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Abstract- This paper presents time series analysis for short-term Indian bank transactions (NEFT) forecasting. Two time series models are 
proposed, namely, the multiplicative decomposition model and the seasonal ARIMA Model. Forecasting errors of both models are computed 
and compared. The proposed models are implemented to predict one year transactions data. The accuracy of the two models are calculated 
and compared. The paper utilizes the mean absolute percentage error (MAPE) as a measure of forecast accuracy. Results show that both 
time series models can accurately predict the short-term Transactions load demand and that the Multiplicative decomposition model slightly 
outperforms the seasonal ARIMA model. 
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Introduction 
Transactions forecasting is a vital and fundamental factor for a 
successful operation of banking system. In order to operate the 
banking system effectively and efficiently, the system transac-
tions load should be correctly predicted. Transaction demand 
forecasting has significant implications on the costs and speed of 
the Banking transactions. Accurate forecasting models are needed 
for secure and reliable banking system operations.  If the system 
load forecast is overstated, the system may over-commit the 
generation and leads to costly operation. On the other hand, if the 
system load forecast is understated, the reliability and security of 
the system may be compromised which may result in system fail-
ures. 
The approach using time series analysis is among the main areas 
with rich research effort [1-7], with specially formulated methods for 
data in various contexts, for example, the Box and Jenkins’ ARIMA 
models as applied in [1-5], neural-network-based algorithms in [8], 
Principle Component Analysis for European data in [7] and transfer 
function models in [9]. 
This paper presents the application of Box-Jenkins’ ARIMA time 
series model with the application to National Electronic Fund 
Transfer (NEFT) data for banks in India. Two time series models, 
namely, the multiplicative decomposition model and the ARIMA 
model are employed The multiplicative decomposition technique 
has been profoundly used for forecasting tasks in the business 
sector, such as sales projection or financial forecasting; however, it 
has not been commonly employed for electronic transactions fore-
casting. This may due to the fact that transactions usually vary to a 

large extent and it is challenging to fit a trend line. 
The proposed models are implemented to predict one year trans-
action data. The accuracy of the two models are calculated and 
compared. The paper utilizes the mean absolute percentage error 
(MAPE) as a measure of forecast accuracy. 
The paper is organized as follows. Section II introduces the two 
above mentioned models and explains how they would be used in 
analyzing and forecasting the load consumption with a brief note 
on forecasting error measurement. Section III is the case study 
whereby Indian bank electronic transactions (NEFT) data sets are 
first described for Government banks, Private banks, and Foreign 
banks. Then models would be applied with forecasts generated 
and compared with the transactions actually occured. 
 
Time Series Models 
A time series is defined as a set of data generated sequentially in 
time. The time series models assume that in the absence of major 
disruptions to critical factors of a recurring event, the data of this 
event in the future will be related to that of the past events and can 
be expressed via models developed from the past events. In this 
analysis, two time series models, the Multiplicative Decomposition 
Model and the Seasonal ARIMA Model, are employed and pre-
sented in the followings. 
 
Multiplicative Decomposition Model 
Multiplicative Decomposition Model assumes that a time series can 
be described as (1). 
 x(t) = T(t)*S(t)*C(t)*R(t), t =….-1,0,1,2  (1) 
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where x(t) is the time series, T(t) is the trend component, S(t) is the 
seasonal component, C(t) is the cyclic component and R(t) repre-
sents the random component. 
Cyclic component is usually in the duration of many years and is 
not applicable in short term transactions forecasting. Thus, we 
propose to simplify the above combination to only three terms as 
shown in (2): 
 x(t) = T(t)*S(t)*R(t), t =….-1,0,1,2  (2) 
In order to apply this model, it requires that the trend of the time 
series be found and extended into the future. The trend component 
of a series made up of these three components can be found if the 
other two could be taken off the series. A typical transaction series 
contains monthly seasonal indexes, which when used to divide a 
typical month’s data, would remove the seasonal component from 
the series. To find the indexes, data of the most recent month 
is divided by the average of a few recent months and using the 
average of these weeks tends to minimize the random effect. With 
these two components removed or minimized, the series now con-
tains mainly the trend component. The equation of this trend line 
is extrapolated to estimate the trend in the future. Seasonal 
effects can then be incorporated into these future trend forecasts to 
account for the variation and obtain reasonably comprehensive 
forecasts. 
 
Steps 
1. Identify the seasonal period ( Quarter, months e.t.c) 
2. Develop a Moving Average (MA) forecast ( Regular MA can be 

used for forecasting) 
3. Find the ratio of each observation to the MA forecast: rt = Yt/St, 

where Yt is the absolute value and St is the observation which 
we developed. 

4. Find the average of the ratios for each month, season or peri-
odic unit. If there is k periods then we have k average ratios. 
These are unadjusted seasonal indexes. 

5. Adjust the ratios: Divide each of the k ratios by the average of 
the k ratios, these are the adjusted seasonal indexes. 

6. Adjust the series: For each observation, divide the observation 
by its adjusted seasonal index. It is the deseasonalized series 
which gives the seasonally adjusted series. 

 
Deseasonalized Monthly Trend 
A deseasonalized monthly performance is obtained by dividing the 
latest month’s data (or the previous month’s, whichever is used) by 
the monthly seasonal indexes correspondingly. This is the desea-
sonalized monthly trend which is expected to appear as a straight 
trend line with small variations due to random effects that we can-
not remove completely. 
 
Forecasting 
Equation to the weekly trend can be easily obtained by mathemati-
cal derivation or software tools, such as MATLAB. This will then be 
used to project into the future for future trend in a process called 
trend forecasting. The actual forecast is done by multiplying this 
forecasted trend with the monthly seasonal indexes. 
 
Seasonal ARIMA Model 
Two of the most basic models in time series are the autoregressive 
model (AR) and the moving average model (MA). In autoregressive 

models, the next value in the time series is represented as a linear 
combination of p previous values and a random shock. 
 xt=ϕ1xt-1+ϕ2xt-2+……..+ϕpxt-p+ ωt   (3) 
where 
xt = An observation at time t of a time series 
ϕi = Autoregressive component parameter of lag i observation 
ωt = Random shock component of a time series 
The backshift operator B xt = xt-1 or Bm xt = xt-m and the autoregres-
sive operator ϕ(B) = 1- ϕ1B – ϕ2B2 - ………. – ϕp Bp are introduced 
so that the expression (3) simplifies to (4):  
   ϕ(B) xt = ωt   (4)  
where Bi is a backshift operator of lag i. 
MA models assume that the next observation is made up of q pre-
vious random shocks. 
 xt=ωt+ϴ1ωt-1+ϴ2ωt-2 +………+ ϴ qωt-q  (5) 
where ϴi is a moving average component parameter of lag i obser-
vation.  
Similarly, moving average operator is defined as: 
 ϴ (B) = 1+ ϴ1B + ϴ2B2 + ………. + ϴp Bp 

And (5) can be converted to the form (6) 
   xt = ϴ(B) ωt   (6) 
 
When a process involves characteristics of both AR and MA mod-
els, an autoregressive moving average model, or ARMA can be 
used. 
 xt = ϕ1xt-1 + .....+ ϕpxt-p + ωt + ϴ1ωt-1 + ....+ ϴ qωt-q  
Equivalently we have (7) 
   ϕ(B) xt = ϴ(B) ωt  (7)  
However, if the series is non-stationary, i.e. when its statistical 
properties such as mean and variance change over time, differenc-
ing is required to transform the series into a stationary one. Differ-
encing is essentially finding the difference between values in the 
series separated at certain lags k, denoted by ∇d

k where d is the 
order of differencing, i.e. ∇d = (1-B)d and k is the number of lags. 
Differencing results in autoregressive integrated moving average 
model, or ARIMA, represented as: 
   (B) ∇d

k xt = ϴ(B) ωt  (8) 
Seasonal variations can be observed in the transactions data in 
that a transaction at any point of time might be similar to that of the 
previous month and that of the previous year, it is hence advanta-
geous to use a Seasonal ARIMA model. Incorporating seasonal 
effects of ARIMA order (P,D,Q), the Seasonal ARIMA Model can 
be written as (9).  
 ϕP(BS)ϕp(B)∇D

S∇d
k xt = ϴQ (BS) ϴq (B) ωt (9)  

Identification of models usually relies on analysis of the autocorre-
lation function (ACF) and partial autocorrelation function (PACF). 
The autocorrelation function measures the correlation between 
values in a time series separated by k, which represents the num-
ber of lags between these observations. The partial autocorrelation 
function provides indication in determining the number of lags in 
the AR models. Table- 1 summarizes rough guideline for using 
these parameters in initial model identification. 
 

Table 1- Model Identification using ACF and PACF 
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 AR(p) MA(q) ARMA(p,q) 

ACF Tails off Cuts off after lag q Tails off 

PACF Cuts off after lag p Tails off Tails off 
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For both models, error measurement is carried out using the mean 
absolute percentage error, or MAPE, calculated as follows. 

   
where At is the actual data and Ft represents the forecast and n 
denotes the number of forecasts made. 
 
Steps 
1. Plot the data : Time series Plot 
2. Identify the orders (p,d,q) of the model: Inspection of the TS 

plot may help to identify the differencing order d, while inspec-
tion of the sample ACF and PACF of the differenced data may 
help to identify the AR order p and MA order q. 

3. Estimation of the Model Parameters ϕ and ϴ 
4. Prediction: forecast future values of the time series and also 

generate confidence intervals for these forecasts from the ARI-
MA model. 

 
Case Studies With Indian Bank NEFT Data 
Monthly data is collected from rbi.org for NEFT (National electronic 
fund transfer) in India for the years 2009, 2010, 2011 from which 
two variables are taken: time period and transactions. Prepro-
cessing is done and Missing values are replaced and the transac-
tions data is classified into three categories (Government Banks, 
Private bank and Foreign banks). Data is given for each month for 
NEFT for about 90 Banks operating in India. Out of it clusters of 5 
Government Banks, 5 Private Banks and 5 Foreign Banks are tak-
en and total transactions (inward + outward) is calculated for each 
month. The banks which are chosen are the top five banks in each 
category which do the maximum business. 
 
Multiplicative Decomposition Model 
In this case, the multiplicative decomposition technique is used to 
predict the transactions for the months of 2012, data from the 
months of three years(36 months) preceding 2012, namely 2011
(Jan to Dec), 2010(Jan to Dec) and 2009(Jan to Dec) are used. 
First, the 12-months MA is calculated and dividing the observed 
transactions with the MA gives the ratio-to-moving-average. After 
that we find the average of the ratios for each month. In our case 
we have 12 periods so we get 12 average ratios. These are unad-
justed seasonal indexes. 
 
Next, we adjust each of the ratios by the average of the 12 ratios, 
these are the adjusted seasonal indexes. After that for each obser-
vation, we divide the observation by its adjusted seasonal index. It 
is the deasonalized monthly series which gives the seasonally 
adjusted series. 
 
The trend line equation is found from simple regression to be y = 
2.503x – 2.500 for Government banks data, y = 2.979x + 10.14 for 
private banks data and y = 1.114x + 14.61 for Foreign banks data. 
The x is then set to be from 37 to 48 and applied to the trend equa-
tion to project into future 12 months. This way, trend forecasts are 
obtained. Multiplying them with the weekly seasonal indexes will 
give the final forecasts. The overall forecasts and actual transac-
tions are put into a plot for comparison as shown in Fig. 1, Fig. 2, 
and Fig. 3 for Government, Private, and Foreign banks respective-
ly. The MAPE calculated from different years are given in Table- 2.  

Fig. 1- Shows forecasts and actual load comparisons for Govern-
ment Banks with the trend line equation, x-axis shows time period 

in months while y-axis shows transactions in millions 

Fig. 2- Shows forecasts and actual load comparisons for Private 
Banks with the trend line equation, x-axis shows time period in 

months while y-axis shows transactions in millions 

Fig. 3- Shows forecasts and actual load comparisons for Foreign 
Banks with the trend line equation, x-axis shows time period in 

months while y-axis shows transactions in millions 
 

Table 2- Mape Using Multiplicative Decomposition Model 
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Year MAPE (Government) MAPE (Private) MAPE (Foreign) 

1 3.70% 1.80% 2.20% 

2 1.40% 1.50% 0.50% 

3 0.60% 0.60% 0.80% 

Overall 1.90% 1.30% 1.20% 
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As observed, the MAPE generally decreases as the forecasts are 
done for the years further into the future. 
 
Seasonal ARIMA Model 
In this case, the Seasonal ARIMA technique is used to predict the 
transactions for the months of 2012, data from the months of three 
years(36 months) preceding 2012, namely 2011(Jan to Dec), 2010
(Jan to Dec) and 2009(Jan to Dec) are used.  
The first step in identifying a suitable model is to examine the ACF 
plot. The ACF plots indicate non-stationary series shown in Fig. 4, 
Fig. 5, and Fig. 6 for Government, Private and Foreign banks re-
spectively. Differencing is needed to obtain a stationary one. A few 
differencing schemes have been tried and the resulting ACF plots 
are shown in Fig. 7, Fig. 8, and Fig. 9 for Government, Private and 
Foreign banks respectively. 

Fig. 4- ACF Plot of years 2009, 2010, 2011 Data for Government 
Banks 

Fig. 5- ACF Plot of years 2009, 2010, 2011 Data for Private Banks 

Fig. 6- ACF Plot of years 2009, 2010, 2011 Data for Foreign Banks 

Fig. 7- ACF & PACF Plot after Differencing for Government Banks 
– ARIMA(0,1,0) 

Fig. 8- ACF & PACF Plot after Differencing for Private Banks – 
ARIMA (0,1,0) 

Fig. 9- ACF & PACF Plot after Differencing for Foreign Banks – 
ARIMA(0,1,0) 

 
For Government banks, examination of the ACF and PACF plot 
suggests AR(1) and MA(0) components with 1-differencing 
scheme. Using statistics software R, the following seasonal ARIMA 
model of the form ARIMA(1,1,0)*(1,1,0)12 is obtained. 
 (1-(-0.9063)B12) (1-(-0.3092)B) ∇1 ∇12 xt = ωt 

For Private banks, examination of the ACF and PACF plot sug-
gests AR(0) and MA(0) components with 1-differencing scheme. 
Using statistics software R, the following seasonal ARIMA model of 
the form ARIMA(1,1,0)*(0,1,0)12 is obtained. 
   (1-(-0.4628)B) ∇1 ∇12 xt = ωt 

For Foreign banks, examination of the ACF and PACF plot sug-
gests AR(1) and MA(0) components with 1-differencing scheme. 
Using statistics software R, the following seasonal ARIMA model of 
the form ARIMA(0,1,0)*(1,1,0)12 is obtained. 
   (1-(-0.6821)B12) ∇1 ∇12xt = ωt 

These models are then used to forecast the data for the next year, 
i.e. the months in 2012. Fig. 10, Fig. 11, and Fig. 12 is showing the 
future predictions for Government, Private and Foreign banks re-
spectively, prediction bounds are also included in the figures be-
cause it expresses how uncertain it is where the value may fall in. 
The prediction errors are calculated and shown in Table 3.  
 

Table 3- Mape Using Seasonal Arima Model 

 

Fig. 10- showing future transactions predictions for next year(2012) 
for Government Banks 
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 MAPE (Government) MAPE (Private) MAPE (Foreign) 

Overall 2.20% 3.30% 2.10% 
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Fig. 11- showing future transactions predictions for next year(2012) 
for Private Banks 

Fig. 12- showing future transactions predictions for next year(2012) 
for Foreign Banks 

 
Model Performance Comparison 
In this section, forecasts from the two models are compared to-
gether with the actual usage. It is observed that forecasts from the 
Multiplicative Decomposition Model are closer to the actual trans-
actions than the forecasts from ARIMA Model. The decomposition 
technique tends to match the forecasts with the transaction behav-
ior of the previous year which is very similar in this case and hence 
better captures the trend.  
Table IV compares the MAPE of the forecasts generated by each 
of the models. It can be seen that the MAPE from Multiplicative 
decomposition model is considerably less than that from the ARI-
MA Model. 
 

Table 4- Mape Using (1) Multiplicative Decomposition Model (2) 
Seasonal Arima Model 

 
Conclusion 
Transactions load forecasting has significant implications on the 
costs and speed of the Banking transactions. Accurate forecasting 

models are needed for secure and reliable banking system opera-
tions. This paper introduces and applies two time series methodol-
ogies to short-term transactions forecasting, with case study using 
India’s banking transactions load demand. These two models have 
shown favorable forecasting accuracy with the Multiplicative De-
composition Model outperforms the Seasonal ARIMA Model. 
 
References 
[1] Hagan M.T. and Behr S.M. (1987) IEEE Trans. Power Syst., 

PWRS-2(3). 
[2] Conejo A.J., Plazas M.A., Espinola R. and Molina A.B. (2005) 

IEEE Trans. Power Syst., 20(2). 
[3] Yang H.T., Huang C.M. and Huang C.L. (1996) IEEE Trans. 

Power Syst., 11(1). 
[4] Liu K., Subbarayan S., Shoults R.R., Manry M.T., Kwan C., 

Lewis F.L. and Naccarino J. (1996) IEEE Trans. Power Syst., 
11(2). 

[5] Espinoza M., Joye C., Belmans R. and Moor B.D. (2005) IEEE 
Trans. Power Syst., 20(3). 

[6] Papalexopoulos A.D. and Hesterberg T.C. (1990) IEEE Trans. 
Power Syst., 5(4). 

[7] Taylor J.W. and McSharry P.E. (2007) IEEE Trans. Power 
Syst., 22(4).  

[8] Abu-El-Magd M.A. and Findlay R.D. (2003) IEEE CCECE Can-
ada Conf., 3, 1723-1726. 

[9] Cho M.Y., Hwang J.C. and Chen C.S. (1995) EMPD Interna-
tional Conf., 1, 317-322. 

[10] Povinelli R.J. and Feng X. (1999) Artificial Neural Networks in 
Engineering, St. Louis, Missouri, 511-516.  

[11] Povinelli R.J. and Feng X. (1998) Artificial Neural Networks in 
Engineering, St. Louis, Missouri, 691-696. 

[12] Pandit S.M. and Wu S.M. (1983) Time Series and System 
Analysis with Applications, New York: Wiley. 

[13] Box G.E.P. and Jenkins G.M. (1994) Time Series Analysis: 
Forecasting and Control, 3rd ed. Englewood Cliffs, N.J.: Pren-
tice Hall. 

[14] Bowerman L. and O'Connell R.T. (1993) Forecasting and Time 
Series: an Applied Approach, 3rd ed. Belmont. 

[15] Povinelli R.J. (1999) Electrical and Computer Engineering De-
partment. Milwaukee, Wisconsin: Marquette University.  

Advances in Information Mining 
ISSN: 0975-3265 & E-ISSN: 0975-9093, Volume 4, Issue 1, 2012 

Sharma S.A. and Bhatia M.P.S. 

BANKS MAPE(1) MAPE(2) 

Government  1.90% 2.20% 

Private  1.20% 3.30% 

Foreign  1.30% 2.10% 


