
International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010, PP-20-26

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

A novel load balancing algorithm for computational grid

Saravanakumar E. and Gomathy Prathima
Department of CSE, Adhiyamaan College of Engineering, Hosur, India

saraninfo@gmail.com, gomathy.prathima@gmail.com

Abstract-The Grid computing environment is a cooperation of distributed computer systems
where user jobs can be executed on either local or remote computer. Many problems exist in grid
environment. Not only the computational nodes are heterogeneous but also the underlying
networks connecting them are heterogeneous. The network bandwidth varies and the network
topology among resources is also not fixed. Thus with this multitude of heterogeneous resources,
a proper scheduling and efficient load balancing across the Grid is required for improving
performance of the system. The load balancing is done by migrating jobs to the buddy
processors, a set of processors to which a processor is directly connected. An algorithm, Load
Balancing on Arrival (LBA) is proposed for small-scale (intraGrid) systems. It is efficient in
minimizing the response time for small-scale grid environment. When a job arrives LBA computes
system parameters and expected finish time on buddy processors and the job is migrated
immediately. This algorithm estimates system parameters such as job arrival rate, CPU
processing rate and load on each processor to make migration decision. This algorithm also
considers job transfer cost, resource heterogeneity and network heterogeneity while making
migration decision.
Keywords- Grid systems, load balancing, average response time, migration

Introduction
The Grid [6] is emerging as a wide-scale
distributed computing infrastructure that
promises to support resource sharing and
coordinated problem solving in dynamic
multi-institutional Virtual Organizations [5].
The idea is similar to the former
metacomputing [16] where the focus was
limited to computation resources, whereas
Grid computing takes a broader approach.
The computational Grid is the cooperation of
distributed computer systems where user
jobs can be executed on either local or
remote computer systems. With its multitude
of heterogeneous resources, a proper
scheduling and efficient load balancing
across the Grid is required for improving the
performance of the system. A widely used
performance metric is the Average
Response Time of tasks. The response time
of a task is the time elapsed between its
initiation and its completion. Minimizing the
average response time is often the goal of
load balancing. The system load is a
measure of the amount of work that a
computer system performs. If load at some
computers are typically heavier than at
others, or if some processors execute tasks
more slowly than others, they will become
heavily loaded. The load balancing aims to
have all processors equally heavy workloads
over the long term. In general, any load-
balancing algorithm consists of two basic

policies—a transfer policy and a location
policy. The transfer policy decides if there is
a need to initiate load balancing across the
system. By using workload information, it
determines when a node becomes eligible to
act as a sender (transfer a job to another
node) or as a receiver (retrieve a job from
another node). The location policy
determines a suitably underloaded
processor. In other words, it locates
complementary nodes to/from which a node
can send/receive workload to improve the
overall system performance. Location-based
policies can be broadly classified as sender
initiated, receiver initiated, or symmetrically
initiated [4, 7, 12,19]. Based on the
information that can be used, load-balancing
algorithms are classified as static, dynamic,
or adaptive [8, 12, 14, 16]. In a static
algorithm, the scheduling is carried out
according to a predetermined policy. The
state of the system at the time of the
scheduling is not taken into consideration.
On the other hand, a dynamic algorithm
adapts its decision to the state of the
system. Adaptive algorithms are a special
type of dynamic algorithms where the
parameters of the algorithm and/or the
scheduling policy itself is changed based on
the global state of the system According to
another classification, based on the degree
of centralization, load-scheduling algorithms

A novel load balancing algorithm for computational grid

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010

21

could be classified as centralized or
decentralized [12, 16]. In a centralized
system, only a single processor does the
load scheduling. Such algorithms are bound
to be less reliable than decentralized
algorithms, where many, if not all,
processors do load scheduling in the
system. Load balancing involves assigning
to each processor work proportional to its
performance, thereby minimizing the
response time of a job. Normally load
balancing is done by migrating the job to
buddy processors. A set of processors to
which a processor is directly connected
constitutes its buddy set. The aim of this
paper is to present a load-balancing
algorithm adapted to the heterogeneous
Grid computing environment. This paper
attempt to propose an adaptive
decentralized sender-initiated load-
balancing algorithm for computational Grid
environments.

A. Related Works
Numerous scheduling algorithms have been
proposed for parallel and distributed
systems, as well as for Grid computing
environment. For a dynamic load-balancing
algorithm, it is unacceptable to frequently
exchange state information because of the
high communication overheads. Anand et al.
[2] proposed an estimated load information
scheduling algorithm (ELISA) and Perfect
Information Algorithm (PIA). In PIA when a
job arrives, a processor computes the job’s
finish time on all buddy processors using
exact information about the current load of a
buddy processor, its arrival rate and service
rate. The source processor selects a buddy
processor with the minimum finish time and
immediately migrate a job on that buddy
processor if it can finish the job earlier than
this processor. Arora et al. [3] proposed a
decentralized load-balancing algorithm for a
Grid environment. Although this work
attempts to include the communication
latency between two nodes during the
triggering process on their model, it did not
consider the actual cost for a job transfer.
The approach proposed takes the job
migration cost into account for the load-
balancing decision. In [9-11], a sender
processor collects status information about
neighboring processors by communicating
with them at every load-balancing instant.
This can lead to frequent message transfers.

The status exchange at each load-balancing
instant can lead to large communication
overhead. The proposed algorithm balance
the load by considering the job migration
cost, which is primarily influenced by the
available bandwidth between the sender and
receiver nodes.

B. Contribution
This paper proposes dynamic, adaptive, and
decentralized load balancing algorithm for
computational Grid environments. The Load
Balancing on Arrival (LBA) can be shown to
be effective in a small-scale Grid (intraGrid)
environment. One of the key strengths of the
algorithm is in estimating the system
parameters and in proactive job migration.
Proposed algorithm considers the job
migration cost, which is primarily influenced
by the available bandwidth between the
sender and receiver nodes, when making a
decision for load balancing. Grid
infrastructures are dynamic in nature in the
sense of resource availability and, hence, a
changing network topology. Resource
heterogeneity and network heterogeneity
also exists in the Grid environment. These
facts have also been considered into
account by generating a random topology
with nodes of varying capacities and varying
bandwidth across the links connecting them.

System Model and Problem Definition
Grid system consists of M heterogeneous
processors, P1, P2, …, PM, connected via
communication channels assuming an
arbitrary topology (Fig. 1).

Fig. 1- System model

We assume that each processor has an
infinite capacity buffer to store jobs waiting
for execution. This assumption eliminates
the possibility of dropping a job due to
unavailability of buffer space. The jobs are
assumed to arrive randomly at the
processors, the interarrival time being
exponentially distributed with average 1/λi.
The jobs are assumed to require service
time that is exponentially distributed with
mean 1/µi. Each processor is modeled as
anM/M/1 Markov chain, with the number of
jobs queued up for processing at each
processor representing the state of the

Saravanakumar E and Gomathy Prathima

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

22

system. Job size is assumed to have a
normal distribution with a given mean and
variance. This job size includes both the
program and data sizes. Since in a Grid
environment, the network topology is
varying, the proposed model captures this
constraint as well by considering an arbitrary
topology. The data transfer rate is not fixed
and varies from link to link. The processors
that are directly connected to a processor
constitute its buddy set. Here also it is
assumed that each processor has
knowledge about its buddy processors and
the communication latency between them,
and load balancing is carried out within
buddy sets only. It may be noted that two
neighboring buddy sets may have a few
processors common to each set. Some key
performance metrics of interest considered
in this paper are discussed below

A. Performance Metrics
Three performance metrics of relevance at
three different levels:
At the job level, we consider the ART of the
jobs processed in the system as the
performance metric. If N jobs are processed
by the system, then

where Arrivali is the time at which the ith job
arrives and Finishi is the time at which it
leaves the system. The delay due to the job
transfer, waiting time in the queue, and
processing time together constitute the
response time. At the system level, we
consider the total execution time as the
performance metric to measure the
algorithm’s efficiency. It indicates the time at
which all N jobs get executed. At the
processor level, we consider resource
utilization as the performance metric. It is
the ratio between the processor’s busy time
to the sum of the processor’s busy and idle
time:

where Busyi indicates the amount of time Pi
remains busy, and Idlei indicates the amount
of time Pi remains idle during the total
execution time of N jobs.
Thus the objective is to design efficient load-
balancing algorithms to minimize the ART of
the jobs for computational Grid

environments. This algorithm will affect load
balancing by careful estimation of the job
arrival rates, CPU processing rates, and
loads on the processor. Further, we take into
account the resource heterogeneity, network
heterogeneity, and job migration cost before
a load-balancing decision.

Design of Load Balancing Algorithm
In a computational Grid, as resources are
geographically distributed and located at
different sites, the job transfer time from one
site to another site is a very significant factor
for load balancing. Further, the
communication latency is very large for the
WAN through which Grid resources are
normally connected. Moreover, due to
network heterogeneity, the network
bandwidth varies from one link to another.
Hence the job transfer cost cannot be
ignored when making a job migration
decision. And since the resources are
heterogeneous, we need jobs have to be
assigned to processors according to its
performance. Both the algorithms consider
these facts. The process of parameter
estimation and the way in which load
balancing is carried out is described below.

Fig. 2- Estimation and Status Exchange intervals

At each periodic interval of time Ts, called
the status exchange interval, each Pi in the
system calculates its status parameters,
which are the estimated arrival rate, service
rate, and load on the processor. Each Pi in
the system exchanges its status information
with the processors in its buddy set. The
instant at which this information exchange
takes place is called a status exchange
instant. In Fig. 2, Tn-1 and Tn represent the
status exchange instant. Each Pi calculates
its status information at status exchange
instant Tn-1. Each status exchange period is
further divided into equal subintervals called
estimation interval Te. These points are
known as estimation instants. In Figure .2,
t1, t2, . . . , t m_1 represent the estimation
instants. Each Pi calculates the estimated
load on its buddy processor Pk. The status
exchange instants and the estimation

A novel load balancing algorithm for computational grid

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010

23

instants together constitute the transfer
instants. The decision to transfer jobs and
actual transfer of jobs are done at transfer
instants.

A Load Balancing on Arrival
LBA, which balances load by transferring a
job on its arrival epoch rather than waiting
for the next transfer instant. This is clearly a
faster reaction to respond to higher arrival
rates on smaller Grids. In the LBA algorithm,
instead of estimating the expected finish
time of a job at every estimation time period
Te, it will be calculated on each arrival of a
job to a processor. Here, estimating the
finish time of a job is an aperiodic event, and
job migration will now happen aperiodically.
Therefore, when the load is not distributed
evenly across all processors, a job will be
migrated to lightly loaded processors much
faster in the LBA.

This approach is shown in Figure. 3. In this
approach each processor Pi calculates its
status parameters, which are the estimated
arrival rate, service rate, and load at every
status exchange period Ts. This information
gets exchanged to every buddy processor in
the buddy set. On every job arrival,
processor Pi will calculate the expected
finish time of job j on buddy processor Pk by
estimating the load on Pk at time CST + tcj
(where tcj is the communication time for job j
from Pi to Pk and CST is the Current
System Time). For this estimation, Pi will
calculate the expected number of arrivals
and departures for buddy processor Pk for
time period t = CST + tcj – Tn-1 (Here Tn-1
is the last status exchange). If any buddy
processor Pk can finish the execution of this
job before processor Pi, then that job will be
migrated immediately to Pk.

Existing Reference Algorithms
There are two existing reference algorithms
that are relevant to be discussed as
reference algorithms.

A. Perfect Information Algorithm (PIA)
In PIA, each processor has perfect
information about the state (in terms of load)
of every other processor in its buddy set.
This algorithm also uses perfect information
about the arrival rate and service rate. When
a job arrives, a processor computes the
job’s finish time on all buddy processors
using exact information about the current
load of a buddy processor, its arrival rate
and service rate. The source processor
selects a buddy processor with the minimum
finish time and immediately migrate a job on
that buddy processor if it can finish the job
earlier than this processor. Maintaining up
to-date information about all buddy
processors require plenty of message
transmission. But it is assumed that at the
transfer epochs, each processor has perfect
information about the state of every other
processor in its buddy set. This algorithm
can be summarized in the following steps

Main Algorithm
At the transfer epoch, for each processor:
1. Communicate status (queue length)
to all processors in the buddy set;
2. Call transfer.

Procedure Transfer
1. Find average queue length of the
processors in the buddy set.
2. If queue length of a processor is greater
than the average queue length (computed in
1) then:

a) Construct the active set as
follows: if a processor in the buddy set has a
queue length less than the average queue
length, include the processor in the active
set;

b) Compute the probability of
transferring from the processor (source) to
each processor(destination) in the active set
such that the source processor load in
excess of average queue length is
distributed among processors of active set.
3. Transfer the jobs as per the probabilities
computed in 2(b). PIA basically provides a
lower bound for the LBA algorithm.

B. ELISA
The basic idea behind ELISA is that at
periodic intervals of time Ts, called the
status exchange interval, the processors in
the system exchange their status
information, which consists of the queue

Saravanakumar E and Gomathy Prathima

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

24

length at the instant of information exchange
and an estimate of the arrival rate. The
instants at which this information exchange
takes place is called a status exchange
epoch. Each status exchange interval is
further divided into equal subintervals called
estimation intervals Te. Obviously, Te < Ts.
The points of division are called estimation
epochs. Further a neighbourhood is defined,
termed as a buddy set, for each processor.
At the estimation epochs, every processor
estimates the load in the processors
belonging to its buddy set. All these epochs
are actually small intervals in time, but as
they are very small compared to Ts and Te,
referred to as time instants or epochs. At the
transfer epochs, rescheduling of jobs is
carried out. Thus, the decision to transfer
jobs is taken and the actual transfer of jobs
is done at the transfer epochs. Processors in
the buddy set, whose estimated queue
length is less than the estimated average
queue length by more than a threshold θ,
form the active set. Now the processor
under consideration transfers jobs to the
processors in the active set until its queue
length is not greater than θ more than the
estimated average queue length. Each
processor estimates the job arrival rate by
considering the number of arrivals in a
certain fixed interval of time (called a
window) just prior to the instant at which
estimation is done.

Table 1- Information Used by Algorithms
Algorithm Arrival Rate Service Rate System State

ELISA Estimated

Information

Perfect

Information

Estimated

Information

LBA Estimated

Information

Estimated

Information

Estimated

Information

PIA Perfect

Information

Perfect

Information

Perfect

Information

Performance Evaluation and Discussion
Table 1 summarizes the information that the
algorithms use for the scheduling of jobs.
the performance of our proposed LBA
algorithm is evaluated with ELISA and PIA

A. Random Arrival and Service Rates
The performance of our LBA algorithm is
quantified for real-life situations wherein
arrival rates and service rates are
completely random. ART for LBA and that
for ELISA, that is, both algorithms exhibit an
increasing tendency as we increase the

arrival and service rates. Both algorithms
take almost the same amount of time for the
execution of N jobs.

B. Effect of Status Exchange Period
ELISA is highly sensitive to the magnitude of
the status exchange period Ts. That is, if we
set the value of the status exchange period
to be high, then its performance degrades.
For LBA, increasing the value of Ts also
increases ART, but its performance is much
better than that of ELISA. By increasing the
value of Ts, there is very high increase in
ART for ELISA than for LBA. For PIA, there
is no change in ART as it uses perfect
information about the system state at each
job migration decision. Therefore, for the
LBA algorithm, by setting the value of the
status exchange period to be large, we can
decrease the number of status exchange
messages, and communication overheads
can be kept at a low value.

C. Effect of uneven load distribution
One of the major advantages of the LBA
approach is that it attempts to balance the
load on each processor “as soon as
possible.” Whenever a job arrives at a
processor, that processor will determine
whether any of its buddy set members can
execute the job earlier than itself. If it finds
such a member, then the job will be
migrated to that processor. In this way, the
load will be balanced as soon as possible.
However in ELISA, a job has to wait for the
next transfer instant before migrating to a
lightly loaded processor.

D. Effect of migration limit
One of the important parameters for LBA is
the migration limit (denoted as η), that is,
maximum number of hops that a job is
allowed to migrate before execution.
Obviously, this decision depends on the
network topology considered. By restricting
the value of η to a finite value, we can
reduce the job migration cost by reducing
the total number of job migrations.

E. Effect of job size
For the LBA algorithm, the job migration cost
is also one of the factors for load balancing
across its buddy processors. Indeed, we can
expect that it should give better performance
when we increase the job size. For a larger
job size, the performance of LBA is better

A novel load balancing algorithm for computational grid

International Journal of Computational Intelligence Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010

25

than that of ELISA. This is due to the fact
that as the job size increases, the migration
cost is expected to increase, which prevents
migration in LBA.

Conclusion
This paper presents, decentralized,
scalable, adaptive, and distributed algorithm
for load balancing across resources for data-
intensive computations on Grid
environments. The objective is to minimize
ART and the total execution time for jobs
that arrive at a Grid system for processing.
Several constraints such as communication
delays due to the underlying network,
processing delays at the processors, and an
arbitrary topology for a Grid system are
explicitly considered in the problem
formulation. The proposed algorithm is
adaptive in the sense that it estimate
different types of strongly influencing system
parameters such as the job arrival rate,
processing rate, and load on the processor
and use this information for estimating the
finish time of job on a buddy processor. The
LBA algorithm performs load balancing on
each job arrival by estimating the expected
finish time on a neighboring processor
instead of waiting for the next transfer
instant (unlike ELISA).
Even though the main objective is to
propose load-balancing algorithms using
parameter estimation for heterogeneous
Grid environments, this work can be
extended by providing fault tolerance into
the system, as fault tolerance is a very
important characteristic for any distributed
systems.

References
[1] Ruchir Shah, Bhardwaj Veeravalli and

Manoj Mishra “On the Design of
Adaptive and Decentralized Load-
Balancing Algorithms with Load
Estimation for Computational
Environments”, IEEE Trans. Parallel
and Distributed Systems, vol 18, no
12, December 2007.

[2] L. Anand, D. Ghose, and V. Mani,
“ELISA: An Estimated Load
Information Scheduling Algorithm for
Distributed Computing Systems,”
Int’l J. Computers and Math. with
Applications, vol. 37, no. 8, pp. 57-
85, Apr. 1999.

[3] M. Arora, S.K. Das, and R. Biswas, “A
De-Centralized Scheduling and
Load Balancing Algorithm for
Heterogeneous Grid Environments,”
Proc. Int’l Conf. Parallel Processing
Workshops (ICPPW ’02), pp. 499-
505, 2002.

[4] Y. Feng, D. Li, H. Wu, and Y. Zhang, “A
Dynamic Load Balancing Algorithm
Based on Distributed Database
System,” Proc. Fourth Int’l Conf.
High-Performance Computing in the
Asia-Pacific Region, pp. 949-952,
May 2000.

[5] Ian Foster, Carl Kesselman, Steven
Tuecke “The Anatomy of the Grid
Enabling Scalable Virtual
Organizations” Int’l J. High
Performance Computing
Applications, vol. 15, no. 3, pp. 200-
222, 2001. [6] I. Foster and C.
Kesselman, “The Grid: Blueprint for
a Future Computing Infrastructure,”
Morgan Kaufmann, 1999.

[6] H. Lin and C. Raghavendra, “A
Dynamic Load-Balancing Policy with
a Central Job Dispatcher (LBC),”
IEEE Trans. Software Eng., vol. 18,
no. 2, pp. 148-158, Feb. 1992.

[7] G. Manimaran and C. Siva Ram
Murthy, “An Efficient Dynamic
Scheduling Algorithm for
Multiprocessor Real¬Time
Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 3,
pp. 312-319, Mar. 1998.

[8] Y. Murata, H. Takizawa, T. Inaba, and
H. Kobayashi, “A Distributed and
Cooperative Load Balancing
Mechanism for Large-Scale P2P
Systems,” Proc. Int’l Symp.
Applications and Internet (SAINT
’06) Workshops, pp. 126-129, Jan.
2006.

[9] L. Oliker, R. Biswas, H. Shan, and W.
Smith, “Job Scheduling in
Heterogeneous Grid Environment,”
Technical Report LBNL-54906,
Lawrence Berkeley Nat’l Laboratory,
2004

[10] H. Shan, L. Oliker, and R. Biswas, “Job
Superscheduler Architecture
and Performance in
Computational Grid Environments,”
Proc. ACM/IEEE Conf.
Supercomputing, Nov. 2003.

Saravanakumar E and Gomathy Prathima

Copyright ©2010, Bioinfo Publications, International Journal of Computational Intelligence Techniques
ISSN: 0976–0466 & E-ISSN: 0976–0474, Volume 1, Issue 1, 2010

26

[11] N. Shivaratri, P. Krueger, and M.
Singhal, “Load Distributing for
Locally Distributed Systems,”
Computer, vol. 25, no. 12, pp. 33-
44, Dec. 1992.

[12] L. Smarr and C.E. Catlett,
“Metacomputing,” Comm. ACM, vol.
35, no. 6, pp. 44-52, June 1992.

[13] J. Watts and S. Taylor, “A Practical
Approach to Dynamic Load
Balancing,” IEEE Trans. Parallel
and Distributed Systems, vol. 9, no.
3, pp. 235-248, Mar. 1998.

[14] M. Willebeek-LeMair and A. Reeves,
“Strategies for Dynamic Load
Balancing on Highly Parallel
Computers,” IEEE Trans. Parallel
and Distributed Systems, vol. 9, no.
4, pp. 979-993, Sept.1993.

[15] M.J. Zaki and W.L.S. Parthasarathy,
“Customized Dynamic Load
Balancing for a Network of
Workstations,” J. Parallel and
Distributed Computing, vol. 43, no.
2, pp.156-162, June 1997.

