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Abstract- In this work, a simple and efficient artifact cancellation in ambulatory ECG using adaptive filter is designed for the 
detection of different cardiac diseases like bradycardia, tachycardia, left ventricular hypertrophy and right ventricular 
hypertrophy. Our work is focused on extraction of noise free ECG signal and the real-time implementation of artifacts 
removal techniques.  As ECG signal is very sensitive in nature, and even if small noise mixed with original signal the various 
characteristics of the signal changes, data corrupted with noise must either filtered or discarded, filtering is important issue 
for design consideration of real-time ECG measurement systems. Here we have implemented different adaptive filtering 
algorithms (LMS-Least Mean Square, RLS-Recursive Least Squares) using virtual instrumentation technique to minimize the 
noisy components and to analyze different cardiac diseases like bradycardia, tachycardia, left ventricular hypertrophy and 
right ventricular hypertrophy. Finally the overall performance of LMS and RLS algorithm is also compared according to the 
error signal generated by the techniques. 
Keywords-Ambulatory ECG; Adaptive filter; Virtual Instrumentation; Artifacts; Cardiac Disease; Arrhythmia; Bradycardia; 
Tachycardia; Left and Right Hypertrophy. 
 
INTRODUCTION 
Electrocardiograph (ECG) is a transthoracic 
interpretation of the electrical activity of the heart over 
time captured and externally recorded by skin 
electrodes. It is a noninvasive recording produced by an 
electrocardiography device. ECG is very significant to 
diagnose the heart disease such as myocardial 
ischemia, arrhythmia and cardiac infarction. Recently, 
ECG is used on purpose to keep good health as well as 
to diagnose the heart disease [1]. The oxygen demand in 
the cardiac muscle is different according to the body 
condition. 
The ECG works mostly by detecting and amplifying the 
tiny electrical changes on the skin that are caused when 
the heart muscle "depolarizes" during each heart beat 
[9]. At rest, each heart muscle cell has a charge across 
its outer wall, or cell membrane. Reducing this charge 
towards zero is called de-polarization, which activates 
the mechanisms in the cell that cause it to contract [2]. 
During each heartbeat a healthy heart will have an 
orderly progression of a wave of depolarization that is 
triggered by the cells in the sinoatrial node, spreads out 
through the atrium, passes through "intrinsic conduction 
pathways" and then spreads all over the ventricles. This 
is detected as tiny rises and falls in the voltage between 
two electrodes placed either side of the heart which is 
displayed as a wavy line either on a screen or on paper. 
This display indicates the overall rhythm of the heart and 

weaknesses in different parts of the heart muscle [6]. 
The purpose of the study discussed herein was to 
develop a continuous healthcare system offering greater 
convenience in vital signal monitoring in our daily life. To 
achieve this purpose, we have developed a system that 
monitors ECG, a data rich signal with comprehensive 
use in monitoring a person’s health. Further, this system 
was applied with adaptive signal processing to enable 
continued signal measuring while the subject carries on 
their normal daily routine, freeing the subject from the 
static constraints of conventional vital signal measuring 
processes undergone in medical institutions [3]. 

 
Fig. 1- Normal QRS complex and intervals in two ECG 
pulses 
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ECG signal is a type of electrical signal generated as 
myocardial tissues making up the heart constrict and 
relax under the regulation of the heart’s impulse 
conduction system. Specifically, the waveform derived 
from measuring these types of electrical and biological 
electric generation using external leads is ECG [5]. 
Generally, ECG consists of a P wave, a QRS complex, 
and a T wave. P wave is formed as the atria constrict 
QRS complex forms as the ventricles constrict, and T 
wave is formed as the ventricles relax. The wave that 
forms as the astria relax virtually overlaps entirely with 
the wave generated with the constriction of the ventricles 
and is therefore ignored. “Figure 1” shows an example of 
ECG waveform and the various parameters that can be 
derived from ECG waveform for use in diagnosis and 
health monitoring. Normal ECG signals carry a virtually 
consistent cycle and generate a regular rhythm. 
 
The heart signals from the electrodes are very low level 
signals. To collect correct samples of the raw electrode 
signals a highly sensitive, high CMRR and high slew rate 
amplifier is required. In this work, we have designed a 
high sensitive differential amplifier and a high gain 
amplifier as shown in figure 1. The output of the amplifier 
stage is directly connected to a National Instruments 
DAQ card for the acquisition and adaptive signal 
processing of the raw data. 

 
Fig. 2- Basic circuit connections required for data 
acquisition. 
 
ECG bandwidth between 0.05Hz and 100Hz is used for 
general diagnosis applications, and ECG bandwidth 
between 0.05Hz and 35Hz is used for patient monitoring 
or healthcare purposes. These ECG bandwidths, 
however, can overlap with other elements such as the 
60Hz power supply noise, baseline wandering due to 
respiration, high frequency noises originating from 
various electronic devices and equipments, motion 
artifact from changes in skin-to-lead impedance brought 
on subject movement, and EMG signal of muscle tissue 
movements [4]. Filter set comprising of a high pass filter, 
a low pass filter, and a notch filter is the most commonly 
used method of canceling noise elements embedded in 
the ECG signal. 
 
An adaptive filter is required when either the fixed 
specifications are unknown or the specifications cannot 
be satisfied by time-invariant filters [1]. Strictly speaking 

an adaptive filter is a nonlinear filter since its 
characteristics are dependent on the input signal and 
consequently the homogeneity and additivity conditions 
are not satisfied. In an ECG signal the motion artifacts 
are usually not fixed specifications. That’s why adaptive 
filters are usually implemented for the reduction of 
motion artifacts and other undesired noisy components 
in the usual ECG signal. 
 
ADAPTIVE FILTER 
Discrete-time (or digital) filters are ubiquitous in today’s 
signal processing applications. Filters are used to 
achieve desired spectral characteristics of a signal, to 
reject unwanted signals, like noise or interferers, to 
reduce the bit rate in signal transmission, etc. The notion 
of making filters adaptive, i.e., to alter parameters 
(coefficients) of a filter according to some algorithm, 
tackles the problems that we might not in advance know, 
e.g., the characteristics of the signal, or of the unwanted 
signal, or of a systems influence on the signal that we 
like to compensate. Adaptive filters can adjust to 
unknown environment and even track signal or system 
characteristics varying over time [3]. In a transversal filter 
of length N, as depicted in figure 3, at each time n the 
output sample y[n] is computed by a weighted sum of the 
current and delayed input samples x[n], x[n − 1], . . … 
 

 
Fig. 3- General Block Diagram of Adaptive Filter 
 
Here the output signal y[n] is expressed as the weighted 
sum of input signal. 

 

 

 
(1) 

Here, the CK[n] are time dependent filter coefficients (we 
use the complex conjugated coefficients C*K[n], so that 
the derivation of the adaption algorithm is valid for 
complex signals, too) [7]. This equation re-written in 
vector form, using X[n] = [x[n], x [n − 1] . . . x [n − N + 1] T 
The tap-input vector at time n, C[n] = [C0 [n], C1 [n] . . . 
CN−1 [n]] T the coefficient vector at time n, is 

y[n] = cH[n] x X[n] (2) 
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Both x[n] and c[n] are column vectors of length N, CH[n] 
= (C*) T [n] is the hermitian of vector c[n] (each element is 
conjugated *, and the column vector is transposed T into 
a row vector). In the special case of the coefficients C[n] 
not depending on time n: C[n] = C the transversal filter 
structure is an FIR filter of length N [8]. Here, we will, 
however, focus on the case that the filter coefficients are 
variable, and are adapted by an adaptation algorithm. 
 
2.1. The LMS Adaptation Algorithm 
The LMS (least mean squares) algorithm is an 
approximation of the steepest descent algorithm which 
uses an instantaneous estimate of the gradient vector of 
a cost function [9]. The estimate of the gradient is based 
on sample values of the tap-input vector and an error 
signal. The algorithm iterates over each coefficient in the 
filter, moving it in the direction of the approximated 
gradient [15]. For the LMS algorithm it is necessary to 
have a reference signal d[n] representing the desired 
filter output. The difference between the reference signal 
and the actual output of the transversal filter is the error 
signal [9]. 

e[n] = d[n] – cH[n] x X[n] (3) 
 
A schematic of the learning setup is depicted in figure 4. 
 

 
Fig. 4- LMS Algorithm Based Adaptive Filter Block 
Diagram 
 
The task of the LMS algorithm is to find a set of filter 
coefficients C that minimizes the expected value of the 
quadratic error signal, i.e., to achieve the least mean 
squared error (thus the name) [16]. The squared error 
and its expected value are (for simplicity of notation and 
perception we drop the dependence of all variables on 
time n [8]. 

 

 
(4) 

 

 

 
(5) 

 
Note, that the squared error e2 is a quadratic function of 
the coefficient vector C, and thus has only one (global) 
minimum (and no other (local) minima), that theoretically 

could be found if the correct expected values in eq (5) 
were known. The gradient descent approach demands 
that the position on the error surface according to the 
current coefficients should be moved into the direction of 
the ‘steepest descent’, i.e., in the direction of the 
negative gradient of the cost function J = E (e2) with 
respect to the coefficient vector [7]. 

 
 

(6) 
The expected values in this equation, E (d x) = p, the 
cross-correlation vector between the desired output 
signal and the tap-input vector, and E (xxH) = R, the 
auto-correlation matrix of the tap-input vector, would 
usually be estimated using a large number of samples 
from d and x. In the LMS algorithm, however, a very 
short-term estimate is used by only taking into account 
the current samples: E (dx) ≈ dx, and E (xxH) ≈ xxH, 
leading to an update equation for the filter coefficients 

 
 
Here, we introduced the ‘step-size’ parameter μ, which 
controls the distance we move along the error surface 
[9]. In the LMS algorithm the update of the coefficients, is 
performed at every time instant n, 
 

 
 

(8) 
 
2.1.1. Choice of step-size 
The ‘step-size’ parameter μ introduced in eq.7 controls 
how far we move along the error function surface at each 
update step. “μ” certainly has to be chosen μ > 0 
(otherwise we would move the coefficient vector in a 
direction towards larger squared error). Also, μ should 
not be too large, since in the LMS algorithm we use a 
local approximation of p and R in the computation of the 
gradient of the cost function, and thus the cost function 
at each time instant may differ from an accurate global 
cost function [12]. 
 
Furthermore, too large a step-size causes the LMS 
algorithm to be instable, i.e., the coefficients do not 
converge to fixed values but oscillate [13]. Closer 
analysis [1] reveals, that the upper bound for μ for stable 
behavior of the LMS algorithm depends on the largest 
eigenvalue μmax of the tap-input auto-correlation matrix R 
and thus on the input signal. For stable adaptation 
behavior the step-size has to be 

 

 
(9) 

 
Since we still do not want to compute an estimate of R 
and its eigenvalue, we first approximate μmax ≈ tr(R) 
(tr(R) is the trace of matrix R, i.e., the sum of the 



Ambarish G. Mohapatra and Saroj Kumar Lenka  

45 
Advances in Computational Research 

ISSN: 0975–3273 & E-ISSN: 0975–9085, Volume 3, Issue 1, 2011 

elements on its diagonal), and then – in the same way as 
we approximated the expected values in the cost 
function –tr(R) ≈ ||x[n]||2, the tap-input power at the 
current time n. Hence, the upper bound for μ for stable 
behavior depends on the signal power [14]. 
 

Summary of the LMS algorithm 
 
 Filter operation: y[n] = cH[n]x[n] 

 
 Error calculation: e[n] = d[n] − y[n] 

where d[n] is the desired 
output 
 

 Coefficient 
adaptation: 

c[n+1] = c[n] + μ e*[n] x[n] 

 
2.2. The RLS Adaptation Algorithm 
The other class of adaptive filtering techniques studied in 
this thesis is known as Recursive Least Squares (RLS) 
algorithms. These algorithms attempt to minimize the 
cost function in equation 10.  
 
Where k=1 is the time at which the RLS algorithm 
commences and lambda is a small positive constant very 
close to, but smaller than 1. With values of lambda <1 
more importance is given to the most recent error 
estimates and thus the more recent input samples, this 
results in a scheme that places more emphasis on recent 
samples of observed data and tends to forget the past 
samples [9]. 

 

 
 

(10) 

Unlike the LMS algorithm and its derivatives, the RLS 
algorithm directly considers the values of previous error 
estimations. RLS algorithms are known for excellent 
performance when working in time varying environments 
[10]. These advantages come with the cost of an 
increased computational complexity and some stability 
problems. The block diagram of the RLS algorithm is 
shown in the following figure. 
 

 
Fig. 5- RLS Algorithm Based Adaptive Filter Block 
Diagram 
 

2.3. Comparison of the LMS and RLS Adaptive Filter 
Algorithms 

a. If LMS algorithms represent the simplest and 
most easily applied adaptive algorithms, the 
recursive least squares (RLS) algorithms represents 
increased complexity, computational cost, and 
fidelity. In performance, RLS approaches the 
Kalman filter in adaptive filtering applications, at 
somewhat reduced required throughput in the signal 
processor. 

b. Compared to the LMS algorithm, the RLS 
approach offers faster convergence and smaller 
error with respect to the unknown system, at the 
expense of requiring more computations. 

c. In contrast to the least mean squares algorithm, 
from which it can be derived, the RLS adaptive 
algorithm minimizes the total squared error between 
the desired signal and the output from the unknown 
system. 

d. The signal paths and identifications are the same 
whether the filter uses RLS or LMS. The difference 
lies in the adapting portion. 

e. One interesting input option that applies to RLS 
algorithms is not present in the LMS processes — a 
forgetting factor, λ, that determines how the 
algorithm treats past data input to the algorithm. 

f. When the LMS algorithm looks at the error to 
minimize, it considers only the current error value. 
In the RLS method, the error considered is the total 
error from the beginning to the current data point. 

g. Said another way, the RLS algorithm has infinite 
memory — all error data is given the same 
consideration in the total error. In cases where the 
error value might come from a spurious input data 
point or points, the forgetting factor lets the RLS 
algorithm reduce the value of older error data by 
multiplying the old data by the forgetting factor. 

h. Since 0 ≤λ< 1, applying the factor is equivalent 
to weighting the older error. When λ = 1, all 
previous error is considered of equal weight in the 
total error. As λ approaches zero, the past errors 
play a smaller role in the total. For example, when λ 
= 0.9, the RLS algorithm multiplies an error value 
from 50 samples in the past by an attenuation factor 
of 0.950 = 5.15 x 10-3, considerably deemphasizing 
the influence of the past error on the current total 
error.  

RESULTS AND DISCUSSION 
In the present work, we have taken 1500 samples of 
noisy ECG data and the data were tested with both types 
of adaptive filtering methods (LMS adaptation algorithm 
and RLS adaptation algorithm). The reference signal was 
also taken as 1500 sample. The algorithms were 
developed using LabView and the noisy ECG signal was 
rectified using both types of adaptive technique. 
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3.1. ECG Results With LMS Algorithm 
Using LMS adaptive noise cancellation technique we 
have take 1500 sample of noisy ECG signal as the input 
signal and another 1500 samples of reference ECG 
signal. Both the signals were taken as the input signals 
and we have found out the noise free ECG signal and 
the error signal from the adaptive filter. Figure-6 shows a 
noisy ECG signal taken as input signal for the LMS 
algorithm based adaptive filter. 

 
Fig. 6- Noisy ECG signal taken as input signal for LMS 
adaptive filter 
 
In the figure 7, a reference ECG signal is also taken for 
the adaptive system. The final output (figure 8) shows 
the fast converge output of the LMS algorithm based 
adaptive filter. The error signal is also plotted in the 
figure 9. We can see from the error signal that the 
converge output and error signal for the LMS algorithm 
based adaptive filter is comparable with RLS algorithm 
based adaptive filtering technique. 
 

 
Fig. 7- Reference ECG signal (LMS based adaptive filter) 
 
 

 
Fig. 8- Filtered ECG signal from the LMS based adaptive 
filter 
 

 
Fig. 9- Error signal plotted for LMS based adaptive filter 
 
3.2. ECG Results With RLS Algorithm 
Again an RLS algorithm based adaptive filtering 
technique was also developed and 1500 samples of 
same ECG signal was taken as input signal for the filter. 
We have plotted the noisy ECG signal (Figure 10), 
reference ECG signal (figure 11), Filtered ECG signal 
(figure 12) and the noise signal (figure 13). We can 
compare the results of LMS based adaptive technique 
and RLS based adaptive technique that the error signal 
in the case of RLS method converges more quickly as 
compared to LMS algorithm based technique. Also the 
output of the noise free ECG signal form RLS technique 
is more clearly visible as compared to LMS based 
technique. 
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Fig. 10- Noisy ECG signal taken as input signal for RLS 
adaptive filter 
 

 
Fig. 11- Reference ECG signal (RLS based adaptive 
filter) 

 

 
Fig. 12- Filtered ECG signal from the RLS based 
adaptive filter 
 

 
Fig. 13- Error signal plotted for RLS based adaptive filter 
 

 
Fig. 14- Spectrogram of Noisy ECG Signal 

 

 
Fig. 15- Spectrogram of Reference ECG Signal for 
Adaptive filter 
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Fig. 16- Spectrogram of LMS algorithm based adaptive 
filter ECG output 
 
 

 
Fig. 17- Spectrogram of RLS algorithm based adaptive 
filter ECG output 
 
From the above figures, figure-14 is the spectrogram of 
noisy ECG signal of 1500 samples of data. Figure-15 
shows the spectrogram of reference ECG signal used for 
adaptive filter reference input. In the figure-14, we cab 
observe that the raw ECG signal contains many noisy 
components (frequencies). The figure-16 shows LMS 
algorithm based adaptive filter output, where the noisy 
components are removed. The figure-17 show RLS 
algorithm based adaptive filtering technique, where the 
filtered signal quite equivalent to the reference input and 
the noisy components are better removed as compared 
to LMS based filtering technique. 
 
CONCLUSION 
ECG is one of the major diagnosis methods for every 
heart disease. In this paper we have presented a new 
approach for noise cancellation in raw ECG signal using 
LMS (Least Mean Square) algorithm based adaptive 
filtering and RLS (Recursive Least Squares) algorithm 
based adaptive technique. Both the techniques are 
having its own advantages and disadvantages. From the 

filtered ECG signal we have found that RLS (Recursive 
Least Squares) algorithm is having better convergence 
as compared to LMS. We have observed that the filtered 
ECG signal using RLS method is more equivalent to the 
corresponding reference ECG signal. The main theme of 
this method is to find out the actual ECG pulses from the 
raw noisy signal and the filtered ECG signal can easily 
be passed to a suitable detection algorithm for better 
analysis of arrhythmia like bradycardia, tachycardia; 
abnormalities like left ventricular hypertrophy, right 
ventricular hypertrophy. 
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