
Bioinfo Publications 74

FAULT REMOVAL EFFICIENCY IN SOFTWARE RELIABILITY GROWTH MODEL

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012, pp.-74-77.
Available online at http://www.bioinfo.in/contents.php?id=33

PURNAIAH B.1*, RAMA KRISHNA V.2 AND BALA VENKATA KISHORE G.3

Dept. of Computer Science, K.L. University, Guntur, AP, India.
*Corresponding Author: Email- 1purnaiah@gmail.com, 2vramakrishna2006@gmail.com, 3g.kishore841@gmail.com.

Received: February 21, 2012; Accepted: March 06, 2012

Abstract- Software Reliability is defined as the probability of free-failure operation for a specified period of time in a specified environment.
Software Reliability Growth models (SRGM) have been developed to estimate software reliability measures such as number of remaining
faults, software failure rate and Software Reliability. Imperfect debugging models are considered in these models. However, most SRGM
assume that faults will eventually be removed. Fault removal efficiency in the existing models is limited. This paper aims to incorporate the
fault removal efficiency in software reliability growth modeling. In this paper imperfect debugging is considered in the sense that new faults
can be introduced into the software during debugging and the detected faults may not be removed completely.
Keywords- Non-Homogeneous Poisson process (NHPP), Software Reliability Growth Model (SRGM), Fault Removal, Maximum-Likelihood
Estimation, Software Testing, Software Reliability, Software Debugging

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Introduction
over the last two decades modern society has become more in-
creasingly dependent on hardware and software systems. Soft-
ware Reliability is defined as the probability of free failure opera-
tion for a specified period of time in a specified environment.
Since 1970’s many SRGM have been proposed for estimation of
Reliability growth of products during software development pro-
cesses. SRGM are applicable to the late stages of testing in soft-
ware development and can provide information in useful in pre-
dicting and improving reliability of software products. In this paper,
we propose a methodology to integrate a methodology in software
reliability growth model.
We are presents the formulation of the NHPP model addressing
fault removal efficiency and fault introduction rate. The explicit solu-
tion of the mean value function for the proposed NHPP model is
derived. This model considers the learning phenomenon Using an S
-shaped fault detection rate function and introduces a constant fault
introduction rate.
Software Testing is the process of exercising a program with the

specific intent of finding faults prior to delivery to the users. After
testing debugging is performed by programmers to discover high
defects.

Software Reliability Modeling
In the family of Software Reliability models, NHPP Software Relia-
bility models have been widely used in analyzing and estimating
the reliability related metrics of software products in many applica-
tions, such as telecommunications [6],[20] etc. This model consid-
ers the debugging process as a counting process, which follows a
Poisson process with a time dependent intensity function. Existing
NHPP Software Reliability models can be unified into a general
NHPP function proposed by pham etc.[9].The primary task of
using the NHPP models to estimate Software Reliability metrics is
to determine the Poisson mean, which is known as the MVF.
In this section, an NHPP model with fault removal efficiency is
presented. The following are the assumptions for this model:
1. The Occurrence of software failures follows an NHPP.
2. The software failure rate at any time is a function of Fault

Citation: Purnaiah B., Rama Krishna V. and Bala Venkata Kishore G. (2012) Fault Removal Efficiency in Software Reliability Growth Model.
Advances in Computational Research, ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, pp.-74-77.

Copyright: Copyright©2012 Purnaiah B., et al. This is an open-access article distributed under the terms of the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cred-
ited.

Bioinfo Publications 75

detection rate and the number of remaining faultsPresented at
that time

3. When a software failure occurs, a debugging effort will be

initiated immediately with probability .The debugging is S-
independent at each location of the software failures.

4. For each debugging effort, whether the fault is successfully
removed, or not, some new faults may be introduced into the

software system with probability

Assumption 1 is widely accepted assumption. Assumption 2 can
be interpreted as follows: Software failure rate is the number of
residual faults and the average failure rate of a fault. In practice,
once a software failure is reported the review board members will
assign a developer to look into the code. Although the fault that
causes the failure may not be removed immediately, the debug-
ging effort is still initiated. When the developer tries to modify the
code new faults could be introduced to the software.

NHPP Software Reliability model with Fault Removal Efficien-
cy
In this section, fault removal efficiency and fault introduction rate
are integrated into the MVF of an NHPP model. Fault removal
efficiency is defined as the percentage of bugs eliminated by re-
views, inspections, and tests [5]. The MVF that incorporates both
fault removal efficiency and fault introduction phenomenon can be
obtained by solving the system of differential equations as follows:

 (1)

 (2)
Where p represents the fault removal efficiency, which means p%
of detected faults can be eliminated completed during the develop-
ment process. Therefore (1), m(t) represents the expected number
of faults detected by time t and pm(t) then represents the expected
number of faults that can be successfully removed. Existing mod-
els usually assume that p is 100%
The marginal conditions for the differential equations (1) and (2)
are as follows.

 (3)

 (4)
Where a is the number of initial faults in the software system be-
fore testing starts. Most existing NHPP models assume that the
fault failure rate is proportional to the total number of residual
faults. Equation (1) can be deduced directly from assumption 2
and 3. Software system failure rate is a function of the number of
residual faults at any time and the fault detection rate (which can
also be interpreted as the average failure rate of a fault). The ex-
pected number of residual faults is given by

 (5)
Notice, that when P=1 ,the proposed model can be reduced to an
existing NHPP model [17].Equation 2 can also be deduced from

assumption 3 and 4.The fault current rate in software time

at t is proportional to the debugging efforts to the system, which

equals to because of assumption 3.Equation (5) can be
used to derive explicit solutions of (1) and (2).By taking derivates
on both sides of (5),we obtain

or

 (6)

With marginal condition. Hence, the expected number of residual
faults is given by (6) is

 (7)
From (1),the failure rate function can be expressed as follows:

 (8)
Therefore, the explicit expression of the MVF can be obtained as
follows:

 (9)
Using the result in (8),one can also obtain the solution for the fault
content rate function by taking the integral of (2).The fault content
rate function is given by

The Reliability function based on the NHPP is, therefore

 (10)
Where m(t) is given by(9).
Thus, the reliability metrics, i.e. the expected number of residual
faults , software failure rate, and Software Reliability can be esti-
mated from(7),(8) and (10) respectively.

NHPP Model
In this section, we derive a new NHPP model from the general
class of model presented in the previous section. The fault detec-
tion rate function in this model, b(t) is a decreasing function with
inflexion S-shaped curve[11],[12],which captures the learning pro-
cess of the software developers. In the existing model [11],[12]
however the upper bound of the fault detection rate is assumed to
be the same as the learning curve increasing rate. This is for the
purpose of calculation convenience. In this paper, we relax this
assumption and use a different parameter for the upper bound of
fault detection rate. The model also addresses imperfect debug-
ging by assuming faults can be introduced during debugging with

a constant fault introduction probability , .That is

 (11)

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Fault Removal Efficiency in Software Reliability Growth Model

Bioinfo Publications 76

Substituting (11) into (9), we obtain the MVF for the proposed
model as follows:

 (12)
Note ,that the testing time t goes to infinity, m(t) converges to up-

per bound .The expected number of residual faults X(t) is
given by

 (13)
and the software failure rate is

 (14)

Parameter Estimation and Model Comparison

Parameter Estimation: Once the analytical expression for the
MVFm(t) is derived, the parameters in the MVF need to be esti-
mated, which is usually carried out by using the maximum likeli-
hood estimate method.

Model Comparison: Two criteria are used for model comparison.
In this section, we evaluate the performance of the models using
the sum of squared errors (SSE) and

Akaike’s information criterion [1] .Both the descriptive and predic-
tive power of the models are considered. The sum of squared
error is usually used as criterion for comparison goodness of fit
and predictive power.SSE can be calculated as follows:
Where

 Observed number of faults

 Expected number of faults by time estimated by a
Model

K fault index

Another criterion used for model comparison is AIC, which can be
calculated as follows.

AIC=-2*log (likelihood function at its maximum value) +2*N

Where N represents the number of parameters in the model. The
AIC measures the ability of a model to maximize the likelihood
function that is directly related to the degrees of freedom during
fitting, increasing the number of parameters will usually result in a
better fit. AIC criterion takes the degree of freedom into considera-
tion by assigning a model with more parameters a larger penalty.
The lower the SSE and AIC values, the better the model performs.

Table 1-Summary of the Software Reliability Functions and the
Mean Value Functions

Purnaiah B., Rama Krishna V. and Bala Venkata Kishore G.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Bioinfo Publications 77

Model Evaluation and Comparison
In this section, we examine the goodness-of-fit and predictive
power of the proposed model and compare it with the existing
models. The first set of data is documented in Lyu [9]. We need to
separate the data sets into two subsets for the goodness-of-fit test
and predictive power evaluation. As seen from Table I, the pro-
posed model provides the best fit and prediction for this data set
(both the SSE and the AIC values are the lowest among all mod-
els). Furthermore, some instrumental information can be obtained
from the parameter estimation provided by the proposed model.
Software failure rate can be predicted after the parameters are
estimated [5]. Fig. 1 shows the trend of failure rate for the test.
and post-test period. Fig. 2 illustrates the difference between the
post-test failure rates predicted by several existing models listed
in Table and the proposed model. For instance, the failure rate
given by the G-O model is on the optimistic side, due to the follow-
ing two reasons: 1) the G-O model underestimates the expected
number of total faults unlike the proposed model, the G-O model
does not consider the fault removal efficiency. Thus we can see
that the new model has promising technical merit in the sense that
it provides the development teams with both traditional reliability
measures and in-process metrics.

Fig.1- Failure rate for real time control data

we test the predictive power of the new model and other existing
models using four sets of software failure data. Wood [13] studied
eight existing NHPP models based on four data sets that stem
from four major releases of software products at Tandem Comput-
ers, and found that the G-O model performs the best.. In [13],
Wood used a subset of each group of the actual data to fit the
models and then predicted the number of future failures. He then
compared the predicted number of failures with the actual data.
From the SSE values, we can see this proposed model provides a
significant prediction than G-O model. The AIC value for the pro-
posed model is also lower than that of G-O.

Fig. 2- Comparison of the post test failure rates by different mod-
els

Conclusion
This paper incorporates fault removal efficiency into software
reliability growth model. Imperfect debugging is considered in the
sense that not all fault can be removed completely, and new faults
can be introduced while removing existing ones. Both the fault
removal efficiency and the fault introduction function can take a
time-varying form. Data collected from real applications show that
the proposed model provides both, the traditional reliability
measures, and also, some important in-process metrics including
the fault removal efficiency and fault introduction rate. When con-
sidering reliability growth, however, the rate of evolution of the
failure intensity function depends on many factors

References
[1] Akaike H. (1974) IEEE Trans. Automat. Cont., AC-19, 716-

723.
[2] Ehrlich W., Prasanna B., Stampfel J. and Wu J. (1993) IEEE

Softw., 33-42.
[3] Goel A.L. and Okumoto K. (1979) IEEE Trans. Rel., R-28, 206

-211.
[4] A Markovian model for reliability and other performance

measures of software systems (1979) AFIPS Conf., 770-774.
[5] Hossain S.A. and Dahiya R.C. (1993) IEEE Trans. Rel., 42,

604-612.
[6] Jeske D.R., Zhang X. and Pham L. (2001) 12th Int. Symposi-

um Software Reliability Engineering.
[7] Pham H. and Zhang X. (1997) Int. J. Rel., Quality Safety Eng.,

14(3), 269-282.
[8] Pham L. and Pham H. (2000) IEEE Trans. Syst., Man Cybern.

A, 30, 25-35.
[9] Pham H. (2000) Software Reliability, Springer-Verlag.
[10] Yamada S., Ohba M. and Osaki S. (1983) IEEE Trans. Rel.,

TR-12, 475-484.
[11] Yamada S. and Osaki S. (1985) IEEE Trans. Software Eng.,

SE-11, 1431-1437.
[12] Yamada S., Tokuno K. and Osaki S. (1992) Int. J. Syst. Sci.,

23(12).
[13] Wood A. (1996) IEEE Computer, 11, 69-77.
[14] Zhang X., Jeske D.R. and Pham H., (2002) Appl. Stochast.

Models Business Ind., 18, 87-89.
[15] Jones C.(1996) IEEE Computer, 29, 73-74.
[16] Kremer W. (1983) IEEE Trans. Rel., R-32(1), 37-47.
[17] Lyu M., Ed. (1996) Handbook Software Reliability Engineer-

ing.
[18] Ohba M. (1984) IBM J. Res. Develop., 28, 428-443.
[19] Osaki S. and Hatoyama Y., Eds. (1984) Reliability Theory,

Springer-Verlag, 144-162.
[20] Ohba M. and Yamada S. (1984) 4th Int. Conf. Reliability Main-

tainability, 430-436.
[21] Ohtera H. and Yamada S. (1990) IEEE Trans. Rel., 171-176.
[22] Pham H. (1993) Idaho National Eng. Lab., 737.

Fault Removal Efficiency in Software Reliability Growth Model

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

