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Abstract: Many new structural patterns have been discovered in diverse biological, social and information networks. One of them are 

metabolic networks, the most widely studied large scale networks in biology, known to have a power law degree distribution and the 

exponent γ is observed to be the same for all species. However, empirical evidence elucidating the nature of the process that gives rise to 
such structure is lacking this far. In this paper we review facts about power law distribution as relevant to metabolic networks. In particular 

we concentrate on the evolutionary and other implications of such a power law distribution. 
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1 INTRODUCTION 

Various hypotheses regarding evolutionary mechanisms have been 

proposed and explored in mathematical models of evolving 
networks. For growing networks, a ‘preferential attachment’ of 
new nodes to higher degree nodes as well as a ‘proportionate 

change’ [1] mechanism whereby nodes with higher degree 
experience proportionately higher changes in degree has been 

proposed to account for the power law degree distribution of the 

network. The latter process can lead to robust exponents. However, 
it is not clear whether this hypothesis is applicable to the evolution 

of metabolic networks [2]. For one, the metabolic network is not a 
growing network; during the course of evolution the number of 

metabolites has remained in the range of a few hundred to about a 
thousand for all organisms [3].  

 
Furthermore, so far no concrete evidence has been presented for a 

preferential attachment or proportionate change process during its 

evolution [4]. Systems Biology looks at networks in an integrative 
manner and thus might hold the key to unravelling them. It is a 

new emerging field with more scope for innovation and 
development [5]. Applying statistical and mathematical approaches 
to the study of metabolic networks is a revolutionary concept [6]. 

Study of Systems biology is essential to simulate metabolic 
concepts using models. 

 

A power law is an inverse mathematical relationship between two 
quantities. If one quantity is the frequency of an event, the 

relationship is a power-law distribution, and the frequencies [7] 
decrease very slowly as the size of the event increases. A power 

law is any polynomial relationship that exhibits the property of 
scale [8] invariance. If quantities follow power law then as their 

event size increases, their frequency of occurrence decreases. A 
linear relationship is produced when both logs are taken of a 

quantitative property x and its function f(x).  A straight line 

obtained on the log-log plot shows that the quantities follow a 
power law and is often called the signature of the power law. The 

relation can be represented as f(x) = axk.  
 
Power laws also describe other kinds of relationships, such as the 

metabolic rate of a species and its body mass, and the size of a city 
and the number of patents it produces and the diameter of the 

internet [9] etc. What this relationship means is that there is no 
typical size in the conventional sense [10]. Power laws are found 
throughout the natural and manmade worlds, and are an active area 

of scientific research. 

2     TECHNICAL DEFINITION 

 
A power law is any polynomial relationship that exhibits the 
property of scale invariance. The most common power laws relate 

two variables and have the form 

 
where a and k are constants, and o(xk) is an asymptotically small 

function of x. Here, k is typically called the scaling exponent, 
where the word "scaling" denotes the fact that a power-law 
function satisfies  

 
where c is a constant. Thus, a rescaling of the function's argument 
changes the constant of proportionality but preserves the shape of 

the function itself. This point becomes clearer if we take the 
logarithm of both sides: 

 
 
Notice that this expression has the form of a linear relationship 

with slope k. Re-scaling the argument produces a linear shift of the 
function up or down but leaves both the basic form and the slope k 

unchanged. Power-law relations characterize a staggering number 
of naturally occurring phenomena, and this is one of the principal 
reasons why they have attracted such wide interest. For instance, 

inverse-square laws, such as gravitation and the Coulomb force, 
are power laws, as are many common mathematical formulae such 

as the quadratic law of area of the circle [11]. However much of 
the recent interest in power laws comes from the study of 
probability distributions: it's now known that the distributions of a 

wide variety of quantities seem to follow the power-law form, at 
least in their upper tail (large events) [12]. The behavior of these 

large events connects these quantities to the study of theory of 
large deviations, which considers the frequency of extremely rare 

events like stock market crashes and large natural disasters. It is 

primarily in the study of statistical distributions that the name 
"power law" is used; in other areas the power-law functional form 

is more often referred to simply as a polynomial form or 
polynomial function. 

 
Scientific interest in power law relations stems partly from the ease 
with which certain general classes of mechanisms generate them. 

The demonstration of a power-law relation in some data can point 

to specific kinds of mechanisms that might underlie the natural 

phenomenon in question, and can indicate a deep connection with 
other, seemingly unrelated systems. The ubiquity of power-law 
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relations in physics is partly due to dimensional constraints, while 
in complex systems [13], power laws are often thought to be 

signatures of hierarchy or of specific stochastic processes. A few 
notable examples of power laws are the Gutenberg-Richter law for 

earthquake sizes, Pareto's law of income distribution, structural 
self-similarity of fractals, and scaling [14] laws in biological 

systems. Research on the origins of power-law relations, and 

efforts to observe and validate them in the real world, is an active 
topic of research in many fields of science, including physics, 

computer science, linguistics, geophysics, sociology, economics 
and more. 

 
 

3 EXAMPLE OF POWER LAW DISTRIBUTION 

The Pareto distribution, named after the Italian economist Vilfredo 

Pareto, is a power law probability distribution that coincides with 
social, scientific, geophysical, actuarial, and many other types of 

observable phenomena. Outside the field of economics it is at 
times referred to as the Bradford distribution. Pareto originally 

used this distribution to describe the allocation of wealth among 
individuals since it seemed to show rather well the way that a 
larger portion of the wealth of any society is owned by a smaller 

percentage of the people in that society. This idea is sometimes 

expressed more simply as the Pareto principle or the "80-20 rule" 

which says that 20% of the population controls 80% of the wealth. 
It can be seen from the probability density function (PDF) graph 
on the right, that the "probability" or fraction of the population that 

owns a small amount of wealth per person is rather high, and then 
decreases steadily as wealth increases [15]. This distribution is not 

limited to describing wealth or income distribution, but to many 
situations in which an equilibrium is found in the distribution of 

the "small" to the "large".  
 
A great many power-law distributions have been conjectured in 

recent years. For instance, power laws are thought to characterize 
the behavior of the upper tails for the popularity of websites, 

number of species per genus, the popularity of given names, the 
size of financial returns, and many others. However, much debate 
remains as to which of these tails are actually power-law 

distributed and which are not [16]. For instance, it is commonly 
accepted now that the famous Gutenberg-Richter Law decays more 

rapidly than a pure power-law tail because of a finite exponential 
cutoff in the upper tail. 

 

4 PREDICTION TECHNIQUES 

Power law distribution is detected based on a property of the 

metabolic networks such as the degree of the metabolites [17]. The 

degree of metabolites is determined by the connectivity of the 

metabolites [18]. It is the number of edges passing through the 

node which is in other words the number of connections of the 

metabolite. The next element required is a function of the property 

such as the rank of the metabolites in this case it is the cumulative 

frequency distribution function of the degree of the metabolites 

[19]. The metabolite(s) with the highest degree is ranked first and 

so on. 

 

Thus the ascending order of ranks represents the descending order 

of metabolite degree. Once the rank and degree have been 

determined, the power law graph is plotted. The graph is plotted on 

the log-log scale with the quantitative property i.e the metabolite 

degree on the X axis and its function i.e the metabolite rank on the 

Y axis. If an inverse straight line is obtained, then power law 

distribution is being followed. Assuming that the degree of a 

metabolite can be described by a random variable D, plotting data 

estimates the counter-cumulative probability function  P( log D > 

k) [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Power law distribution graphs with various 

possible property selections for metabolites 

5 APPLICATIONS 

Mathematically, the behaviour of a metabolic network can be 

captured as a system of ordinary differential equations in the 
metabolite concentrations [21]. Power law plotting shows the 

frequency of occurrence of entities in a given pathway with respect 

to their occurrence [22]. Thus we can determine which metabolites 
play a major role in the network and need to be targeted in order to 

alter the network. This suggests that the highly connected 
metabolites linking the individual pathways into a connected 
network are responsible for the great variance in degree [23].  

Their high connectivity provides the `glue’ of the network and is 
also responsible for the short path length [24, 25]. This approach is 

illustrated by a partial reconstruction of a model for the 
"breakthrough organism," the last organism to use RNA as the sole 

genetically encoded biological catalyst [26]. 
 
Many of these models make a key prediction: Highly connected 

nodes are old nodes, nodes having been added very early in a 
network’s history thus reflecting evolution [27] of metabolic 

pathways. Following the power law distribution also means that as 
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the rate of the reaction of metabolites would increase, its 
occurrence would decrease [28, 29]. Conventionally, non-linear 

curve-fitting algorithms have been used for modeling [30] but 
power law modeling is a compact way of representing pathways 

and reduces data redundancy and redundant edges. Metabolic 
networks have a history. They have not been assembled in their 

present state at once. They have grown, perhaps over billion years, 

as organisms increased their metabolic and biosynthetic abilities 
[31]. Having to take into account this history raises many questions 

[32]. 
 

One of the questions to be asked here is how a network arrives at a 
power law degree distribution if it grows. The perhaps simplest 
mathematical model capable of growing power-law distributed 

networks involves only two simple rules [33]. First and 
unsurprisingly, it adds nodes to a graph. Second, it connects this 

node to previously existing nodes according to a second rule, 
where already highly connected nodes are more likely to receive a 
new connection than nodes of lesser connectivity. Over many node 

additions, a power-law degree distribution emerges. A great 
variety of variations to this model have been proposed [34]. They 

differ greatly in detail but retain in some way or another, the rule 
that new connections preferably involve highly connected nodes 

[35]. But more importantly, many of these models make a key 

prediction:  
 

Highly connected nodes are old nodes, nodes having been added 
very early in a network’s history. Since traditional graph theory on 

regular graph or random graph cannot explain the high variability 
of degree sequence [36], the discovery of the power-law degree 
distribution has stimulated a great deal of work in the construction 

of the so-called “scale-free” networks [37], aiming to match the 

power-law distribution and other large scale statistical properties, 

as well as to provide a universal theory to understand all complex 
networks [38]. Thus we can see the implication of detecting a 
power law distribution in determining the evolutionary [39] path of 

the metabolic network. 
 

6 CURRENT STRATEGIES 

The best way to detect power law distribution is to plot the 
properties on a log-log graph and see whether a straight line is 

obtained [40-44]. A property based on connectivity such as the 
degree must be plotted on the x axis and a property obtained by its 

cumulative distribution function [45] such as the rank is plotted on 
the y axis. Many selections of properties are possible such as 

reaction degree and rank etc [46]. 

 
The selection of log-log scale compresses the graph and makes it 

possible to plot a large number of points by emphasizing the tail 
region [47-50]. In a way it is like looking at the bigger picture in 
the graph. The initial points with less difference between their 

values on the axis can be seen to be farther apart while the points 
with greater difference between their values are placed together 

towards the end of the axis. A similar effect can be achieved by 
taking log to the base ten of all the values and plotting them on a 
regular graph [51-52]. 

7 CONCLUSION  

Power law is a robust and useful analysis method for metabolic 
networks. A power law graph can be easily plotted to detect 

whether the given metabolites follow a power law. If the 
metabolites do follow power law, estimation about the more 

essential and less essential metabolites can be made. Power law is 
a compact presentation of a large amount of metabolic data. The 

linear correlation described above is an overall classification of the 
evolutionary process. A deeper understanding would require going 

into the mechanisms by which such a correlation comes about, as 

well as into the departures from the statistical pattern. Metabolic 
network evolution ultimately rests on mechanisms of enzyme 

structure evolution, which in turn involves the molecular evolution 
of genes that code for the enzymes. The latter is governed both by 

random processes as well as the forces of selection.  
 
The following random processes that are biologically plausible can 

in principle give rise to a proportionate change in metabolic 
networks: A metabolite with high degree gene corresponding to 

one of these enzymes mutates in a manner that disturbs the binding 
site of this metabolite on the enzyme, the corresponding reaction 
could be lost. The more enzymes the metabolite binds to, the 

proportionately higher is the probability of losing its reactions 
through random mutations. On the other hand if the gene 

duplicates and diverges, that can introduce a new enzyme to which 
the metabolite binds and hence a new reaction for it to participate 

in. Large degree metabolites have a larger pool of interacting 

enzymes whose genes can duplicate, and hence if genes duplicate 
randomly, the number of new reactions a given metabolite 

participates in is also expected to be positively correlated with its 
degree.  

 
Power laws provide robustness against perturbations. Upon 
removal of randomly chosen nodes, the mean distance between 

network nodes that can still be reached from each other (via a path 

of edges) increases only very little. This distance is also known as 

the network diameter. Also, graphs with power-law degree 
distributions fragment less easily into large disconnected sub-
networks upon random node removal.  
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