
|| Bioinfo Publications ||  141 

 

Advances in Computational Research 
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013, pp.-141-148. 

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000187 

ASKALI M.*, NOUH S., AZOUAOUI A. AND BELKASMI M. 

National School of Computer Science and Systems Analysis (ENSIAS), Mohammed V - Souisi University, Rabat, Morocco. 
*Corresponding Author: Email- askali11@gmail.com 

Received: July 25, 2013; Accepted: August 09, 2013  

Introduction 

The design of good codes is of fundamental importance in a com-
munication system. Furthermore, finding good linear or nonlinear 
codes may affect the sphere packing problems in Euclidean spaces 
[1]. When the code rate is 1/2 or 1/3; Double or Triple Circulant 
Codes (DCC & TCC) have been an interesting family of codes with 
high minimum distances. It is still hard to determine the minimum 
distances of long binary codes as well as their asymptotic relative 
minimum distances [2,4]. Besides, Karlin [5] and Pless [3] found 
many good codes by systematic double circulant codes over GF(2) 
and GF(3) using quadratic residues respectively. In [6], Gaborit 
proposes a double circulant code scheme which generalizes the 
constructions of Karlin and Pless over any field and for any length 
n=pm, where p is an odd prime. Furthermore, Karlin considered 
binary circulant [3p+1, p+1] and [3p, p] codes using quadratic resi-
dues and nonresidues [5]. Recently artificial intelligence techniques 
were introduced to solve this problem. Among related works, one 
idea used Genetic Algorithms (GA) to design constant weight codes 
[7], another one used GA for searching the minimum distance of 
BCH code [8]. Lacan et al. [9] introduced Genetic algorithms in the 
search of optimal error correcting codes, and in [10], authors give 
new good DCC constructed by GA. Here, we propose two heuristic 
search methods such as Genetic Algorithm, and random search of 
DCC and TCC when we use the MIM method published in [11] in 
order to determine the minimum distance, and we give an improve-
ment by introducing the multiple impulse error using genetic algo-

rithm, which we call MIM-GA. 

A table of the best known codes is regularly updated on site of code 
tables maintained by Markus Grassl [17]. For each pair of parame-
ters n and k, this table contains the distance d of the best known 
code and its theoretical upper bound. In this paper, we are going to 
search for optimal error-Correcting double circulant codes, by the 
exploration of the space by Genetic Algorithms and random search. 
Besides, we will present a new optimization which reduces the com-
plexity. Hence, we propose a technique based on heuristic methods 
to search of good DCC and TCC codes which have not been previ-

ously developed, at our knowledge, for this family of codes. 

The paper is organized as follows: In the beginning, we give back-
grounds about error correcting codes, and the manner of construc-
tion of DCC and TCC codes. Then we introduce genetic algorithms. 
After we give the implementing methods to evaluate minimum dis-
tance, and we improve the MIM method to search good DCC and 
TCC codes. In the last some experimental results and discussion 

are presented. 

Error Correcting Codes (ECC) 

The In this section, we give the basics of error correcting codes, in 
particular we introduce the construction of Double and Triple Circu-

lant error correcting codes (DCC & TCC). 

Error Correcting Codes 

In all communication systems, the information transmitted is repre-
sented via a source code as the ASCII code, Huffman code, etc. 
This source-encoded information is then sent over a Channel, such 
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as a telephone line, optical fiber, microwave link, etc. To have a 
reliable transmission the data are encoded again by using an error 
correcting code that enables the detection and the correction of 
possible errors introduced during the transmission of message [Fig-
1]. Several modes of efficient coding are known: Hamming codes, 

Reed-Solomon codes, etc. 

Fig. 1- A simplified model of communication system. 

There exist principally two classes of error correcting Codes: convo-
lutional codes and block codes. In this paper, we will focus on a 
special case of block codes: double and triple circulant codes (DCC 
& TCC). Let us explain more precisely the background of block 
code. Firstly, Let us suppose now that the information to transmit is 
a sequence of elements which take q possible values, where q is a 
power of the finite field of cardinal p, which is denoted by Fq. In 
general, transmitted symbols are binary; then q=2. Principle of block 
code is the following: the initial message is cut out into blocks of 
length k. The length of the redundancy is n-k and thus, the length of 
the transmitted blocks is n. Main blocks are linear codes. In this 
case, redundancy is computed in such a way as concatenation of 
information and of redundancy is an element of vector space (a 

code) of dimension k of (Fq)n. 

The operation of coding can be computed by multiplying the mes-
sage (considered as a vector of length k) by a k*n systematic gen-
erator matrix of this vector space. Note that a generator matrix is 
called systematic if their k first columns form the identity matrix. For 
a giving code, there exists at most one systematic generator matrix. 
Some codes did not admit a systematic generator matrix. On the 
other hand, all these codes are equivalent (modulo a permutation of 
the positions) to a code which admits one. For a linear code, k and 
n are respectively called the dimension and the length of the code. 
The last parameter of a code is its minimum distance d. It is the 
smallest Hamming distance (the number of distinct components) 
between two codewords. As the considered codes are linear vector 
spaces, their minimum distance is also the Hamming weight (the 
number of nonzero components) of the codeword of smaller ham-
ming weight. The correction capability (the maximum number of 
error that can be corrected per word of length n) of the code is then 

equal to t= (d-1)/2. 

Example 1: Let C be a code of length 8 and dimension 4 over F2 

characterized by its systematic generator G: 

The transmitted codeword corresponding to the message (1101) is: 

(1101) x G = (1101 0100). 

The set all possible messages (information vectors), the corre-

sponding set of codewords and their weight are shown in [Table-1]. 

Table 1- Codewords of a code C (8, 4, 4) 

Double Circulant Codes (DCC) 

An r x r matrix A= [Aij]0≤i,j≤r-1 over an alphabet F is called circulant if 
Aij=A0,j-i for all 0≤ i, j≤ r-1, where indices are computed modulo r. Let 
the notation [n, k, d] stand for a k-dimensional linear code of length 
n and minimum distance d over F, and let r=n-k denotes the redun-
dancy of the code. An [n=2r, k=r, d] linear code over F is called a 
double circulant if its generated matrix G=[I A], where A is an r x r 
circulant matrix over F[2,p. 497]. Double circulant codes have been 
discussed extensively in the literature [2] and a subclass of DCC 
approaches the Gilbert-Varshamov bound [14]. We are interested 
by this family of codes because it contains good codes with a maxi-

mum minimum distance. 

Consider a double circuant code C generated by a matrix [I | A] 
where A= [aij]0≤i,j≤r-1. The vector (a0,…, ar-1) is called the header of 
generator matrix of DCC and I is the identity matrix. With every (a0,

…, ar-1) є Fr, we associate a matrix A= [Aij]0≤i,j≤r-1 as the [Eq-1]: 

  

 

 (1)
  

 

Where (a0, a1,…………….,ar-1) is the header of the A circulant ma-

trix. Each header corresponds to exactly one DCC. 

Example 2: Let C (18, 9, 6) a double circulant where her header 
generator matrix is (011101001) we have the generator matrix G is 

as the following:  
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Message Codeword Weight 

0000 0000 0000 0 

0001 0001 1101 4 

0010 0010 1011 4 

0011 0011 0110 4 

0100 0100 0111 4 

0101 0101 1010 4 

0110 0110 1100 4 

0111 0111 0001 4 

1000 1000 1110 4 

1001 1001 0011 4 

1010 1010 0101 4 

1011 10111000 4 

1100 1100 1001 4 

1101 1101 0100 4 

1110 1110 0010 4 

1111 1111 1111 8 
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There exists other subfamily of Double Circulant codes like the 
bordered double Circulant Codes witch is represented by the form 

described in [Fig-2]. 

Fig. 2- Bordered form of Double Circulant Code 

B = Circulant matrix presented by one header 

Ip = Identity matrix p*p. 

Triple Circulant Codes (TCC) 

The Let the notation [n, k, d] stand for a k-dimensional linear code 
of length n and minimum distance d over F, and let r=n-k denotes 
the redundancy of the code. An [n=3r, k=r, d] linear code over F is 
called a triple circulant if its generated matrix G= [I A B], where A 
and B are two r x r circulant matrices. We are interested by this 
family of codes because by experimentation we found good codes 

with a maximum minimum distance. 

Consider a Triple circuant code C generated by a matrix [I | A | B] 

where A= [aij]0≤i,j≤r-1 and B= [bij]0≤i,j≤r-1. 

The vectors (a0, a1,…, ar-1) and (b0, b1,…, br-1) are called the head-
ers of generator matrix of TCC and I is the identity matrix. With 
every header (a0, a1,…, ar-1) є Fr, we associate a matrix A= [Aij]0≤i,j≤r-

1 and every header (b0, b1,…, br-1) є Fr, we associate a matrix B= 

[bij]0≤i,j≤r-1 as the [Eq-2] and [Eq-3]: 

 

 (2) 

 

  

  

 (3) 

 

Where  

(a0, a1,…………….,ar-1) is the header of the circulant matrix A, and 

(b0, b1,…………….,br-1) is the header of the circulant matrix B. 

Example 3: Let C (27, 9, 6) a Triple circulant code, where its head-
ers of the generator matrix G are a=(011101001) and b=

(110110110), G is as the following : 

 

Genetic Algorithms 

Before, Genetic Algorithms (GA) was first proposed by John Hol-
land’s, as a means to find good solutions to problems that were 
otherwise computationally intractable. Holland’s schema theorem 
[12], and the related building block hypothesis, provided a theoreti-
cal and conceptual basis for the design of efficient GA. It also 
proved straight forward to implement GA due to their highly modular 
nature. As a consequence, the field grew quickly and the technique 
was successfully applied to a wide range of practical problems in 
science, engineering and industry. GA theory is an active and grow-
ing area, with a range of approaches being used to describe and 
explain phenomena not anticipated by earlier theory. In tandem with 
this, more sophisticated approaches for directing the evolution of a 
GA population are aimed at improving performance on classes of 
problem known to be difficult for GA, [12]. The development and 
success of GA contributed greatly to a wider interest in computa-
tional approaches based on natural phenomena. It is now a major 
stand of the wider field of computational intelligence, which encom-
passes techniques such as neural networks, and artificial immunol-
ogy. Genetic algorithms are search methods that can be used for 
both solving problems and modelling evolutionary systems. Since it 
is heuristic (it estimates a solution), GA differs from other heuristic 
methods in several ways. The most important difference is that it 
works on a population of possible solutions; while other heuristic 
methods use another important difference is that GA is not a deter-

ministic but a probabilistic one. 

A genetic algorithm is defined by [Fig-3]: 

Individual or chromosome: a potential solution of the problem, it’s a 

sequence of genes. 

 Population: a set of points of the research space. 

 Environment: the space of research. 

 Fitness function: the function to maximize / minimize. 

Fig. 3- The Basic Structure of Genetic Algorithm  

Encoding of Chromosomes: it depends on the treated problem, the 

famous known schemes of coding are: 

Binary encoding, permutation encoding, value encoding and tree 

encoding. 

The Stochastic Operators are : 

 Selection: replicates the most successful solutions found in a 

population at a rate proportional to their relative quality. 
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 Crossover: Decomposes two distinct solutions and then ran-

domly mixes their parts to form novel solutions. 

 Mutation: Randomly perturbs a candidate solution. In the selec-
tion process, some individuals are selected to be copied into a 
tentative next population. Individual with higher fitness value is 
more likely to be selected. The selected individuals are altered 
by the mutation and crossover and form a new population of 
solutions. The GA is simple yet provides an adaptive and robust 

optimization methodology [13]. 

Evaluators of the Minimum Distance 

In this section, we give some methods previously used to estimate 
the minimum distance of error correcting codes; Multiple Impulse 
Method (MIM) and Genetic algorithm evaluators used by authors for 
some linear block codes [11], and Chen’s Method for Cyclic codes 

[15]. 

Multiple Impulse Method (MIM) 

This method produces a tight minimum distance based on true (low-
weight) codewords found by a fine-tuned local search. the principal 
is injecting a noise iteratively in a multiple random positions, on the 
contrary of error impulse method used by Berrou in [18] where the 
minimum distance is the magnitude of the noise that we inject to the 
‘all zero” codeword’ in one position. In the MIM method the decoded 
word in the output of the Soft-In OSD decoder will be mostly near 
than the “all-zero” codeword, and the minimum distance of the code 
will be the minimum weight of the decoded words. The MIM algo-

rithm described in [11] is as follow: 

MIM Algorithm 

Chen’s Method 

A general result for cyclic codes, due to Chen [15] is the following: 

Theorem 1: Let c be a codeword of a cyclic [n, k] code. Suppose 
that the Hamming weight of c is equal to w. Then there exists a 
cyclic shift of c with exactly     . Nonzero coordinates among its 

first k coordinates. 

Some improvements of this theorem were obtained by Voloch [16]. 
With Chen's theorem, it is then possible to look for code words of 
weight w in a cyclic [n, k] code, given the systematic encoding ma-

trix of the code. 

Let G = [Ik M] be such a matrix where Ik is the identity matrix of size 
k. Then, if a codeword of Hamming weight w exists, it can be ob-
tained by the linear combination of r rows of G. Chen's theorem 
gives then an explicit way to enumerate low weight codewords, 

provided that the number of combinations is not too large. 

More precisely, if we denote aij for 0 ≤ i, j ≤ k the binary element at 
row i and column j of M, then for a given r value, Chen's algorithm 

amounts to enumerating vectors of the form: 

Where    denotes column wise modulo 2 operation. For each of 
these vectors, the Hamming weight is computed. If µ is the mini-
mum value of the obtained Hamming weights, then the minimum 
Hamming weight of codewords obtained by linear combination of r 
rows of G is then r + µ. Doing this, for each possible w (and r) val-
ue, it is then possible to determine the minimum distance of the 
cyclic code generated by matrix G. In this work we use Chen’s The-
orem to minimize the computing of the minimum distance used in 
the genetic algorithm presented in [10]. And we will focus on a spe-

cial case of block codes: double and triple circulant codes. 

Genetic Method to Find the Minimum Sistance 

The steps of the algorithm are organized as follow:  

Description of the Algorithm 

In Step 2.4.1, we use the tournament selection, in that only one of 
two possible parents is preserved to reproduce two children whose 

will be inserted in the next generation. 

Step 2.4.2, in this variant, the crossover operation depends on pc, 
and it is done before the mutation step which is done bit-wise on 
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Inputs: G, the generator matrix 

We assume that dt is in the range [d0,d1] where d0 and d1 are two  

integers. Then dt can be determined as follows: 

Step 1: set Amin=d1+0.5 and dt =n - k 1;nb_test. 

Step 2: For i=1 to nb_test 

Step 2.1: A = d0 – 0.5; 

Step 2.2: Set [(       )=TRUE]; 

Step 2.3: While[(          ) = TRUE] && [A ≤ Amin-1.0 ] 

Step 2.3.1: A = A + 1.0 

Step 2.3.2: For nb_error=error_max to 1 

Step 2.3.3: Subdivide A randomly on nb_error positions 

Step 2.3.3.1: Y ←x (after modulation) +A 

Step 2.3.3.2: OSD decoding of Y → 

Step 2.3.3.3: If (weight(   ) ≤ dt ) then dt = weight(  ) 

Step 2.3.3.4: If(        ) then [(    )=TRUE] 

End for 

End while 

Step 2.4: Amin=A; 

End for 

Output: dt is the minimum distance 

Step 1: randomly generate an initial population 

Seed uniformly, randomly the initial population with a Ni, and where 
each individual is a word of length k with a random weight. We initiate 

the number of generation Ng to 1. 

Step 2: while (Ng < Ngmax) do 

Step 2.1: Compute the fitness of each individual in the population 

An individual i represents an information vector of k bits which is encod-
ed by the generator code to an n-bit code vector. The fitness is the 
weight of the encoded individual if this last is different to zero otherwise, 

the fitness is equal to n as a maximum value. 

f ← weight (coding individual) 

Step 2.2: Sort population in increasing order of fitness 

Step 2.3: select the best Ne individuals in the intermediate population 

Step 2.4: For i=Ne to Ni 

Step 2.4.1: tournament select of two parents p1 and p2 for reproduction 

Step 2.4.2: If ( rand_value < pc ) { Cross p1 and p2 to generate ch1 and 
ch2; Mutate ch1 and ch2 and introduce them in the next population} Else 

introduce p1 or p2 into the next population with equal probability. 

End For 

Step 2.5: Let currbest=fittest of the intermediate population. If(fitness

(best) < fitness(currbest)) best=currbest 

End while 

Step 3: output best 
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offspring with probability pm. In case of no-cross we insert the two 
initials parents in the next generation. We have used three strate-
gies of crossover: a single crossover point, two point crossover, and 
uniform crossover. The two-point Crossover that randomly selects 
two crossover points within a chromosome then interchanges the 
two parent chromosomes between these points to produce two new 
offspring [Fig-4]. The Uniform Crossover uses a fixed mixing ratio 
between two parents. Unlike one- and two-point crossover, the 
Uniform Crossover enables the parent chromosomes to contribute 
the gene level rather than the segment level. An example of this 

operation is depicted in [Fig-5]. 

An Optimization of the Multiple Impulse Method by Genetic 
Algorithms (MIM-GA) 

From the MIM method presented above, we can pose the key ques-
tion bellow: Which values of the parameters A and nb_error are 
good in terms of the minimization which they make on the weight of 
the decoded word by the OSD decoder ? In other words, which is 

the good impulse?  

In this work, we will use a genetic algorithm to find these appropri-
ate values. Consequently, the MIM-GA method will be works as 

follows: 

MIM-GA Algorithm 

Fig. 4- Two-point Crossover structure. 

Fig. 5- Uniform Crossover structure. 

Comparison between MIM and MIM-GA Algorithms 

In order to compare the run times of MIM-GA and MIM algorithms, 
we fixe all the parameters of MIM-GA at the values outlined in the 

[Table-2] below: 

Table 2- Parameters of implementation of Genetic Algorithms  

The [Table-3] and [Table-4] below give the run time in seconds of 
the MIM and MIM-GA algorithms executed for some QR and BCH 
codes in the same computer, This run time is equal to the beginning 
of the algorithm and the moment of finding the lowest weight code-

word.  

Table 3- Comparaison of the Run time of MIM and MIM-GA for 

some QR codes  
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Inputs:  

- The population size Nind 

- The maximum number of generations Ngm 

- The crossover probability pcr 

- The mutation probability pmu 

- The mutation amplitude r 

- The assumed interval [d0,d1] 

- The number of positions nb_error 

Outputs: dt 

Begin 

Step 1: Seed uniformly, randomly the initial population of Nind individu-
als, and where each individual is a word of n genes. Each gene is a reel 
value. These words are obtained by subdividing some random values 
(A between d0 and d1) on nb_error positions. At each individual, the 
modulated zero word is added. We initiate the number of generation Ng 

to 1 and dt to n. 

Step 2: While(Ng < Ngm) do 

Step 2.1: Compute the fitness of each individual in the population 

Step 2.1.1: OSD decoding of the individual → 

Step 2.1.2: f←weight(    ) 

Step 2.1.2: if(f=0) then f←n 

Step 2.1.3: If(f ≤ dt) then dt ← f 

Step 2.2: Sort population in increasing order of fitness 

Step 2.3: insert the best individuals in the current population 

Step 2.4: For i=2 to Nind 

Step 2.4.1: Randomly select two parents p1 and p2 for reproduction 

Step 2.4.2: If ( rand_value < pcr )  

{ Cross p1 and p2 to generate ch;  
 Mutate ch according to pmu and r; 

 introduce ch in the current population } 

Else insert p1 or p2 into the next population with equal probability. 

 End For 

 End while 

Step 3: output dt 

Parameter of GA  value 

Nind  10 

Ngm  10000 

pcr  0.95 

pmu  0.05 

r  0.1 

Crossover type  One point 

Order of the OSD decoder 2 

Mutation of a gene g g←g±r 

QR Code 
Distance by 

MIM 
Distance by 

MIM-GA 
Run time of 

MIM(s) 
Run time of 
MIM-GA(s) 

n=233 k=117 25 25 198 11 

n=241 k=121 31 31 835 218 

n=257 k=129 33 33 5851 980 

n=281 k=141 35 35 40435 94 

n=313 k=157 45 45 51498 7860 

n=337 k=169 51 51 45539 8239 
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Table 4- Comparaison of the Run time of MIM and MIM-GA for 

some BCH codes 

The Table-3] and [Table-4] clearly show that the MIM and MIM-GA 
algorithms give the same value of the estimated minimum distance. 
However, the run time of MIM-GA is much reduced comparing to 

the MIM version.  

Proposed Methods to find Good DCC and TCC 

In order to find good DCC and TCC, we propose two approaches, in 
the first we use genetic algorithms (GA variant) and in the second 

we search randomly good headers (RS variant). 

Genetic Variant using MIM 

All simulations of the GA variant used to discover good codes were 

made with default GA parameters outlined in the [Table-5]. 

The Algorithm of the GA Variant is described as follow 

Table 5- Parameters of implementation of GA variant. 

Good DCC found by Genetic Variant 

The [Table-6] summarizes the good DCC codes that we found by 
the genetic variant, using the multiple impulse method. Where, we 
denote by LB the lower bound, and by UP, the Upper bound of the 

minimum distance of a given parameters of a linear code.  

Table 6- Good DCC codes obtained by GA variant 

Random Search Variant using MIM  

The algorithm of the random search (RS) variant using multiple 
impulse method, we try to discover good codes with best parame-

ters. The algorithm is described as follow: 

Good DCC found by Random Search Variant 

The [Table-7] summarizes the good DCC codes that we found by 

random search variant, using the multiple impulse method and vali-

dated by the chen’s method. 

Good TCC found by Random Search Variant 

The [Table-8] summarizes the good TCC codes that we found by 
random search variant, using the multiple impulse method and vali-

dated by the chen’s method. 
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BCH(n,k,d-design)  
Distance by 

MIM 
Distance by 

MIM-GA 
Run time of 

MIM(s) 
Run time of 
MIM-GA(s) 

BCH(127,64,21) 21 21 10 1 

BCH(127,57,23) 23 23 1 1 

BCH(127,50,27) 27 27 4 1 

BCH(255,71,59) 61 61 530 101 

BCH(255,79,55) 55 55 631 5 

BCH(255,87,53) 53 53 5915 157 

BCH(255,91,51) 51 51 7617 13 

BCH(255,115,43) 43 43 8283 27 

BCH(255,123,39) 39 39 7098 14 

BCH(255,131,37) 37 37 7570 9 

BCH(255,139,31) 31 31 7051 232 

BCH(255,147,29) 29 29 4626 19 

BCH(255,155,27) 27 27 4177 219 

BCH(255,163,25) 25 25 2612 1391 

BCH(255,171,23) 23 23 2847 247 

BCH(255,179,21) 21 21 1653 9 

BCH(255,187,19) 19 19 65 5 

BCH(255,191,17) 17 17 1198 3 

BCH(255,199,15) 15 15 384 1 

1. Generate an initial population, of Ni individuals, each individual is a 
word of weight w³ upper bound-1 where its length is equal to k for 

DCC, and it is equal to 2k for TCC.   

Ng ← 0; fix the value of Ngmax 

2. Make evolve the population: 

 while (Ng<Ngmax): 

 Compute the fitness by MIM of individuals: 

 fitness (individual) =d_MIM(individual) 

 Sort the population by decreasing order of the fitness. 

 m ← fitness (best individual) 

 Copy the best Ne individuals (of big fitness) in the intermediate 

population. 

 For i=Ne to Ni : 

 Select a couple of parents (p1,p2) of individuals among the better. 

 Generate a random number x: 0 ≤x≤1 

 if x < pc then:  

a) Cross p1 and p2 for generate ch1 and ch2 

b) Mute ch1 and ch2 

 Among ch1, ch2 select the word c' of the biggest fitness and insert 

it in the intermediate population.  

 Ng ← Ng + 1. 

Parameter of GA value 

Probability of Crossover 80% 

Probability of Mutation 2% 

Crossover Type 2-point 

Selection type Tournament 

Tournament size 2 

Generation Number 75 

Individuals Number 10000/1000 

DCC Binary Header of a good DCC LB  MIMd UB 

C(202,101) 
101010101100010001100101100101001101000
000110110000000010000010011111000011001
01101011100101001001001 

28 30 46 

C(256,128) 

000011111100010111101110001101111111110
100110101100010101001001001011100101110
000010001110011101001110111101100010010
11111111001 

38 38 58 

C(190,95) 
011100011010101111101110010010010101000
101100001100100011000010001100101110110
00000100000111011 

27 28 44 

Inputs: k, n, Max 

For i= 1 to Max  

generate randomly the header of length k 

Generate the Generator matrix G related to h1. 

Evaluate the minimum distance d of the Code generated by G using 

MIM  

If(d ≥ Lower Bound) save the code  

End For 

Outputs: list of good codes 
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Table 7- Good DCC found using random search variant and validat-

ed by the Chen’s method 

Table 8- Good TCC found using random search Algorithm and 

validated by the Chen’s method 
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 DCC LB MIMd UB by Chen Binary Header of a good DCC  

C(140,70) 22 22 32 22 
1101000010001010110100011011111011101
110110111111011110011100010100110 

C(146,73) 22 22 33 22 
0010010111010100011000000011101010011
111001100110100101000110010100010110 

C(146,73) 22 22 33 22 
1100011011110010111100100000011101000
111001001101011100111100110111110011  

C(160,80) 24 24 36 24 
1110011010110011011011100100011011100
0110111100101111001000000111010001110
010011  

C(190,95) 27 28 44 28 
0111000001101111100011001110110000100
1001001010010001110011011111111001100
110000011000011000001  

C(156,78) 22 22 36 22 
0111010100001100000110100111001100010
1011010101000000010011101101010110100
1110  

C(156,78) 22 22 36 22 
0100000100010001100100110000111011001
0001110100001001001001101100011101011
1110  

C(156,78) 22 22 36 22 
1101110011111011100010111001010101001
1101110111111111111101001001100001111
0010  

C(192,96) 28 28 44 30 
1011000010011000100100010101100100111
0111010001011110000001111100001010101
0011100110101011100010  

C(192,96) 28 28 44 30 
0001000110001010010111001111001110000
0000010111110011101101010110001001010
1110011100100011100111  

C(192,96) 28 28 44 30 
1100001001010001010111011011111010001
0101010001110111001100011010001111000
1010100001100100101011  

C(188,94) 26 27 43 27 
1011110101100110011100010001100001101
0001111000111000111101010000100001001
01011010110000110100  

C(188,94) 26 28 43 30 
0100001110110000010111011010001010111
0011111110001010110000011001100101101
01110011010111010011 

C(188,94) 26 26 43 30 
0000100101001010011110000100111101100
1001000111011010011001001111000110100
10010101011111001100  

C(192,96) 28 28 44 30 
0000001000001000101101001010010110011
1111011111011000001001110110001101011
0101110001010011110000 

C(188,94) 26 27 43 29 
0111100101110100110010001010001110011
1011101010001100010111100000110101001
00000001111110000111 

C(188,94) 26 27 43 28 
1111000100111011111110101011000110011
1100011000110101101000010011101111001
11001010011000101011 

C(188,94) 26 27 43 30 
1010111110001101001110111111011001100
1000011010010101011010111111110000000
00000101100001010101  

TCC Binary Headers of a good TCC  LB MIMd UB by Chen 

C(36,12) 12 12 12 12 
a= 001010011011 
b= 100100000111 

C(42,14) 13 13 14 13 
a= 10010011110000 
b= 00100001010111  

C(45,15) 
a= 110010111000110 
b= 101000100110110 

14 14 15 14 

C(54,18) 
a= 100000010001010010 
b= 000001011101110111 

16 16 18 16 

C(57,19) 
a= 111010100011011010 
b= 000100101100001100 

16 16 19 16 

C(102,34) 

a=010101111100000000101011001
1000100 
b=100001100101001111000000110
0010010 

24 24 32 24 

C(144,48) 

a=100010011000100100010011111
000000000010101011001 
b=011100100000011000010010010
010001100000110000010  

32 32 45 32 

C(186,62) 

a=011111011100000101100011110
01001101110011000111101111000
101101 
b=111111010010011001111101111
11100010101100001001011000101
110110  

38 40 58 40 

C(192,64) 

a=101111011001100111111001010
00000110010110001100101011101
11101110 
b=011000010100101110001011011
10010011111011000111011011111
10011011  

41 42 60 44 

C(192,64) 

a=101001110011010001101110110
01100111000111111110100001011
01110111 
b=110000101010011111001111001
10110111011001100001010010101
10110000  

41 42 60 42 

C(204,68) 

a=101001111110010111111011110
11100000000011000100101110111
001101111010 
b=100001110001001000101101001
11010000110101000011001100001
011000100000 

41 42 62 48 

C(204,68) 

a=001110011001100110110110101
11001001111100010001000100111
000000110010 
b=100001100011111100110110110
00000110011011010110101101011
010101001000 

41 43 62 47 

C(204,68) 

a=111011101000001001100001100
00011100001000111111111110010
110101101010 
b=001011101010111111111110101
01101011111000101001101010010
001101100100  

41 42 62 46 

C(204,68) 

a=100001000010101000010010100
00001111101101101111011010010
000101010001 
b=010110011111010100001111001
01100110010011100000010001000
100001000010  

41 44 62 50 
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Conclusion 

In this paper, we have improved the MIM method in terms of its run 
time and we have proposed two approaches to search good DCC 
and TCC. These techniques have given a high performance based 
on the presented integration of MIM method. Our results show that 
the MIM method explained in this work lead to good DCC and TCC, 
and we have found some codes in this family with a higher mini-
mum distance than the lower bound of a given length and dimen-
sion. Most importantly, the technique proposed is useful also to be 

applied to deal with other type of codes especially non-binary ones. 
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