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Abstract- During recent years, the Internet has witnessed a rapid growth in deployment of data-
driven (or swarming based) peer-to-peer (P2P) media streaming. In these applications, each 
node independently selects some other nodes as its neighbors (i.e., gossip style overlay 
construction) and exchanges streaming data with the neighbors (i.e., data scheduling). To 
improve the performance of such protocol, many existing works focus on the gossip-style overlay 
construction issue. However, few of them concentrate on optimizing the streaming data 
scheduling to maximize the throughput of a constructed overlay. In this paper, we analytically 
study the scheduling problem in data-driven streaming system and model it as a classical min-
cost network flow problem. We then propose both the global optimal scheduling scheme and 
distributed heuristic algorithm to optimize the system throughput. Furthermore, we introduce 
layered video coding into data-driven protocol and extend our algorithm to deal with the end-host 
heterogeneity. The results of simulation with the real-world traces indicate that our distributed 
algorithm significantly outperforms conventional ad hoc scheduling strategies especially in 
stringent buffer and bandwidth constraints. 
 
Introduction 
The basic idea of data-driven streaming 
protocol is very simple and similar to that of 
Bit-Torrent [7]. The protocol contains two 
steps. In the first step, each node 
independently selects its neighbors so as to 
form an unstructured overlay network, called 
the gossip-style overlay construction or 
membership management. The second step 
is named block scheduling: The live media 
content is divided into blocks (or segments 
or packets), and every node announces 
what blocks it has to its neighbors. Then 
each node explicitly requests the blocks of 
interest from its neighbors according to their 
announcement. Obviously, the performance 
of data-driven protocol directly relies on the 
algorithms in these two steps. The 
scheduling methods used in most of the 
pioneering works with respect to the data-
driven/swarming-based streaming are 
somewhat ad hoc. These conventional 
scheduling strategies mainly include pure 
random strategy [4], local rarest first (LRF) 
strategy [6] and round-robin strategy [5]. 
Actually, how to do optimal block scheduling 
to maximize the throughput of data-driven 
streaming under a constructed overlay 
network is a challenge issue. The media 
streaming is divided into blocks with the 
equal size, each of which has a unique 
sequence number. Every node has a sliding 
window, which contains all the up-to-date 
blocks on the node and goes forward  

 
continuously at the speed of streaming rate. 
We call the front part of the sliding window 
exchanging window. The blocks in the 
exchanging window are the ones before the 
playback deadline, and only these blocks is 
requested if they are not received. The 
unavailable blocks beyond playback 
deadline will be no more requested. The 
blocks that have been played are buffered in 
the sliding window, and they can be 
requested by other nodes. Every node 
periodically pushes all its neighbors a bit 
vector called buffer map in which each bit 
represents the availability of a block in its 
sliding window to announce what blocks it 
holds. Due to the announcement of the 
neighbors, each node periodically sends 
requests to its neighbors for the desired 
blocks in its exchanging window. We call the 
time between two requests a request period, 
or period for short, typically 1-6 seconds. 
Then, each node decides from which 
neighbor to ask for which blocks at the 
beginning of each request period. When a 
block does not arrive after its request is 
issued for a while and is still in the 
exchanging window, it should be requested 
in the following period again In this section, 
we introduce the block scheduling problem 
in data-driven P2P streaming. Figs. 1 and 2 
give intuitive examples of block scheduling 
problem, BSP for short. The two numbers 
beside the pipe of each node represent the 
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maximum blocks that can be downloaded 
and uploaded in each request period, 
respectively, denoting the inbound and 
outbound bandwidth constraints of each 
node. The blocks close to each node 
illustrate what blocks the node currently 
holds. We compare the LRF scheduling 
strategy used in [6] and optimal scheduling 
in these examples. In Fig. 1a, node 4 asks 
for blocks from node 1, 2, and 3. In the LRF 
scheduling strategy used in [6], a block that 
has the minimum number of holders among 
the neighbors is requested first. If multiple 
neighbors hold this block, it is assigned to 
the one with the maximum surplus 
bandwidth in turn. As illustrated in Fig. 1a, 
using LRF, block 3 has only one holder, so it 
is assigned to node 3. Then, the surplus 
upload bandwidth of node 3 is reduced to 1. 
After that, block 2 is assigned to node 2 
since the surplus bandwidth of node 2 is 
larger than node 1 and the surplus 
bandwidth of node 2 becomes 1. Next, LRF 
strategy assigns block 4 to node 1 whose 
surplus bandwidth then descends to 0. 
Finally, after node 2 gets block 5, no more 
blocks can be further assigned. Fig. 1a 
shows the scheduling result using LRF. Four 
blocks are delivered. On the other hand, one 
optimal scheduling solution is illustrated in 
Fig. 1b, and five blocks can be delivered 
with a gain of 25 percent compared to LRF. 
In fact, using LRF method usually cannot 
derive the maximum throughput. As shown 
in Fig. 1a, the upload bandwidth at node 3 
and download bandwidth at node 4 are not 
fully utilized. Fig. 2a shows another scenario 
that node 3 and 4 may competitively request 
blocks from node 1, that is, their requests 
are congested at node 1. However, node 4 
has more options. The optimal way is that 
node 4 requests blocks from node 2, while 
node 3 requests from node 1, as shown in 
Fig. 2b. In fact, compared to LRF, random 
strategies used in [4] would be even worse. 
Moreover, the real situation is more complex 
because the bandwidth bottlenecks are not 
only at the last mile but also different blocks 
have different importance. As a 
consequence, more intelligent scheduling 
algorithms should be developed to improve 
the throughput of data-driven protocol under 
bandwidth constraints. 

  
Fig. 1- Illustration of the block scheduling 
problem (I). (a) LRF scheduling. (b) Optimal 
scheduling. 

  
Fig. 2- Illustration of block scheduling 
problem (II). (a) LRF scheduling. (b) Optimal 
scheduling. 
 
Performance Evaluation 
As aforementioned, there are two key steps, 
i.e., the overlay construction and the block 
scheduling, in data-driven peer to-peer 
streaming, and we focus on the block 
scheduling step. For a fair comparison, all 
the experiments use the same simple 
algorithm for overlay construction: each 
node independently selects its neighbours 
randomly so that a random graph is 
organized. And, our simulation ensures that 
each node has the same set of neighbours 
at any simulation time for every method. 
Moreover, to evaluate the performance, We 
define a metric—delivery ratio formally here. 
The delivery ratio of a node is represented 
by the number of blocks that arrive at the 
node before playback deadline over the total 
number of blocks encoded in the stream. 
Since the total number of blocks in the 
stream is constant that only relies on the 
encoding and packetization, the delivery 
ratio of a node can represent the throughput 
from the source to this node. The delivery 
ratio of the whole session is measured as 
the average delivery ratio among all nodes, 
also representing the throughput of the 
session. For the underlying topology, we use 
the random model of GT-ITM [8] to generate 
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a topology with 2,000 routers and set delays 
proportional to the distance metric of the 
resulting topology within [5 ms, 300 ms]. In 
our experiment, we implement a discrete 
event-driven peer-to-peer simulator1 and 
use Goldberg’s “CS2” library [7] to solve 
min-cost network flow problem. As 
suggested in [4] and [5], the request period 
should be several seconds. In all the 
experiments, we hence fix the request 
period to 3 seconds. And, the default group 
size of the whole session is 1,000 nodes. 
Previous study [3] has bandwidth of the 
source node to 2 Mbps. 0 2000 4000 
8000 10000 12000 shown that there is a 
sweet range of neighbour count or peer 
degree roughly between 6 to 14 in data-
driven/swarming-based streaming where the 
delivered quality to the majority of peers is 
high, and actually, it is the overlay 
construction issue. Therefore, in our 
simulation, each node randomly selects 14 
other nodes as its neighbours. Each block 
has the same size of 1,250 bytes, i.e., 10 
Kbits. Each node estimates the bandwidth 
allocated from a neighbour with the traffic 
received from it in the past five periods, 
namely, M ¼ 5. Moreover, the default 
aggressive coefficient used is _ ¼ 1:5. We 
set the default exchanging window size to 
10 seconds and the sliding window to 1 
minute. The cumulative distribution of the 
user online time is shown in Fig. 3. Hence, 
we can employ the realistic arrival/leave 
patterns in the traces to simulate the churn 
of the participating nodes. In our experiment, 
each run of the simulation is driven by the 
same part of traces on that night, i.e., the 
30-minute traces. As our default group size 
is set to 1,000, new node joining request is 
refused in our simulation, when the total 
online nodes exceed 1,000. Besides, in all of 
our experiments,  we  set   the   outbound 
Online Time (sec) 

 
Fig. 3- CDF of user online time obtained 
from a real-world peer-to-peer streaming 
system [1]. 

Performance Comparison for Single Rate 
We show the performance of our proposed 
algorithms, including the global optimal and 
distributed algorithm, and give the 
comparison with the following conventional 
ad hoc methods in block scheduling: Pure 
random method. Each node will assign each 
desired block randomly to a neighbor that 
holds that block. LRF method. A block that 
has the minimum owners among the 
neighbors will be requested first. Round-
robin (RR) method. All the desired packets 
will be assigned to one neighbor in a 
prescribed order in a round-robin way. If the 
block is only available at one sender, it is 
assigned to that sender. Otherwise, it is 
assigned to a sender that has the maximum 
surplus available bandwidth. When a block 
is assigned to a neighbor, the surplus 
bandwidth of that neighbor will be 
recalculated by subtracting the amount the 
block consumes. These steps are repeated 
till there is no surplus bandwidth or no 
blocks can be assigned. We first use a 
simulation-based approach to show that the 
proper value of _ in priority definition (1) 
should be 1. We set all nodes to DSL/Cable 
nodes and set the streaming rate to 500 
Kbps. Fig. 4 shows the delivery ratio under 
different value of _ 2 ½0; 1_. In this section, 
we set _ ¼ 1 in all of our experiments. In 
Fig. 5, we study the performance of each 
method when all the nodes are DSL/Cable 
nodes. This scenario is frequent. For 
example, in the online classes of some 
distant education institute in China, such as 
CRTVU [8], most of the students access 
Internet through DSL from their home. 
Moreover, the exchanging window size and 
the sliding window is set to 10 seconds and 
1 minute, respectively. We see that when 
the streaming rate is 250 Kbps, all the 
methods except Narada have very high 
delivery ratio usually above 90 percent. As 
the streaming rate increases, the delivery 
ratio the global optimal solution keeps 
around 100 percent. Even when the 
streaming rate reaches 500 Kbps, its 
delivery ratio still remains above 97 percent. 
This reveals that the network capacity is 
sufficient to support the multicast session 
with 250-500 Kbps. 
We note that the performance of the three 
compared methods (LRF, Round-Robin, and 
Random) goes down fast with the increase 
of the streaming rate; however, the delivery 
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ratio of our proposed heuristic distributed 
algorithm is fairly good. At the rate of 500 
Kbps, the distributed algorithm outperforms 
the LRF, Round-Robin, and Random 
methods by gains of 21 percent, 52 percent, 
and 62 percent, respectively. The gap 
between the global optimal solution and the 
heuristic distributed algorithm is 9 percent. 
We can also see that the delivery ratio of 
Narada protocol is low because the 
traditional single tree-based protocol cannot 
effectively utilize the outbound bandwidth of 
all the peers. 
  

  
Fig. 4- Delivery ratio for different value  
deviation of a cluster is 10 percent of its 
mean Streaming Rate (Kbps) 

 
Fig. 5- Delivery ratio for different value of 
streaming rate. 
 
Performance Comparison for Multiple 
Rates 
In this section, we check the performance of 
each method when we encode the video into 
multiple rates using layered video 
coding.With the assistance of layered 
coding, the video rate can adapt to different 
bandwidth capacity, and all types of users 
can be supported in one session. As a 
consequence, in terms of the fractions 
shown in Table 4, we add an additional 
cluster of low-capacitated DSL/Cable users 
whose inbound and outbound bandwidth are 
384 Kbps and 128 Kbps, respectively, with a 
fraction of 0.1. We assume that the 
percentage of Ethernet users is 10 percent. 
The group size is set to 1,000. As 

aforementioned, the bandwidth of each 
cluster follows a Gaussian distribution, and 
the standard 

  
Fig. 6- The video is encoded into 10 layers.  
The group size is 1,000. Fig. 6 gives the 
delivery ratio at each layer. We note that the 
global optimal solution has the best 
performance, and the delivery ratio in all 
layers is nearly 1. This demonstrates that 
the generated topologies have sufficient 
capacity to support all the nodes to receive 
all layers that they can achieve. The 
performance of distributed algorithm is fairly 
good. Most of the delivery ratio in lower 
layers has nearly 1 and most in higher 
layers is also above 0.9. 
For the priority in (7), we set _ as a large 
value 1,000 and define function PLðlÞ ¼ 
102ðL_lÞ to ensure the lower layers have 
much larger priority than the upper layers. 
And, the compared methods include the 
following ones: Random method and LRF 
method . RR method On  the  contrary,  
aggressive  block ordering scheme requests 
blocks of all layers with lowest sequence 
number (or time stamp) pre-emptively. Since 
the first two schemes evidently have its own 
limitations [5]. We only compare with the 
third scheme (we call it RR-trade-off for 
short). 
 
Conclusion and Future Enhancements 
In this paper, we study the scheduling 
problem in the datadriven/ swarming based 
protocol in peer-to-peer streaming. The 
contributions of this paper are twofold. First, 
to the best of our knowledge, we are the first 
to theoretically address the scheduling 
problem in data-driven protocol. Second, we 
give the optimal scheduling algorithm under 
different bandwidth constraints, as well as a 
distributed heuristic algorithm, which can be 
practically applied in real system and 
outperforms conventional ad hoc strategies 
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by about 10 percent-70 percent in both 
single rate and multirate scenario. For future 
work, we will study how to maximize the 
blocks delivered over a horizon of several 
periods, taking into account the 
interdependence between the periods, and 
will analyze the gap between the global   
optimal   solution   and   the proposed 
distributed algorithm. 
We also would like to study how to adapt the 
parameter _ in terms of the network 
condition in our proposed distributed 
algorithm. Besides, based on our current 
results, we are interested in combing the 
video coding technique to our algorithm to 
further improve the user perceived quality. 
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