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Abstract- During the last two decades solving combinatorial optimization problems, using genetic algorithms 
(GA), has attracted the attention of many researchers. The genetic algorithm on which this work is based on 
uses a special repair operator to prevent the generation of infeasible solutions and to transform each 
feasible solution into a locally optimal solution. In longer runs it is likely that this algorithm produces 
candidate solutions that have already been generated and evaluated before. This effect can significantly 
reduce the algorithm's overall performance. To prevent the reconsideration of already evaluated solutions, a 
solution based on a Trie is studied. This paper presents the algorithms and data structures for compressing 
the Binary Trie and incorporates this in the GA implementation of the Multi Dimensional Knapsack Problem.  
Keywords- Genetic Algorithms, Tries, Performance. 
 
Introduction 
The Multidimensional Knapsack Problem (MKP) 
is a combinatorial optimization problem that is a 
generalization of the well-known 0-1 Knapsack 
Problem. The problem is known to be strongly 
NP-hard which means that no deterministic 
polynomial algorithm is supposed to exist to solve 
the problem [1]. In 1998, Chu and Beasley [1] 
published a (hybrid) genetic algorithm for 
heuristically solving larger instances of the MKP, 
which is still among the best approximate solution 
approaches. As a major feature it includes a 
strong repair and local improvement operator 
which ensures that only promising feasible 
solutions at the boundary of the feasible region 
are produced as candidate solutions. The 
disadvantage of this approach, however, is that in 
longer runs the same solutions are repeatedly 
generated and evaluated many times, and 
valuable CPU-time is wasted. In this work, Chu 
and Beasley's algorithm is enhanced by using 
compressed binary tries a special archive to 
efficiently avoid these re-computations by 
inserting each solution in the archive before 
evaluating it. In digital search methods, the binary 
trie is famous as one of the fastest access 
methods, and is utilized for a hash table of trie 
hashing and a dictionary in natural language 
processing [2],[3]. However, in the case when the 
binary trie is implemented as a hash table of the 
trie hashing, if the key sets to be stored are large, 
the hash table represented by a binary trie is too 
big to store into main memory. Therefore, it is 
very important to compress the binary trie into a 
compact data structure. Then, Jonge et al. [4] 
proposed the method to compress the binary trie 
into a compact bit stream (called the pre-order bit 
stream) by traversing the trie in pre-order. The 
potential benefits of this enhancement of the 
genetic algorithm is investigated and discussed. 
Section 2 presents the method to compress the 
binary trie into the compact bit stream according 
to Jonge et al. Section 3 incorporates the 
algorithm as subroutines in the GA  

 
 
implementation of the Multi Dimensional 
Knapsack Problem. Section 4 provides the 
theoretical evaluation. Finally, our conclusion is 
summarized in section 5. 
 
A Compression Algorithm for Fast Retrieval 
A Trie is a data structure that is suitable to store 
many strings. The name was first suggested in 
[7]. It is a kind of specialized search tree that 
makes use of the string representation of the 
keys to be inserted into the trie. The difference to 
binary search trees is that no node in the Trie 
stores the string that is associated with it, but the 
position of each node relative to the root node 
determines the string that is represented by a 
node. In a Binary trie, the binary sequence 
obtained from the translation of the characters 
into their binary code, is used as the value of the 
key. Namely, the left arc is labeled with the value 
‘0’ and the right arc with the value ‘1’. From this 
reason the binary trie is called the Binary Digital 
Search Tree (BDS tree). A solution can only be 
uniquely identified by a leaf node at the lowest 
level of trie. Even if only one solution is contained 
in the trie all internal nodes on the path from the 
root to the leaf corresponding to the solution 
string are needed to describe the solution. If each 
of leaves in the BDS-tree points to record of only 
one key, the depth of the BDS-tree becomes very 
deep. So as to reduce the depth of the tree, each 
leaf has the address of the bucket, where some 
corresponding keys to the path are stored. When 
the BDS-tree is implemented, the larger the 
number of registered keys, the greater the 
number of nodes in the tree is, and more storage 
space is required. So, Jonge et al.[4] proposed 
the method to compress the BDS-tree into a very 
compact bit stream. This bit stream is called pre-
order bit stream. The pre-order bit stream 
consists of three elements: treemap, leafmap and 
B_TBL. The tree map represents the state of the 
tree and can be obtained by a pre-order tree 
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traversal, where ‘0’ is for every internal node and 
‘1’ is for every bucket visited. The leafmap 
represents the state (dummy or not) of each leaf 
and by traversing in pre-order the corresponding 
bit is set to ‘0’ if the leaf is dummy, otherwise the 
leaf is set to ‘1’.  (Empty buckets and their 
corresponding leaves are called dummies). For 
example, let us consider that the following key 
set B is to be inserted into the BDS-tree.  
B = {cat, bat, job, run, see, son, yak, ink, lap, get} 
If the binary sequence obtained from the 
translation of the internal node of each character, 
where internal codes of a,b,..…z are 1,2,…26 
respectively, into binary numbers of  5 bits is 
used, the corresponding bit strings to be 
registered are as follows. 
cat → 00011 / 00001 / 10100 
bat → 00010 / 00001 / 10100 
job → 01010 / 01111 / 00010 
run → 10010 / 10101 / 01110 
see → 10011 / 00101 / 00101 
son → 10011 / 01111 / 01110 
yak → 11001 / 00001 / 01011 
ink → 01001 / 01110 / 01011 
lap → 01100 / 00001 / 10000 
get → 00111 / 00101 / 10100 
If  B_SIZE is 2, the corresponding BDS-tree for 
the key set B is shown in Fig 1. B_SIZE is used 
to denote the number of keys and records that 
can be stored in one bucket.  

 
Fig. 1- The BDS-tree for key set B 

 
In order to compress the BDS-tree, a particular 
leaf is applied, which does not have any 
addresses for the bucket. This leaf is called 
dummy leaf. Dummy leaf is introduced because 
of the following advantages. First, it satisfies the 
property of binary trees that the number of leaves 
is one more than the number of internal nodes. 
This property underlies the search algorithm 
using the compact data structure. Secondly, if the 
search terminates in a dummy leaf, the search 
key is regarded as a key that does not belong to 
the BDS-tree and no disk access will be needed 
at all. Fig 2. shows the preorder bit stream 
corresponding to the BDS-tree of Fig 1. In order 
to understand the relation between the BDS-tree 
and the pre-order bit stream easily, we indicate 
above the treemap the corresponding internal 

node and leaf number (in the case of the dummy 
leaf, the number is “d”) within the round “()” and 
square “[]” brackets respectively.All the internal 
nodes are represented by “0” and all the leaf 
nodes in a tree map are represented by “1”.  All 
the leaves except for the dummy leaves are 
represented by “1” in leafmap. The search using 
the pre-order bit stream proceeds bit by bit from 
the first bit of treemap going to the right, so that, 
the search is done, traversing the BDS-tree in 
pre-order.   

 
Fig. 2- Pre-order bit stream 

 
The retrieval algorithm using the pre-order bit 
stream as proposed by Jonge et al. [4] is 
presented below. 
 
BDS_RETRIEVE 
Step S-1: {Initialization} 
keypos → 1; 
treepos → 1; 
leafpos → 1; 
Step S-2: {Verification of bit value of the key} 
If the bit pointed by keypos is ‘1’ proceeding to 
Step (S-3) otherwise proceed to Step (S-5). 
Step S-3: {Skipping left subtree in treemap} 
Advance treepos until the number of ‘1’ bits in 
treemap is one more than the number of ‘0’ bits 
and proceed to Step (S-4). 
Step S-4: Advance leafpos by the number of ‘0’ 
bits skipped in treemap from the current treepos. 
Step S-5: {Loop invariant until reaching 
bucket} 
Advance treepos by one, and if the bit pointed to 
by treepos is ‘0’ proceed to step (S-2) after 
advancing keypos by one. 
Step S-6: {Verification of leafmap} 
If the bit of leafmap pointed to by leafpos is ‘0’, 
FALSE is returned. 
Step S-7: {Verification of B_TBL} 
Count the number of ‘1’ bits in leafmap from the 
first bit of leafpos and obtain the bucket number 
indicated by the counted value. If the bucket 
indicated by bucketnum contains the key return 
TRUE, otherwise return FALSE. 
In the above algorithm the following abbreviations 
have been used. 
keypos: A pointer to the current position in 
s_key. 
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treepos : A pointer to the current position in 
treemap. 
leafpos: A pointer to the current position in 
leafmap. 
 
GA based MKP incorporating binary tries  
In longer runs it is likely that the genetic algorithm 
produces candidate solutions that have already 
been generated and evaluated before. This effect 
can significantly reduce the algorithm’s overall 
performance. This is because if the majority of 
the individuals share the same value for a 
chromosome, the chromosome is said to have 
converged and if all the chromosomes have 
converged, the population is said to have 
converged [5][6]. To prevent the reconsideration 
of already evaluated solutions, a solution archive 
based on a trie is studied. Each newly generated 
solution is inserted into this archive. If during 
insertion into the archive a solution is recognized 
to be a duplicate of an already visited solution 
then it is discarded. An approach that detects 
duplicates not only within the current population 
but also among all chromosomes that have been 
generated, has not yet appeared in literature to 
my knowledge. Thus, the genetic algorithm for 
the multidimensional knapsack problem 
incorporating compressed binary trie is presented 
below. 
 
GA_MKP_TRIE 
Step 1: Set t: =0; 
Step 2: P (t): = {S1,S2,….SM}, such that Si = {Jk 
where 1≤ k ≤ n | Jk = {0,1}}  
Step 3: Call subroutine BDS_INSERT for creating 
a trie consisting of all the chromosomes of the 
population generated. 
Step 4: Evaluate P(t) := {f(S1),…….f(SM)}; 
where f(Si) = ∑ fitness Ji where 1≤ i ≤ n | only if Ji 
= 1} 
Step 5: Find S* ∈ P (t) such that f(S*) ≥  f(S) for 

all S∈ P(t) 
Step 6: while t < tmax do 
Step 7: Select {P1,P2}: = Φ (t); 

/* Φ = binary tournament operator */ 

Step 8: Crossover C: = Ωc (P1,P2) 

/* Ωc = uniform crossover operator*/ 

Step 9: Mutate C ← Ωm(C) 

/* Ωm  = mutation operator */ 
Step 10: Evaluate f(C)  
Step 11: If f(C) is unfit then C ← 
GreedyRepair(C)  
Step 12: Call subroutine BDS_RETRIEVE 
If it returns true i.e C ≡ any S ∈P(t) then discard 
C and go to step 7 
else 
call subroutine BDS_INSERT for inserting the 
new key into the trie. 
Step 13: end if 
Step 14: find S’ ∈P (t) such that f(S’) ≤ f(S) for all 

S ∈ P(t) and replace S’ ← C  

/*steady state replacement*/ 
Step 15: if f(C) > f(S*) then 
Step 16:  S* ← C 
Step 17: end if 
Step 18: t ← t+1 
Step 19: end while 
Step 20: return S*, f(S*) 
 
As it is evident from the algorithm, BDS_INSERT 
is a subroutine that has been used for creating 
the archive for storing all the chromosomes that 
are generated in a population. The algorithm for 
creating a binary trie using BDS_INSERT is 
presented below. The GA_MKP_TRIE algorithm 
follows steady state replacement strategy, as the 
initial population created is evolved, by replacing 
single chromosomes by newly generated ones. 
Only one child individual is created at a time and 
this individual replaces the worst individual in the 
population. GreedyRepair operator designed by 
Chu and Beasley [1] is used. It consists of two 
phases. The first part called the DROP phase 
ensures that every solution that was processed 
by this DROP phase is feasible. Each variable is 
examined in ascending order of utility ratios and 
as long as solution is infeasible the current item 
examined is excluded from the solution if it was 
included. The second part called the ADD phase, 
examines all items in decreasing order of utility 
ratios and add each item that is not included in 
the solution as long as no resource constraint 
gets violated. BDS_RETRIEVE is the 
compression algorithm which actually checks 
whether the new chromosome generated is a 
duplicate or not. It has been explained well in 
detail in section 2.   
 
BDS_INSERT 
The method for inserting the new key into the 
BDS-tree is divided into following three cases: - 
Case A) Required Bucket is partially filled 
i.The required bucket is read in. 
ii. The new record inserted into it. 
iii. Bucket is rewritten to disk. 
iv. COUNT incremented by 1. (COUNT keeps 

the check that the number of keys should not 
exceed B_SIZE) 

Case B) Required Bucket is a Dummy. 
i. Dummy bucket is converted into real one. 
ii. Dummy buckets don’t have disk space 

allocated to them, inserting a record in a 
dummy bucket will require allocating a new 
disk bucket. 

iii. Initializing COUNT to 1 
iv. New bucket included in B_TBL at the 

appropriate position. 
Case C) Required Bucket is full 
i. Bucket must be split into two buckets. 
ii. All b+1 keys ( the b keys that previously filled 

the bucket, plus the new one to be inserted) 
are distributed over the two new buckets.  
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Theoretical Evaluation 
A. Storage Requirements 
Bucket addresses are stored in a separate table, 
indexed by bucket number. Fig.2 shows the 
linear representation of the tree of fig.1. A bucket 
number is just the position of its leaf bit in the 
linear representation when zeros (internal nodes) 
are neglected, whereas the bucket address is a 
physical or symbolical address. Associated with 
each tree is a leafmap with as many bits as the 
tree has leaves. For each leaf (bucket) the 
corresponding bit is set to zero if the bucket is 
empty, otherwise the bit is set to 1. When a tree 
search terminates, the bucket number of the 
bucket found is used to index into the leafmap to 
fetch the corresponding bit. If that bit is a ‘1’, the 
bucket found exists; otherwise the bucket is a 
dummy. It is straightforward to calculate the 
number of bits required in the index per bucket in 
the file. If a tree has N buckets (including 
Dummies), it will have 2N-1 nodes total, and thus 
2N-1 bits are needed for its linear representation. 
Thus, each leaf (bucket) requires approximately 2 
bits. If the leaf map is not used, then every 
bucket and every dummy has a slot in B_TBL. In 
B_TBL dummies will have 0’s and buckets will 
contain disk addresses. If the number of bits 
required for representing the address in each 
bucket is A, then the number of bits required per 
bucket is A+2. If a fraction d of all the buckets are 
dummies, the number of bits per nondummy 
bucket is (A+2) / (1-d). If the leafmap is used, the 
number of bits per leaf is increased from 2 to 3, 
but only buckets need a slot in the table for their 
disk addresses, so the total number of bits per 
bucket is A+3 / (1-d ). Clearly, the leafmap 
scheme is to be preferred whenever:  

(A+3) / (1-d ) < (A+2) /(1-d ) 
which occurs whenever d > 1/A. 
 
B. Time Effeciency 
The computational cost of the retrieval algorithm 
BDS_RETRIEVE is linear in the size of the tree. 
During a search the algorithm reads from the 
linear representation all bits up to and including 
the 1 bit representing the bucket (dummy or not) 
finally found. The retrieval algorithm spends its 
time mainly on skipping subtrees. This means 
that on the average about half the bits of the 
linear representation will be read. Clearly, about 
half the bit map will be scanned on the average. 
On the other hand, if no trie structure is 
maintained as in case of algorithm given by chu 
and Beasley [1] then searching for a duplicate in 
a generation where the chromosomes are stored 
in a file would require sequential access i.e. 
reading the entire file sequentially. 
 

Conclusion 
In this paper, a genetic algorithm enhanced with 
binary tries used for detecting duplicates is 
incorporated for solving the multi dimensional 
knapsack problem. Chu and Beasley’s [1] 
algorithm also does duplicate elimination, 
however it detects duplicates that are contained 
in the population at the time of generation of the 
duplicate solution. It is however possible and not 
so unlikely that a candidate solution that was 
replaced by a different solution is generated 
again in later iteration. This kind of duplicate 
occurrence has been detected with the help of 
compressed binary tries. Trie based archive 
BDS_INSERT represents the entire search space 
for the MKP. This enables more opportunities 
how to handle the detection of a duplicate and 
that too in minimum time. As future 
improvements, the GA_MKP_TRIE should be 
modified in such a manner that in case of 
detection of duplicate solution, it generates 
alternative unvisited solution (from the created 
duplicate solution) that is not contained in BDS 
archive. 
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