
International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010, PP-27-31

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

Distributed heuristic algorithm to optimize the throughput of data driven
streaming in peer to peer networks

Velayutham A.S. and Chitra S.

Department of CSE, MKCE, India

Abstract- During recent years, the Internet has witnessed a rapid growth in deployment of data-
driven (or swarming based) peer-to-peer (P2P) media streaming. In these applications, each
node independently selects some other nodes as its neighbors (i.e., gossip style overlay
construction) and exchanges streaming data with the neighbors (i.e., data scheduling). To
improve the performance of such protocol, many existing works focus on the gossip-style overlay
construction issue. However, few of them concentrate on optimizing the streaming data
scheduling to maximize the throughput of a constructed overlay. In this paper, we analytically
study the scheduling problem in data-driven streaming system and model it as a classical min-
cost network flow problem. We then propose both the global optimal scheduling scheme and
distributed heuristic algorithm to optimize the system throughput. Furthermore, we introduce
layered video coding into data-driven protocol and extend our algorithm to deal with the end-host
heterogeneity. The results of simulation with the real-world traces indicate that our distributed
algorithm significantly outperforms conventional ad hoc scheduling strategies especially in
stringent buffer and bandwidth constraints.

Introduction
The basic idea of data-driven streaming
protocol is very simple and similar to that of
Bit-Torrent [7]. The protocol contains two
steps. In the first step, each node
independently selects its neighbors so as to
form an unstructured overlay network, called
the gossip-style overlay construction or
membership management. The second step
is named block scheduling: The live media
content is divided into blocks (or segments
or packets), and every node announces
what blocks it has to its neighbors. Then
each node explicitly requests the blocks of
interest from its neighbors according to their
announcement. Obviously, the performance
of data-driven protocol directly relies on the
algorithms in these two steps. The
scheduling methods used in most of the
pioneering works with respect to the data-
driven/swarming-based streaming are
somewhat ad hoc. These conventional
scheduling strategies mainly include pure
random strategy [4], local rarest first (LRF)
strategy [6] and round-robin strategy [5].
Actually, how to do optimal block scheduling
to maximize the throughput of data-driven
streaming under a constructed overlay
network is a challenge issue. The media
streaming is divided into blocks with the
equal size, each of which has a unique
sequence number. Every node has a sliding
window, which contains all the up-to-date
blocks on the node and goes forward

continuously at the speed of streaming rate.
We call the front part of the sliding window
exchanging window. The blocks in the
exchanging window are the ones before the
playback deadline, and only these blocks is
requested if they are not received. The
unavailable blocks beyond playback
deadline will be no more requested. The
blocks that have been played are buffered in
the sliding window, and they can be
requested by other nodes. Every node
periodically pushes all its neighbors a bit
vector called buffer map in which each bit
represents the availability of a block in its
sliding window to announce what blocks it
holds. Due to the announcement of the
neighbors, each node periodically sends
requests to its neighbors for the desired
blocks in its exchanging window. We call the
time between two requests a request period,
or period for short, typically 1-6 seconds.
Then, each node decides from which
neighbor to ask for which blocks at the
beginning of each request period. When a
block does not arrive after its request is
issued for a while and is still in the
exchanging window, it should be requested
in the following period again In this section,
we introduce the block scheduling problem
in data-driven P2P streaming. Figs. 1 and 2
give intuitive examples of block scheduling
problem, BSP for short. The two numbers
beside the pipe of each node represent the

Distributed heuristic algorithm to optimize the throughput of data driven streaming in peer to peer networks

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010

28

maximum blocks that can be downloaded
and uploaded in each request period,
respectively, denoting the inbound and
outbound bandwidth constraints of each
node. The blocks close to each node
illustrate what blocks the node currently
holds. We compare the LRF scheduling
strategy used in [6] and optimal scheduling
in these examples. In Fig. 1a, node 4 asks
for blocks from node 1, 2, and 3. In the LRF
scheduling strategy used in [6], a block that
has the minimum number of holders among
the neighbors is requested first. If multiple
neighbors hold this block, it is assigned to
the one with the maximum surplus
bandwidth in turn. As illustrated in Fig. 1a,
using LRF, block 3 has only one holder, so it
is assigned to node 3. Then, the surplus
upload bandwidth of node 3 is reduced to 1.
After that, block 2 is assigned to node 2
since the surplus bandwidth of node 2 is
larger than node 1 and the surplus
bandwidth of node 2 becomes 1. Next, LRF
strategy assigns block 4 to node 1 whose
surplus bandwidth then descends to 0.
Finally, after node 2 gets block 5, no more
blocks can be further assigned. Fig. 1a
shows the scheduling result using LRF. Four
blocks are delivered. On the other hand, one
optimal scheduling solution is illustrated in
Fig. 1b, and five blocks can be delivered
with a gain of 25 percent compared to LRF.
In fact, using LRF method usually cannot
derive the maximum throughput. As shown
in Fig. 1a, the upload bandwidth at node 3
and download bandwidth at node 4 are not
fully utilized. Fig. 2a shows another scenario
that node 3 and 4 may competitively request
blocks from node 1, that is, their requests
are congested at node 1. However, node 4
has more options. The optimal way is that
node 4 requests blocks from node 2, while
node 3 requests from node 1, as shown in
Fig. 2b. In fact, compared to LRF, random
strategies used in [4] would be even worse.
Moreover, the real situation is more complex
because the bandwidth bottlenecks are not
only at the last mile but also different blocks
have different importance. As a
consequence, more intelligent scheduling
algorithms should be developed to improve
the throughput of data-driven protocol under
bandwidth constraints.

Fig. 1- Illustration of the block scheduling
problem (I). (a) LRF scheduling. (b) Optimal
scheduling.

Fig. 2- Illustration of block scheduling
problem (II). (a) LRF scheduling. (b) Optimal
scheduling.

Performance Evaluation
As aforementioned, there are two key steps,
i.e., the overlay construction and the block
scheduling, in data-driven peer to-peer
streaming, and we focus on the block
scheduling step. For a fair comparison, all
the experiments use the same simple
algorithm for overlay construction: each
node independently selects its neighbours
randomly so that a random graph is
organized. And, our simulation ensures that
each node has the same set of neighbours
at any simulation time for every method.
Moreover, to evaluate the performance, We
define a metric—delivery ratio formally here.
The delivery ratio of a node is represented
by the number of blocks that arrive at the
node before playback deadline over the total
number of blocks encoded in the stream.
Since the total number of blocks in the
stream is constant that only relies on the
encoding and packetization, the delivery
ratio of a node can represent the throughput
from the source to this node. The delivery
ratio of the whole session is measured as
the average delivery ratio among all nodes,
also representing the throughput of the
session. For the underlying topology, we use
the random model of GT-ITM [8] to generate

Velayutham AS and Chitra S

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

29

a topology with 2,000 routers and set delays
proportional to the distance metric of the
resulting topology within [5 ms, 300 ms]. In
our experiment, we implement a discrete
event-driven peer-to-peer simulator1 and
use Goldberg’s “CS2” library [7] to solve
min-cost network flow problem. As
suggested in [4] and [5], the request period
should be several seconds. In all the
experiments, we hence fix the request
period to 3 seconds. And, the default group
size of the whole session is 1,000 nodes.
Previous study [3] has bandwidth of the
source node to 2 Mbps. 0 2000 4000
8000 10000 12000 shown that there is a
sweet range of neighbour count or peer
degree roughly between 6 to 14 in data-
driven/swarming-based streaming where the
delivered quality to the majority of peers is
high, and actually, it is the overlay
construction issue. Therefore, in our
simulation, each node randomly selects 14
other nodes as its neighbours. Each block
has the same size of 1,250 bytes, i.e., 10
Kbits. Each node estimates the bandwidth
allocated from a neighbour with the traffic
received from it in the past five periods,
namely, M ¼ 5. Moreover, the default
aggressive coefficient used is _ ¼ 1:5. We
set the default exchanging window size to
10 seconds and the sliding window to 1
minute. The cumulative distribution of the
user online time is shown in Fig. 3. Hence,
we can employ the realistic arrival/leave
patterns in the traces to simulate the churn
of the participating nodes. In our experiment,
each run of the simulation is driven by the
same part of traces on that night, i.e., the
30-minute traces. As our default group size
is set to 1,000, new node joining request is
refused in our simulation, when the total
online nodes exceed 1,000. Besides, in all of
our experiments, we set the outbound
Online Time (sec)

Fig. 3- CDF of user online time obtained
from a real-world peer-to-peer streaming
system [1].

Performance Comparison for Single Rate
We show the performance of our proposed
algorithms, including the global optimal and
distributed algorithm, and give the
comparison with the following conventional
ad hoc methods in block scheduling: Pure
random method. Each node will assign each
desired block randomly to a neighbor that
holds that block. LRF method. A block that
has the minimum owners among the
neighbors will be requested first. Round-
robin (RR) method. All the desired packets
will be assigned to one neighbor in a
prescribed order in a round-robin way. If the
block is only available at one sender, it is
assigned to that sender. Otherwise, it is
assigned to a sender that has the maximum
surplus available bandwidth. When a block
is assigned to a neighbor, the surplus
bandwidth of that neighbor will be
recalculated by subtracting the amount the
block consumes. These steps are repeated
till there is no surplus bandwidth or no
blocks can be assigned. We first use a
simulation-based approach to show that the
proper value of _ in priority definition (1)
should be 1. We set all nodes to DSL/Cable
nodes and set the streaming rate to 500
Kbps. Fig. 4 shows the delivery ratio under
different value of _ 2 ½0; 1_. In this section,
we set _ ¼ 1 in all of our experiments. In
Fig. 5, we study the performance of each
method when all the nodes are DSL/Cable
nodes. This scenario is frequent. For
example, in the online classes of some
distant education institute in China, such as
CRTVU [8], most of the students access
Internet through DSL from their home.
Moreover, the exchanging window size and
the sliding window is set to 10 seconds and
1 minute, respectively. We see that when
the streaming rate is 250 Kbps, all the
methods except Narada have very high
delivery ratio usually above 90 percent. As
the streaming rate increases, the delivery
ratio the global optimal solution keeps
around 100 percent. Even when the
streaming rate reaches 500 Kbps, its
delivery ratio still remains above 97 percent.
This reveals that the network capacity is
sufficient to support the multicast session
with 250-500 Kbps.
We note that the performance of the three
compared methods (LRF, Round-Robin, and
Random) goes down fast with the increase
of the streaming rate; however, the delivery

Distributed heuristic algorithm to optimize the throughput of data driven streaming in peer to peer networks

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010

30

ratio of our proposed heuristic distributed
algorithm is fairly good. At the rate of 500
Kbps, the distributed algorithm outperforms
the LRF, Round-Robin, and Random
methods by gains of 21 percent, 52 percent,
and 62 percent, respectively. The gap
between the global optimal solution and the
heuristic distributed algorithm is 9 percent.
We can also see that the delivery ratio of
Narada protocol is low because the
traditional single tree-based protocol cannot
effectively utilize the outbound bandwidth of
all the peers.

Fig. 4- Delivery ratio for different value
deviation of a cluster is 10 percent of its
mean Streaming Rate (Kbps)

Fig. 5- Delivery ratio for different value of
streaming rate.

Performance Comparison for Multiple
Rates
In this section, we check the performance of
each method when we encode the video into
multiple rates using layered video
coding.With the assistance of layered
coding, the video rate can adapt to different
bandwidth capacity, and all types of users
can be supported in one session. As a
consequence, in terms of the fractions
shown in Table 4, we add an additional
cluster of low-capacitated DSL/Cable users
whose inbound and outbound bandwidth are
384 Kbps and 128 Kbps, respectively, with a
fraction of 0.1. We assume that the
percentage of Ethernet users is 10 percent.
The group size is set to 1,000. As

aforementioned, the bandwidth of each
cluster follows a Gaussian distribution, and
the standard

Fig. 6- The video is encoded into 10 layers.
The group size is 1,000. Fig. 6 gives the
delivery ratio at each layer. We note that the
global optimal solution has the best
performance, and the delivery ratio in all
layers is nearly 1. This demonstrates that
the generated topologies have sufficient
capacity to support all the nodes to receive
all layers that they can achieve. The
performance of distributed algorithm is fairly
good. Most of the delivery ratio in lower
layers has nearly 1 and most in higher
layers is also above 0.9.
For the priority in (7), we set _ as a large
value 1,000 and define function PLðlÞ ¼
102ðL_lÞ to ensure the lower layers have
much larger priority than the upper layers.
And, the compared methods include the
following ones: Random method and LRF
method . RR method On the contrary,
aggressive block ordering scheme requests
blocks of all layers with lowest sequence
number (or time stamp) pre-emptively. Since
the first two schemes evidently have its own
limitations [5]. We only compare with the
third scheme (we call it RR-trade-off for
short).

Conclusion and Future Enhancements
In this paper, we study the scheduling
problem in the datadriven/ swarming based
protocol in peer-to-peer streaming. The
contributions of this paper are twofold. First,
to the best of our knowledge, we are the first
to theoretically address the scheduling
problem in data-driven protocol. Second, we
give the optimal scheduling algorithm under
different bandwidth constraints, as well as a
distributed heuristic algorithm, which can be
practically applied in real system and
outperforms conventional ad hoc strategies

Velayutham AS and Chitra S

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

31

by about 10 percent-70 percent in both
single rate and multirate scenario. For future
work, we will study how to maximize the
blocks delivered over a horizon of several
periods, taking into account the
interdependence between the periods, and
will analyze the gap between the global
optimal solution and the proposed
distributed algorithm.
We also would like to study how to adapt the
parameter _ in terms of the network
condition in our proposed distributed
algorithm. Besides, based on our current
results, we are interested in combing the
video coding technique to our algorithm to
further improve the user perceived quality.

References
[1] V. Pai et al., “Chainsaw: Eliminating

Trees from Overlay Multicast,” Proc.
IEEE INFOCOM ’05, Feb. 2005.

[2] V. Agarwal and R. Rejaie, “Adaptive
Multi-Source Streaming in
Heterogeneous Peer-to-Peer
Networks,” Proc. Multimedia
Computing and Networking (MMCN
’05), Jan. 2005.

[3] X. Zhang, J. Liu, B. Li, and T.-S.P.
Yum, “Coolstreaming/Donet: A
Data-Driven Overlay Network for
Efficient Media Streaming,” Proc.
IEEE INFOCOM ’05, Mar. 2005.

[4] M. Zhang, J.-G. Luo, L. Zhao, and S.-
Q. Yang, “A Peer-to-Peer Network
for Live Media Streaming Using a
Push-Pull Approach,” Proc. ACM
Multimedia, Nov. 2005.

[5] N. Magharei and R. Rejaie, “Prime:
Peer-to-Peer Receiver-Driven
Mesh-Based Streaming,” Proc.
IEEE INFOCOM ’07, May 2007.

[6] B. Cohen, http://bitconjuer.com, 2008.
[7] V. Venkataraman and P. Francis,

“Chunkyspread: Multi-Tree
Unstructured End System
Multicast,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS ’06),
Feb. 2006.

[8] Venkataraman and P. Francis, “On
Heterogeneous Overlay
Construction and Random Node
Selection in Unstructured P2P

Networks,” Proc. IEEE INFOCOM
’06, Apr. 2006.

[9] J. Jiang and K. Nahrstedt, “Randpeer:
 Membership Management
for QoS Sensitive Peer-to-Peer
Applications,” Proc. IEEE.
INFOCOM ’06, Apr. 2006.

