$, then R is commutative.

Proof

Given that $[d(y), d(x)]=0$, for all $x, y \in U$
By taking yx instead of y in the hypothesis, then we get,
$\Rightarrow[\mathrm{d}(\mathrm{yx}), \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow[(\mathrm{d}(\mathrm{x}) \mathrm{y}+\mathrm{d}(\mathrm{y}) \mathrm{x}), \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow[\mathrm{d}(\mathrm{x}) \mathrm{y}, \mathrm{d}(\mathrm{x})]+[\mathrm{d}(\mathrm{y}) \mathrm{x}, \mathrm{d}(\mathrm{x})]=0$
$\Rightarrow \mathrm{d}(\mathrm{x})[\mathrm{y}, \mathrm{d}(\mathrm{x})]+[\mathrm{d}(\mathrm{x}), \mathrm{d}(\mathrm{x})] \mathrm{y}+\mathrm{d}(\mathrm{y})[\mathrm{x}, \mathrm{d}(\mathrm{x})]+[\mathrm{d}(\mathrm{y}), \mathrm{d}(\mathrm{x})] \mathrm{x}=0$
$\Rightarrow d(x)[y, d(x)]+d(y)[x, d(x)]=0$, for all $x, y \in U$
The proof is now completed by using equation (3) of Theorem: 2 .
Hence R is commutative.

REFERENCES

1. M. Bresar and J. Vukman, on some additive mappings in rings with involution, Aequations math., 38(1989), 178-185.
2. M. Samman, N. Alyamani, Derivations and reverse derivations in semiprime rings, International Mathematical Forum, 2, No. 39(2007), 1895-1902.
