

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010, pp-10-14

Copyright © 2010, Bioinfo Publications,
International Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010

Optimized test suite generation using tabu search technique

Geetha Devasena M.S.*
1
and

Valarmathi M.L.

2

1*
Department of CSE., Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India,

aishumma@yahoo.co.in
2
 Department of CSE., Government College of Technology, Coimbatore, Tamilnadu, India

Abstract- Software testing is inescapable activity of software development and crucial to the software
quality. It is widely deployed by programmers and tester but it is difficult due to the complexity of
software. The program with the moderate complexity cannot be tested completely. Innovative methods
are emerging to perform testing as a whole and unit testing in particular with minimum effort and time.
Unit testing is mostly done by developers under a lot of schedule pressure since the software
companies find a compromise among functionality, time to market and quality. Thus there is a need for
reducing unit testing time by optimizing and automating the process. Test suite generation is an error-
prone, tedious and time consuming part of unit testing. A novel technique is proposed to automatically
generate test cases from the input domain using metaheuristic search technique tabu search for branch
coverage criteria with respect to cyclomatic complexity measure.
Key words: Software testing, Unit testing, Branch Coverage Criteria and Tabu Search.

Introduction
There is one famous saying that “Over testing is
a Sin and Under Testing is a Crime”. Some of the
main challenges in testing are that exhaustive
testing is not possible, when to stop testing
cannot be assessed and there is no way to show
the absence of errors. With the increased pace of
production schedules, the tremendous
proliferation of software design methodologies
and programming languages, and the increased
size of software applications, software testing has
evolved from a routine quality assurance activity
into a sizable and complex challenge in terms of
manageability and effectiveness. The major
challenges to software testing in today‘s business
environment are,
• Efficiency. Is the test cycle too long? How can

you ensure every test is a good investment of
time and money?
• Thoroughness. How can you tell when you are
done testing? How can you be reasonably sure
the program is bug-free?
• Resource Management. Are testing resources
strategically allocated, focusing on the highest-
risk elements of the software? Are the
functionally central parts of the program receiving
an acceptable level of testing? In practice, unit
level testing ranges from the ad hoc tests done
by programmers as they are writing code to
systematic white box testing, where Unit level
testing is part of a every unit must be tested and
documented by a QA and Test group. In either
case, the tester begins with the goal of coverage,
for it is the very purpose of unit level testing [1] to
achieve the highest level of coverage possible.
Unit testing is important because it is performed
early in the development process and it is more
cost-effective at locating errors. The greatest
challenge of unit level testing is to identify a
minimum set of unit level tests to run. In an ideal
world, every possible path of a program would be
tested, accounting for all executable decisions in
all possible combinations. But this is impossible
when one considers the enormous number of
potential paths embedded in any given program
(2 to the power of the number of decisions). The
challenge is to isolate a subset of paths that

provide coverage for all testable units, and to
make that subset as minimal and free of unit-level
redundancies as possible. Myers aptly defines
software testing as “a process of executing a
program with the intention of finding errors”.
Using the analogy of a medical diagnosis, a
successful investigation is one that seeks and
discovers a problem, rather than one that reveals
nothing and provides a false sense of well-being.
Based on this definition, a good set of test cases
should be one that has a high chance of
uncovering previously unknown errors, while a
successful test run is one that discovers these
errors. In order to detect all possible errors within
a program, exhaustive testing is required to
exercise all possible input and logical execution
paths. Except for very trivial programs, this is
economically unfeasible if not impossible.
Therefore, a practical goal for software testing
would be to maximize the probability of finding
errors using a finite number of test cases,
performed in minimum time with minimum effort.
Due to the central importance of test case design
for testing, a large number of testing methods,
designed to help the tester with the selection of
appropriate test data, have been developed over
the last decades. Existing test case design
methods can essentially be differentiated into
black-box tests and white-box tests. Black-box
test cases are determined from the specification
of the program under test, whereas, white-box
test cases are derived from the internal structure
of the software. In both cases, complete
automation of the test case design is difficult [4,
9]. Automation of the black-box test is only
meaningfully possible if a formal specification
exists, and tools supporting white-box tests are
limited to program code instrumentation and
coverage measurement due to the limits of
symbolic execution. Test case design itself is also
reliant on the tester. Thus, test case design
usually has to be performed manually. Manual
test case design, however, is time-intensive and
susceptible to errors. The quality of the test is
heavily dependent on the performance of the
single tester.

Optimized test suite generation using tabu search technique

Int. Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010 11

EXISTING SYTEMS

RANDOM TEST DATA GENERATION

Random test data generation techniques [2]
select inputs at random until useful inputs are
found. This technique may fail to find test data to
satisfy the requirements because information
about the test requirements is not incorporated.
The various disadvantages of this method are
such as it is appropriate only for simple and small
programs, many sets of values may lead to the
same observable behavior and are thus
redundant and the probability of selecting
particular inputs that cause buggy behavior may
be astronomically small.

STATIC METHODS

Sstatic methods [14] generate test cases without
execution from several constraints based on the
input variables of the program under test. Static
techniques have several problems, such as
treatment of loops, resolution of computed
storage locations and computational cost.

DYNAMIC METHOD

Dynamic test-data generation technique [14]
collects information during the execution of the
program to determine which test cases come
closest to satisfying the requirement. Then, test
inputs are incrementally modified until one of
them satisfies the requirement. Most dynamic
techniques use search based software
techniques.

SEARCH BASED SOFTWARE TESTING

Search-Based Software Engineering (SBSE) is
the application of optimization techniques (OT) in
solving software engineering problems.
Optimization is the process of attempting to find
the best possible solution amongst all those
available. The percentage of application of
search based techniques to software testing is
70% as shown in figure 1.

Fig. 1- Application of SBSE

Software testing is a suitable candidate for
Search-Based Software Engineering because the

generation of software tests is an undecidable
problem [15, 16] and a program’s input space is
very large, exhaustive enumeration is infeasible.
In order to carry out evolutionary testing, the task
of test case design is transformed into an
optimization problem that, in turn, is solved with
meta-heuristic search techniques, such as
evolutionary algorithms or simulated annealing.
The input domain of the system under test
represents the search space in which test data
fulfilling the test objectives under consideration is
sought. The aim of evolutionary testing is to
increase the quality of the tests and to achieve
substantial cost savings in system development
by means of a high degree of automation. It has
been proved in various case studies that
evolutionary testing has the potential to improve
the effectiveness and efficiency of the test
process significantly. An overview of different
applications of evolutionary testing is provided by
McMinn [12].

SYMBOLIC TEST CASE GENERATION
TECHNIQUE
Symbolic test-data generation techniques [7, 8]
assign symbolic values to the variables to create
algebraic expressions for the constraints in the
program, and use a constraints solver to find a
solution for these expressions that satisfies a test
requirement. Symbolic execution cannot
determine which symbolic values of the potential
values will be used. The key ingredients of the
symbolic technique include the choice of
representation for the problem, the definition of a
neighborhood on the configuration space and the
definition of a cost-function. Symbolic execution
cannot find floating point inputs because the
constraint solvers cannot produce floating point
constraints.

HILL CLIMBING TECHNIQUE
Hill climbing test data generation technique
improves solution by investigating neighbors. Hill
climbing can be used to solve problems that have
many solutions, some of which are better than
others. It starts with a random (potentially poor)
solution, and iteratively makes small changes to
the solution, each time improving it a little. Hill
climbing Technique stucks in local minima and
plateaux.

STRUCTURAL TESTING
Bug statistics
The bug statistics[17] through SDLC collected
from various sources given by Boris Beizer for a
program of 1,00,000 lines of code shown in figure
2, among the other bugs structural bugs are the
highest and half of the structural bugs are control
flow and sequence bugs as shown in figure 3.2.

Geetha Devasena MS and Valarmathi ML

Copyright © 2010, Bioinfo Publications,
International Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010

12

Fig. 2- Bug Statistics

0

2000

4000

6000

ABCDEFGHI

Processing
Bugs

Control Flow
Bugs

No of
Reported
Bugs

Fig. 3-Bar Graph representation of Bug Statistics

A-Requirements
B-Features and Functionality
C-Structural Bugs
D-Data
E-Implementation and Coding
F-Integration
G-System and software Architecture
H-Test Definition and Execution
I-Other, unspecified

CYCLOMATIC COMPLEXITY MEASURE

Cyclomatic complexity [11, 17] (or conditional
complexity) is software structural metric
(measurement) used to measure the complexity
of a program using Control flow graph of the
program. The cyclomatic complexity of a
structured program is defined as M=E-N+2P
where M- Cyclomatic Complexity, E- the number
of edges of the graph, N- The number of nodes
of the graph and P- The number of disconnected
components.
It provides lower bound on the number of test
cases required to achieve branch coverage. The
amount of test effort is better judged Cyclomatic
Complexity. If there are fewer test cases than the
measure then missing cases are to be found and
more test cases than the measure shows that the
coverage can be achieved with less number of
test cases.

EVOLUTIONARY TESTING

Evolutionary testing is characterized by the use of
metaheuristic search techniques for test case
generation. The test aim considered is
transformed into an optimization problem. The

input domain of the test object forms the search
space which a search algorithm explores in order
to find test data that fulfils the respective test aim.
Neighborhood search methods like hill climbing
are not suitable in such cases. Therefore meta-
heuristic search methods are employed, e.g.
evolutionary algorithms, simulated annealing, or
tabu search [5, 6, 13]. In this work, evolutionary
algorithms are used to generate test data
because their robustness and suitability for the
solution of different test tasks has already been
proven in previous work, e.g. [10]. The most of
the previous works in applying search techniques
are not taking into account float values for input
domain. The first work in applying tabu search to
test case generation is in [3] given by Diaz and
the cyclomatic complexity is not considered. The
proposed work extends the previous work and
applies tabu search technique to test case
generation in compliance with cyclomatic
complexity measure for unit testing and
compares the performance with random test case
generation based on the measures of test suite
size and branch coverage.

PROPOSED SYSTEM
The proposed system develops a tool for test
suite generation which takes control flow graph
as input and automatically generates test cases
from the input domain of various variables using
tabu search technique. The architecture of the
proposed work is shown in figure 4.1.The
Control Flow Graph Generator takes the source
code of programs for which test case is to be
generated and generates Control Flow Graphs.

Fig. 4-Flow diagram of Proposed System

METHODOLOGY
The various steps in the automated framework of
test case generation are,

1. Taking source code under test as input
CFG generator generates CFG.

2. Find the Cyclomatic Complexity
measure.

3. The CFG is analyzed and the branching
condition information is extracted.

4. The test cases are generated for each
condition from input domain of the

Optimized test suite generation using tabu search technique

Int. Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010 13

variables involved in the condition using
tabu search technique.

5. Find the compliance of number of test
cases with Cyclomatic Complexity
measure.

6. The generated test cases are applied to
the instrumented source code to check
the branch coverage.

7. The best test cases form an effective
test suite for the given source code
under test.

TABU SEARCH TECHNIQUE
The tabu search technique is a metaheuristic
technique which is proven successful in real
world applications such as travelling salesman
problem. Recently it is found suitable for test
case generation problems in software testing.
But only few results have been published with
relatively few samples and it must be further
proven with all data types of input domain and
with more samples. The tabu search algorithm is
given as,

Begin

 Initialize Current Solution

 Store Current Solution in CFG

 Add Current Solution to tabu list ST

 Select a sub goal node to be covered

 Do calculate neighborhood candidates

 For each candidate do

 If (candidate value in node n <CFG in node n) then

Store candidate in CFG

 end if

 end for

 if (sub goal node not covered) then

Add Current Solution to tabu list ST

 else Delete tabu list ST end if

Select a sub goal node to be covered and

Current solution

 if (Current Solution is depleted) then

 Add Current Solution to tabu list LT

 Apply a backtracking process:

 New Current Solution and maybe new sub goal node

 end if

while (NOT all nodes covered AND number

of iterations<MAXIT)

 end

RESULTS
The proposed technique has been tested with 12
benchmarking samples including the triangle
classifier program which is widely used in various
research papers [1, 3, 13] in the test suite
generation. The results obtained are encouraging
and tabu search technique performs better than
random technique. The Performance measures
such as the Test Suite Size, Percentage of
branch coverage are considered for comparison
of the techniques. Also the test suite size is
compared with the cyclomatic complexity of the
program structure under test which gives the
measure of test cases required to cover the
program.

The results got by random technique can be
given in table 1.

Table 1- Results of Random Technique

Samples Test Suite
Size

% Of
Branch
Coverage

Cyclomatic
Complexity

S1 8 75 3

S2 5 80 2

S3 7 100 3

S4 3 100 2

S5 9 77.77 3

S6 11 81.8 3

S7 5 100 2

S8 6 100 3

S9 5 100 2

S10 8 87.5 3

S11 10 88.88 3

S12 15 93.33 4

The results show that the branch coverage varies
from75% to a maximum of 100% and that is
achieved with more number of test cases than
the calculated Cyclomatic Complexity measure.
The results got by tabu search technique are
given in table 2.

Table 2- Results of Tabu Search Technique

Samples Test Suite
Size

% Of
Branch
Coverage

Cyclomatic
Complexity

S1 3 100 3

S2 2 100 2

S3 3 100 3

S4 2 100 2

S5 3 100 3

S6 3 100 3

S7 2 100 2

S8 3 100 3

S9 2 100 2

S10 3 100 3

S11 3 100 3

S12 4 100 4

Geetha Devasena MS and Valarmathi ML

Copyright © 2010, Bioinfo Publications,
International Journal of Computational Intelligence Techniques, ISSN: 0976–0466, Volume 1, Issue 2, 2010

14

The result clearly shows that the branch
coverage is high and that is achieved with as
many numbers of test cases as calculated by
Cyclomatic Complexity measure. The
performance analysis graph based on the
number of test cases in the test suite and the
percentage of branch coverage of both the
techniques is given in figure 5 and 6 respectively.

Conclusion

Software testing is an important activity and
critical too in deciding quality of the software.
Test suite generation is vital part of testing

process which determines the quality of test. This
technique of automated generation of test cases
from the input domain can assist the developers
and testers in performing unit testing with

minimum time and resources. Also the optimized
number of test cases generated is much helpful
in regression testing which otherwise carried out

with greater number of test cases. The technique
can be further extended for multiple coverage
criteria. Also the effectiveness can be further
proven with fault detection effectiveness.

Fig. 5- Test Suite Size Comparison

Fig. 6- Percentage of Branch Coverage
Comparison

References
[1] Chilenski, John Joseph Chilenski and

Steven P. Miller (1994) Software
Engineering Journal. 9 (5), 193-200.

[2] Edvardson J. (1999) Proceedings of the
second conference on computer
science and engineering 2 (1), 343-
351.

[3] Eugenia Diaz, Javier Tuya, Raquel
Blanco, Jose Javier Dolado, (2008)
Computers and Operations
Research 14(3), 38-69.

[4] Ferguson and Korel B. (1966)
ACMTOSEM, 5, 63-86.

[5] Glover F. (1989) ORSA Journal on
Computing 3(1), 190-206.

[6] Glover F. (1990) ORSA Journal on
Computing 4(2), 4–32.

[7] Howden W.E. (1977) IEEE
Transactions on Software
Engineering 3(4), 266-278.

[8] John Clarke, Mark Harman, Bryan
Jones, (2000) IEEE Computer
Society Press 42(1), 247-254.

[9] Lindquist T.E. and Jenkins J.R. (1998)
IEEE Software 5(1), 72-79.

[10] Lin Yeh, P.L. (2001) Information
Sciences 4(13), 47-64.

[11] McCabe Tom, (1976) IEEE Trans.
Software Eng 2(6), 308-320.

[12] McMinn p. (2004) Journal on Software
Testing, Verification, and Reliability
14(2), 105-156.

[13] Raquel Blanco, Javier Tuya, Belarmino
Adenso-Díaz (2009) Information
and Software Technology 51(1),
708-720.

[14] Edvardsson J. (1999) In proceedings of
2nd conference on computer
science and Engineering in
Linkoping, 21-28.

[15] Voas J.M., Morell J. and Miller K.W.
(1991) IEEE Transactions on
Software Engineering vol. 8,41-48.

[16] Wegener Baresel DeMillo R.A., Offutt
A.J. (1991) IEEE Transactions on
Software Engineering
Vol.17(9),900-910.

[17] Boris Beizer (2000) ‘Software Testing
Techniques’,2ndedition, Dreamtech
publisher, New Delhi.

