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 Abstract- Quality inspection is an important aspect of modern industrial manufacturing. In textile industry 
production, automate fabric inspection is important for maintain the fabric quality. For a long time the fabric 
defects inspection process is still carried out with human visual inspection, and thus, insufficient and costly. 
Therefore, automatic fabric defect inspection is required to reduce the cost and time waste caused by 
defects. The development of fully automated web inspection system requires robust and efficient fabric 
defect detection algorithms. The detection of local fabric defects is one of the most intriguing problems in 
computer vision. Texture analysis plays an important role in the automated visual inspection of texture 
images to detect their defects. Various approaches for fabric defect detection have been proposed in past 
and the purpose of this paper is to categorize and describe these algorithms. This paper attempts to present 
the survey on fabric defect detection techniques, with a comprehensive list of references to some recent 
works. The aim is to review the state-of-the-art techniques for the purposes of visual inspection and decision 
making schemes that are able to discriminate the features extracted from normal and defective regions. 
Therefore, on the basis of nature of features from the fabric surfaces, the proposed approaches have been 
characterized into three categories; statistical, spectral and model-based. 
 
1. Introduction 
In textile industry, inspection of fabric defects 
plays on important role in the quality control. 
However, the current inspection task is primarily 
performed by human inspectors and this 
intensive labour cannot always give consistent 
evaluation of products. Fabric Automatic Visual 
Inspection (FAVI) system is an attractive 
alternative to human vision inspection. Based on 
advances in computer technology, image 
processing and pattern recognition, FAVI system 
can provide reliable, objective and stable 
performance on fabric defects inspection. A good 
automated system means lower labor cost [1] 
and shorter production time [2]. There are 
numerous reported works in the past two 
decades during which computer vision based 
inspection has become one of the most important 
application areas. The texture materials can be 
further divided into uniform, random or patterned 
textures. Brazakovic et al. [3] have detailed a 
model based approach for the inspection of 
random textured materials. The problem of 
printed textures (e.g. wall paper scanning, 
ceramic flaw detection and printed fabric 
detection) requires evaluation of color uniformity 
[4] and consistency of printed patterns. Ngan et 
al. [5] have introduced the new regular bands 
(RB) methods which is effective approach for 
pattern texture inspection. This paper focuses on 
the inspection of uniform textured materials and 
presents a survey on the available techniques for 
the inspection of fabric defects. 
 
2. Fabric defects 
Fabric faults or defects are responsible for nearly 
85% of the defects found in the garment industry 
[6]. Manufactures recover only 45-65% of their 
profit from second or off quality goods [7]. It is 
imperative therefore to detect, to identify and to  

 
 
prevent these defects from reoccurring. There 
are many kinds of fabric defects. Much of them 
are caused by machine malfunctions and have 
the orientation along pick direction (broken pick 
yarns or missing pick yarns), they tend to be long 
and narrow. Other defects are caused by faulty 
yarns or machine spoils. Slubs are often 
appeared as point defects; machine oil spoils are 
often along with the direction along the warp 
direction, and they are wide and irregular. An 
automated defect detection and identification 
system enhances the product quality and results 
in improved productivity to meet both customer 
needs and to reduce the costs associated with 
off-quality. Recently, the fault detection is done 
manually after a sufficient amount of fabric has 
been produced, removed from the production 
machine and then batched into larger rolls and 
then sent to the inspection frame. An optimal 
solution for this would be to automatically inspect 
from the fabric as it is being produced and to alert 
the maintenance personnel when the machine 
needs attention to prevent production of defects 
or to change process parameters to prevent 
automatically to improve product quality. This is 
done by identifying the faults in fabric using the 
image processing techniques and then based on 
the dimension of the faults; the fabric is classified 
and then graded accordingly. Nickoloy et al. [8] 
have shown that the investment in the automated 
fabric inspection system is economically 
attractive when reduction in personnel cost and 
associated benefits are considered. 
 
2.1 Texture analysis techniques for fabric 
defect inspection 
Texture is one of the most important 
characteristics in identifying defects or flaws. 
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Figure1.shows some example of defects in 
various fabric materials. It provides important 
information for recognition and interpolation. In 
facts, the task of detecting defects has been 
largely viewed as a texture analysis problem. 
With reference to several texture analysis survey 
papers [9-14], we categorized texture analysis 
techniques use for visual inspection into four 
ways: statistical approaches, structural 
approaches, filter based approaches and model 
based approaches. A variety of techniques for 
describing image texture have been proposed in 
the research literature. M. Tuceryan and Jain 
[15], on the other hand, defined five major 
categories of features for texture analysis: 
statistical, geometrical, structural, model based 
and signal processing features. Geometrical and 
structural methods try to describe the primitives 
and the rules governing their special organization 
by considering texture to be composed of texture 
primitives .These two approaches have not been 
attempted in fabric defect detection, mainly due 
to the stochastic variations in the fabric structures 
(due to elasticity of yarns, fabric motion, fiber 
heap, noise etc.) which poses severe problems in 
the extraction of texture primitives from the real 
fabric samples. Therefore, in this paper the 
proposed defect detection techniques have been 
classified in three categories: statistical, spectral 
and model-based. Table 1 shows a summary list 
of some of the key texture analysis method that 
have been applied to defect detection. 
 

 
       (a)              (b)      (c)             (d) 

Fig. 1- Fabric defect samples: (a) Double yarn; 
(b) Missing yarn; (c) Broken yarn; (d) Variation of 
yarn 
 
3. Statistical approaches 
Statistical texture analysis methods measure the 
spatial distribution of pixel values. An important 
assumption in this approach is that the statistics 
of defects free regions are stationary, and these 
regions extend over a significant portion of 
inspection images. Statistical methods can be 
classified into first- order (one pixel), second- 
order (two pixels) and higher- order (three or 
more pixels) statistics based on a number of 
pixels defining the local features. The first -order 
statistics estimate properties like the average and 
variance of individual pixel values, ignoring the 
spatial interaction between image pixels, second-
and higher order statistics on the other hand 
estimate properties of two or more pixel values 
occurring at specific locations relative to each 
other. The defect detection methods employing 

texture features extracted from fractal 
dimensions, first order statistics, cross 
correlation, edged detection, morphological 
operations, co-occurrence matrix, eigenfilters, 
rank order functions, and many local linear 
transforms have been categorized into this class. 
 
3.1 Defect detection using co-occurrence 
matrix features 
The co-occurrence matrix method, known also as 
the spatial gray-level dependence method, has 
been widely used in texture analysis. It is based 
in repeated occurrences of different grey level 
configurations in a texture. Automatic visual 
inspection techniques for textured images 
generally compute a set of textural features in the 
spatial domain or in the spectral domain. Siew 
and Hogdson [16] presented the assessment of 
carpet wear using Spatial Gray Level 
Dependence Matrix (SGLDM), neighboring Gray 
Level Dependence Matrix (GLDM), Gray Level 
Difference method (GLD), and the Gray Level 
Run Length Method. Also it has been applied to 
wood inspection [17], surface defect detection 
[18], and fabric defect detection [19]. The original 
investigation into SGLDM features was pioneered 
by Haralick et.al. [20]. Texture features, such as 
energy, entropy, contrast, homogeneity, and 
correlation are then derived from the co-
occurrence matrix. However only six of such 
features have been used for the defect detection 
on wood and fabric defect detection has been 
shown with only two of these six features. 
Several works have been reported using co-
occurrence matrices to detect defects, such as 
[17, 19, 21, 22, 23] for example in [21] Iivarinen 
et al. applied co-occurrence texture features to 
detecting defects in paper web where the normal 
texture have characteristic frequency. Conners et 
al. [17] have used six features of co-occurrence 
matrix, to identify nine different kinds of surface 
defect in wood. Tsai et al. [19] have detailed 
fabric defect detection while using only two 
features, and achieved a classification rate as 
high as 96%. Rosler [22] has also developed a 
real fabric defect detection system, using co- 
occurrence matrix features, which can maintain 
95% of the defects as small as 1mm2 in size. In 
order to derive maximum texture information 
using co-occurrence matrix, the values parameter 
ө should agree with the orientation of the fabric 
pattern and distance d should be equal to the 
pattern period [24]. Bodnarova el al. [25] have 
examined this issue on the optimal displacement 
vector d for the fabric defect detection. The co-
occurrence matrix features suffer from a number 
of difficulties. It appears there is no generally 
accepted solution for optimising the displacement 
vector [4, 26]. The number of gray levels is 
usually reduced in order to keep the size of the 
co occurrence matrix manageable. For a given 
displacement vector , a large number of features 



Mahajan PM, Kolhe SR and Patil PM 

 

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 
 

20 

can be computed, which implies dedicated 
feature selection procedure .This technique can 
be computationally expensive for the demands of 
a real-time defect inspection system , but  it have 
been exploited in many studies as highly 
accurate technique. 
 
3.2 Defect detection using local linear 
transforms  
Texture properties can be extracted by using 
several bidimensional transform such as Discrete 
Cosine Transform (DCT), Discrete Sine 
Transform (DST), Discrete Hadamard Transform 
(DHT), Karhunen –Loeve Transform (KLT) and 
eigenfiltering. Unser [27] tested different local 
linear transforms for texture classification and 
found KLT as the best algorithm. Also Ade et al. 
[28] compared Laws filters, KLT, DCT and DHT 
for textile defect detection. In their experiments, 
the KLT performance, particularly on larger 
window size, was amongst the best. Neubauer 
[29] has detected fabric defect using texture 
energy features from low mask on 10×10 
windows of inspection images. In his approach, 
three 5x5 Laws masks corresponding to ripple, 
edge, and weave features [30] are used to 
extract histogram features from every window of 
the image. These features are then used for the 
classification of the corresponding window into 
defect-free of defect class, using a three-layer 
neural network. Using eigenvalues of covariance 
matrix as a feature Őzdemir and Ercil [31] have 
implemented fabric defect detection using an 
approach which is a variation of the Karhunen-
Loeve (KL) transform or eigenfilters method. A 
novel scheme of characterizing and classifying 
defects in woven textile fabrics has been 
attempted in [32]. This back propagation based 
neural network coupled with the DCT technique 
can lead to outstanding results for classification 
of various fabric defects. In online fabric 
inspection, the local transforms such as DCT or 
DST could be preferable to eigenfilters or KL 
transforms, since DCT or DST can be directly 
obtained from the camera hardware using 
commercially available chips that perform fast 
and efficient DCT or DST transforms. 
 
3.3 Defect detection using fractal dimension 
(fd) 
Fractal-based texture analysis was introduced by 
Pentland [33]. Voss [34] refers to box counting as 
the process of estimating the probability that m 
points lie in the box. Keller et al. [35] proposed a 
modification of method due to Voss, which 
presents satisfactory results up to FD = 2.75. The 
utilization of fractal dimension is investigated by 
Conci and Proenca [36] for discriminating 
defective areas. The decision for defect 
declaration is based on the variation of FD. This 
method is infact computationally enough to be 
suitable for PC implementation, but presents very 

limited experimental results which suggest 96% 
detection on eight types of defects. The 
localization accuracy of these defected defects is 
very poor and high false alarm.  
 
3.4 Defect detection using edge detection 
Edges can be detected either as micro edges 
using small edge operator masks or as macro 
edges using large masks [37]. The distribution of 
amount of edges per unit area is an important 
feature in the textured images. The amount of 
gray level transitions in the fabric image can 
represents line, edges, spots, ripples and other 
spatial discontinuities. These features have been 
used to detect fabric defects [38, 39, 40 ]. Conci 
and Proenca [39] have used sobel edge 
detection to detect fabric defects and compared 
the results with those based on thresholding and 
fractal dimension.  J.S.Lane [40] has detailed a 
systematic approach to detect fabric defect. [41] 
gives useful approach for the characterization of 
low resolution web surface using facet model. 
These approaches using edge detection are 
suitable for plain weave fabrics imaged at low-
resolution. 
 
3.5 Defect detection using cross-correlation 
Correlation is used for locating features in one 
image that appear in another and therefore 
provides a direct and accurate measure of 
similarity between two images. Any significant 
variation in the values of resulting measure 
indicates the presence of a defect. Bodnarova et 
al. [42] have used the correlation coefficient from 
multiple templates to generate a correlation map 
for defect declaration. The correlation approach 
in [43] yields satisfactory results when detecting 
imperfections in regularly textured backgrounds. 
On the other hand, randomly textured 
backgrounds do not correlate well and 
demonstrate a limitation of this approach. 
 
3.6 Defect detection using bi-level 
thresholding 
Use of gray level thresholding enables to detect 
high contrast defects. The occurrence of a defect 
causes the signal level to rise or fall locally; the 
presence of a peak or trough then indicates a 
defect. This defect is detected when the signal 
crosses a decision threshold. This idea is used to 
detect fabric defects [44, 45] on moving textile 
web. The defect detection can be effective even 
when web is covered by a fine and complex 
pattern. Cho et al. [46] proposed algorithm for 
finding defect in textile fabrics with fine web 
surface which shows 80% recognition rate on 
warp and pick float. The fabric inspection system 
that uses thresholding, proposed by Stojanovic et 
al. [47], gives high detection rate with good 
localization accuracy and low rate of false alarm. 
 



A review of automatic fabric defect detection techniques 

 

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 21 

3.7 Defect detection using morphological 
operations 
Zhang and Bresee [48] have detailed on 
morphological operations for detection of fabric 
defects. The practical utility of this approach is 
limited as most of the commonly occurring fabric 
defects will be missing from the binary image 
generated from the simple thresholding 
operation. Detecting defects morphologically on 
spatially filtered images of fabrics produces better 
results [49], particularly when the fabric is fine 
and contains defect of small size. In their 
experiments the morphological operations are 
only performed on a periodic images defect, 
unlike the case in [48] where the entire structure 
of thresholded fabric image was utilized. 
 
3.8 Defect detection using neural networks 
Neural networks are one of the fastest most 
flexible classifier used for fault detection due to 
their non-parametric nature and ability to 
describe complex decision regions. A new 
approach for the segmentation of local textile 
defects using feed-forward neural network (FFN) 
and also a new low-cost solution for the task web 
inspection using linear neural network is 
presented in [50]. The usefulness of these two 
proposed approaches is shown by experimental 
results obtained from the real fabric defects. 
Hung and Chen [51] have used back propagation 
neural network, with fuzzy logic, to achieve the 
classification of eight different kinds of fabric 
defects along with defect-free fabric. A compact 
fabric inspection system using neural network is 
presented in [52] but is not adequately detailed. 
Recently, H.M.Elragal [53] proposes an 
automated visual inspection system using 
Adaptive Neural Fuzzy Interface System (ANFIS) 
that can detect and classify knitting machine 
fabric defects. [54] Investigates two methods for 
the detection of defects on textured surfaces 
using neural networks and Support Vector 
Machines (SVM). The real-time implementation 
of defect segmentation scheme using FFN is 
computationally costly. Although the real time 
computational complexity of SVM is also similar, 
but do not suffer from the problem of local 
minimum and is computationally simple to train. 
Another analogous work for texture defect 
detection using cellular neural networks is 
detailed in L.Occhipinti [55]. The FFN and SVM 
require training from the known classes of fabric 
defects. Yuen et al. [56], presented a novel 
hybrid model through integration of genetic 
algorithm (GA) and neural network to classify the 
type of garment defects. They developed a 
segmented window technique to segment images 
into several classes using monochrome single-
loop ribwork of knitted garment. Four 
characteristic variables were collected and input 
into a back propagation (BP) neural network to 
classify the sample images. Their experimental 

result shows very high accuracy rate of 
recognition and thus provides decision support in 
defect classification. M. Shi et.al. [57] describes 
an adaptive image-segmentation method based 
on a simplified pulse-coupled neural network 
(PCNN) for detecting fabric defects. They 
introduce a new parameter called the deviation of 
the contrast (DOC) to describe the contrast 
difference in row and column between the 
analyzed image and a defect – free image of the 
same fabric. The simplification of PCNN reduces 
the number of the network parameters by utilizing 
the local and global DOC information for the 
parameter selections. Castilho et al. [58] presents 
a real-time fabric defect detection based 
intelligent techniques. Neural networks (NN), 
fuzzy modeling (FM) based on product – space 
fuzzy clustering and adaptive network based 
fuzzy inference system (ANFIS) were used to 
obtain a clearly classification for defect detection. 
Experimental results for real fabric defect 
detection, shows the usefulness of the three 
intelligent techniques and they further stated that 
NN has a faster performance. Online 
implementation of the algorithms showed they 
can be easily implemented and may be adapted 
to industrial applications without great efforts. 
Recently, another method of textile flaw detection 
and classification based on wavelet 
reconstruction and BP neural network is detailed 
in [59]. They detected two types of textile flaws, 
namely oil stain and hole. For the extraction of 
flaw features, histograms of hole and oil stain are 
computed as the input of BP neural network. 
Their experimental result shows that this method 
can effectively detect defects and classify the 
types of defects with high recognition correct 
rate. 
 
3.9 Defect detection using histogram 
Histogram and the rank function provide exactly 
the same information. Natale [60] has used rank 
order functions for the detection of artificially 
introduced defect in some Brodatz textures [61]. 
H. Kauppines [62] detailed the parquet slab 
grading using cumulative histogram. Defect 
detection in ceramic tile using a set of adaptive 
rank order function is discussed in [63]. The 
colour information in textured images can also be 
used to extract colour histograms and this has 
been used in [64, 65] to detect defects. 
 
4. Spectral approaches 
These are robust and efficient computer-vision 
approaches for fabric defect detection. In this 
approaches texture is characterised by texture 
primitives or texture elements, and the spatial 
arrangement of these primitives [66] .Thus, the 
primary goals of these approaches are firstly to 
extract texture primitives, and secondly to model 
or generalise the spatial placement rules. The 
high degree of periodicity of basic texture 
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primitives, such as yarns in the case of textile 
fabric, permits the usage of spectral features for 
the detection of defects. However, random 
textured images cannot be described in terms of 
primitives and displacement rules as the 
distribution of gray levels in such images is rather 
stochastic. Therefore, spectral approaches are 
not suitable for the detection of defects in random 
texture materials. Various approaches for the 
detection of defects in uniform textured material 
using frequency and spatial- frequency domain 
features have been reported in the literature. In 
spectral- domain approaches, the texture 
features are generally derived from the Fourier 
transform [67, 68], Gabor transform [69, 70] and 
Wavelet transform [71]. They are summarized in 
the following sections. 
 
4.1 Defect detection using discrete fourier 
transform 
The Fourier transform (FT) has the desirable 
properties of noise immunity and enhancement of 
periodic features. The FT characterizes the 
textured image in terms of frequency 
components. The periodically occurring features 
can be observed from the magnitude of 
frequency components. These global texture 
patterns are easily distinguishable as 
concentration of high-energy bursts in the 
spectrum. Liu and Jernigan [72] reviewed a set of 
28 textural features extracted in the Fourier 
spectrum for texture analysis. Escofet et al. [73] 
used the angular correlation of the Fourier 
spectra to evaluate fabric web resistance to 
abrasion. Chan and Pang [74] used the Fourier 
analysis for fabric defect detection. Seven 
textural features extracted from the vertical and 
horizontal frequency components in the Fourier 
spectrum are used to discriminate four defect 
types including double yarn, missing yarn, webs 
and yarn densities. Later, in [75], an approach 
based Fourier transform has been used to detect 
the various types of fabric defects. The central 
spatial frequency spectrum is used, from which 
seven significant characteristic parameters are 
extracted for detecting the type of defect. Further, 
they carried out experiments to detect only two 
classes of defects namely double yarn and 
missing yarn which found to be consistent for a 
number of samples. In [76], the author used the 
Fourier transform to reconstruct textile images for 
the defect detection. The line patterns in the 
textile images, supposed to be defects, were 
taken out by removing high energy frequency 
components in the Fourier domain using a one-
dimensional Hough transform. The difference 
between the restored image and the original 
image were considered as potential defects. A 
similar idea was explored in [77], but low pass 
filtering was used to remove the periodic 
information. The Fourier transform of textile fabric 
can also be obtained in optical domain by using 

lenses and spatial filters. The fabric defect 
detection system using the measurements of the 
first- and the zero-order intensities have been 
developed [78, 79, 80, and 81]. Ciamberlini et al. 
[82] have described the design of spatial filters: a 
fixed filter adaptable for different types of fabric 
and a universal spatial filter for the detection of 
defects in textured materials. Campbell and 
Murtagh [83] have detailed a Windowed Fourier 
transform based method to detect defect on 
denim fabric samples. 
 
4.2 Defect detection using gabor filter 
The Fourier transform is an analysis of the global 
frequency content in the signal, it is not able to 
localise the defective regions in the spatial 
dependency into Fourier analysis is through the 
windowed Fourier transform. If the window 
function is Gaussian, the windowed Fourier 
transform becomes the well known Gabor 
transform, which can be achieving optimal 
localisation in the spatial and frequency domain 
[84]. Jain and Farrokhnia [85] used it in 
segmentation and classification of textures with 
dyadic coverage of the radial spatial frequency 
range. The Gabor filter bank has been 
extensively studied in visual inspection. Kumar 
and Pang [86] perform fabric defect detection 
using only real Gabor functions. Later in [87], 
they used a class of self similar Gabor functions 
to classify fabric defects. They also investigated 
defect detection using only imaginary Gabor 
functions as an edge detector. Bodnarova et al. 
[88] applied a Fisher cost function to select a 
subset of Gabor functions based on the mean 
and standard deviation of the template feature 
images to perform textile flaw detection. Shu et 
al. [89] detailed a method of detecting the fabric 
defects automatically based on multi-channel and 
multi-scale Gabor filtering. It is based on energy 
response from the convolution of Gabor filter 
banks in different frequency and orientation 
domains. Experiments on various simulated 
defect fabric images have shown the 
effectiveness of this method. This method has 
accurate location and fine detection of fabric 
defects. Han and Zhang [90] proposed a fabric 
defect detection method based on Gabor filter 
masks. The performance is evaluated off-line by 
using a group of fabric sample images containing 
many kinds of fabric defects. Their experimental 
result shows accurate defect detection with low 
false alarms. In [91], Gabor filters are designed 
on the basis of the texture features extracted 
optimally from a non-defective fabric image by 
using a Gabor wavelet network (GWN). Their 
result exhibits accurate defect detection with low 
false alarms, showing the effectiveness and 
robustness of the scheme. Gabor wavelet 
transform is applied to detect the defects in 
fabrics [92]. Gabor filter scheme that imitates the 
early human vision process is applied to the 
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sample under construction. The result obtained 
by proper thresholding ensures segmentation of 
the defect, which in turn confirms efficiency of 
this method. Hou and Parker [93] investigate a 
method for detecting defects on textured surfaces 
using a Support Vector Machines (SVM) 
classification approach with Gabor wavelet 
features. Instead of using all the filters in the 
Gabor wavelets, an adaptive filter selection 
scheme is applied to reduce the computational 
cost on feature extraction while keeping a 
reasonable detection rate. Their experimental 
result shows, this method can successfully detect 
and segment defects in texture images. 
 
4.3 Defect detection using wavelet transform 
In the recent past, multiresolution decomposition 
schemes based on wavelet transform have 
received considerable attention as alternatives 
for the extraction of textural features. The 
multiresolution wavelet representation allows an 
image to be decomposed into a hierarchy of 
localized sub images at different spatial 
frequencies. It divides the 2D frequency spectrum 
of an image into a low pass (smooth) sub image 
and a set of high pass (detail) sub images. The 
textural features are then extracted from the 
decomposed sub images in different frequency 
channels and different resolution levels. In [94], 
Sari-Sarraf and Goddard have developed a fabric 
defect detection system that can detect small 
defects with an overall detection rate of 89%. 
Their defect detection scheme uses the low-pass 
and the high-pass ‘Daubechies’ D2 filter [95]. 
Scharcanski [96] used the discrete wavelet 
transform to classify stochastic textile texture. 
Rather using fixed scales, Kim et al. [97] 
employed a learning process to choose the 
wavelet scales for maximising the defect ability of 
fabric defects. Latif-Amet et al. [98] extracted co-
occurrence and MRF-based features from 
wavelet transform coefficients for fabric defect 
detection. Gray level diference-based features 
from sub bands of the wavelet transform were 
also applied in classifying fabric defects. Jasper 
et al. [99, 100] have detailed the design of a 
texture specific wavelet basis filter, which can be 
tuned to a particular texture. The design of 
adaptive orthonormal wavelet bases has been 
shown [101] to achieve the best performance in 
the characterization of fabric defects. Later, in 
[102], the authors detailed the adaptive wavelet – 
based methodology from the use of a single 
adaptive wavelet to multiple adaptive wavelets. 
For each class of fabric defect, a defect – specific 
adaptive wavelet was designed to enhance the 
defect region at one channel of the wavelet 
transform, where the defect region can be 
detected by using a simple threshold classifier. 
This multiple adaptive wavelets method has been 
evaluated on the inspection of 56 images 
containing eight classes of fabric defects, and 64 

images without defects, where 98.2% detection 
rate and 1.5% false alarm rate were achieved in 
defect detection. The detection of fabric defects 
using wavelet packet decomposition and 
Independent Component Analysis has been 
investigated in [103]. Kumar and Gupta [104] 
have used mean and variance of “Haar” wavelet 
coefficient for the identification of surface defects. 
The fabric texture can also be considered as 
noise and removed using wavelet shrinkage. 
Recently, Truchetet and Laligant [105] gave a 
detailed review on wavelet analysis in industrial 
application. On the basis of wavelet and singular 
signal characteristic analysis, Guan et.al. [106] 
presented a new defect detection method based 
on wavelet characteristics. The detail signal 
feature after wavelet decomposition of fabric 
image is extracted, and it is compared with the 
detail signal feature of normal fabric image 
decomposition to determine fabric defects. Their 
experimental result shows the defect detection 
accuracy is over 92.5%. An extracted sub-image 
features approach based on wavelet transition 
with one resolution level and Fourier transform is 
presented in [107]. By using restoration scheme 
of the Fourier transform, the normal fabric 
textures of smooth sub-image in the spatial 
domain are removed by detecting the high-
energy frequency components of sub-image in 
the Fourier domain, setting them to zero using 
frequency-domain filter, and back-transforming to 
a spatial domain sub-image. Then, the smooth 
and detail sub-images are segmented into many 
sub-windows, in which standard deviation are 
calculated as extracted features. These extracted 
features are compared with normal sub-windows 
features to determine whether there exists defect. 
Ngan et.al. [108] have developed the method of 
wavelet preprocesses golden image substraction 
(WGIS) for defect detection on patterned fabric. 
They concluded that the WGIS method provides 
the best detection result. The overall detection 
success rate is 96.7% with 30 defect-free images 
and 30 defective patterned images for one 
common kind of patterned Jacquard fabric. 
 
5. Model-based approaches 
Model - based texture analysis methods are 
based on the construction of an image model that 
can be used not only to describe texture, but also 
to synthesize it. Model-based approaches are 
particularly suitable for fabric images with 
stochastic surface variations (possibly due to 
fiber heap or noise) or for randomly textured 
fabrics for which the statistical and spectral 
approaches have not yet shown their utility. The 
model parameters capture the essential 
perceived qualities of texture. Markov random 
fields (MRF) have been popular for modeling 
images. MRF theory provides a convenient and 
consistent way for modelling context dependent 
entities such as pixels, through characterising 
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mutual influences among such entities using 
condition MRF distribution [109]. Several 
probabilistic models of the textures have been 
proposed and used for defect detection. In [110], 
Cohen et al. used Gaussian Markov Random 
Fields (GRMF) to model defect free textile web. 
The inspection process was treated as a 
hypothesis testing problem on the statistics 
derived from the GMRF model. The images of 
fabric to be inspected are divided into small 
windows in inspection process; a likelihood ratio 
test is then used to classify the windows as non– 
defective or defective. The testing image was 
partitioned into non-overlapping sub-blocks 
where each window was then classified as 
defective or non-defective. Baykut et al. [111] 
implemented this method in a real-time 
application with a dedicated DSP system. In 
[112], the authors showed that MRF based 
methods were competitive in a comparative study 
against other statistical and spectral based 
methods in defect detection. Brzakovic et al. 
[113, 114] discuss a theoretical approach based 
on a poissonian model for inspection of web 
materials. The inspection objective is to quantify 
the randomness and homogeneity across the 
material. Campbell et al. [115] detects an 
alignment pattern in preprocessed images via 
model based clustering and uses an approximate 
Bayes factor to assess the evidence for the 
presence of a defect. 
 
6. Comparative studies 
A classification of fabric defect detection 
techniques is shown in Table 1. The statistical 
and structural approaches have been in favour in 
terms of the amount of research reported. It is 
also worth noting that the categorisation of 
texture analysis techniques used for fabric defect 
detection as describe above and listed in table 1 
is not a crisp classification. There are several 
comparative studies in the literature that evaluate 
texture analysis methods in applications to fabric 
defect detection. It must be noted that different 
studies use different datasets and possibly 
different parameter settings. Also resolution of 
the acquired images is an important factor in 
selecting the suitability of an approach for the 
defect detection. Therefore comments / 
conclusions on the suitability of some 
approaches, recently cited in the literature, based 
on the image resolution, computational 
complexity, and performance would be useful. 
The approaches discussed in this survey have 
been evaluated on image sample with various 
resolutions. The high resolution images are 
highly suitable for detecting defects with very 
subtle intensity variations, but their use will 
require a high volume of online computations for 
unsupervised defect detection. However, 
supervised defect detection on these high-
resolution images is a real possibility and is 

therefore suggested for its practical usage. 
Ozdemir et al. [116] compared six texture 
features, consisting of MRF, KL transform, 2D 
lattice filters, Laws filters, Co-occurrence 
matrices, and a FFT - based method, for 
detecting textile defects. For each method, the 
effects of various parameters have been 
examined and concluded that, although many of 
the methods gave promising results, texture 
modeling using the 9th order Markov Random 
Field model gave the best results. Also, by 
considering the results obtained with respect to 
speed and reliability, MRF approach seems 
feasible for a real-time factory implementation. 
Also Bodnarova et al. [117] have concluded that 
the optimal Gabor filters (optimized to detect five 
types of defects) perform better than gray level 
co-occurrence matrix, correlation or FFT based 
approaches. However this comparison is very 
limited on a set of 25 images and the information 
about the image resolution is also missing. Lee 
Tin Chi [118], compares the performance of three 
methods which utilize matched masks, wavelet 
transform and neural network for fabric defect 
detection. An evaluation of the performance of 
the methods was conducted on eight classes of 
fabric defects (Broken End, Dirty Yarn, Mispick, 
Netting Multiples, Stack End, Thick Bar, and 
Wrong Draw). In the first method, a multichannel 
filtering bank equipped with five matched mask 
was used. Matched masks are 2-D filters that 
characterize specific texture properties. Using 
this method, 96% of fabric defects were 
successfully detected, and the false alarm rate 
was 6%. The second method employed wavelet 
transform to decompose fabric images into multi-
scales and orientations. During the training stage, 
the parameters to be optimized include the 
rotation angles and the two thresholds applied on 
the horizontal and vertical transformed images. 
Using this method, only 76% of fabric defects 
were identified, and the false alarm rate was 7%. 
The last method took advantage of the fault 
tolerance and learning ability of neural networks. 
They explored the texture structure of defect-free 
images so that feature extraction was conducted 
on repeating units with proper selection of 
locations. For defect images, similar feature 
vectors were extracted and passed to the neural 
network. Using this method, the detection rate 
was as high as 92% and the false alarm rate was 
6%. They further concluded that, the method 
employing matched masks proved the most 
effective in detecting fabric defects. The neural 
network method was next best. The wavelet 
transform method was the least effective, 
because it was only able to detect effectively 
certain classes of fabric defects. Comparative 
studies performed by Randen et.al. [119, 120] 
and Chen et al. [121] indicate that the Gabor 
features in most of the cases outperform the 
other methods regarding the complexity and 
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overall error rate. But the Gabor features suffer 
from a number of difficulties. A major difficulty of 
this method is how to determine the number of 
Gabor channels at the same radial frequency and 
the size of the Gabor filter window in the 
application. Although a solid conclusion cannot 
be drawn to determine the best method for defect 
detection, it is clearly evident that filtering 
approaches, in particular Gabor filtering has been 
more popularly applied in these areas. The 
recent texture inspection approach by 
Chetverikov and Henbury [122] using the 
measure of structural regularity and texture 
antisotropy gives quite convincing experimental 
results. Therefore, a combination of these two 
approaches can offer the best performance for 
textile web inspection and is suggested for future 
investigation and comparison. 
 
7. Conclusion 
The review of fabric defect detection 
methodologies using image processing 
techniques gives us possible trend of this 
application area. These available techniques 
were classified into three categories: statistical, 
spectral and model-based. Although the research 
on visual inspection is diverse and ever-
changing, the following observations can be 
made. 
1. The core ides of these methodologies along 
with their drawbacks / critics were discussed 
whenever known. 
2. Filter bank based methods have been very 
popular in fabric defect detection. The filters can 
be manipulated and designed in all sorts of 
directions and scales to decompose textures in 
order to highlight defects. However, it is notable 
that recent researches suggest contextual 
analysis which directly based on local 
neighbourhoods without dedicated filtering is a 
promising alternative approach. 
3. In order to understand the formation and 
nature of the defects, it is important to be able to 
accurately localise the defective regions rather 
than classifying the surface as a whole. This can 
provide possibilities of classifying the defects and 
further studies of the characteristics of the 
defects. 
4. Due to lack of uniformity in the image 
database, performance evaluation and the nature 
of intended application, is not prudent to explicitly 
declare the best available methods for fabric 
defect detection. Therefore, the effective 
performance evaluation requires careful selection 
of data sets along with its clear definition of 
scope. 
5. The statistical, spectral and model – based 
approaches gives different results and hence the 
combination of the approaches can give better 
results, than either one individually and is 
suggested for future research. There is also a 

need of some standard datasets in order to carry 
out fair comparative analysis. 
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Table 1- In exhaustive list of fabric defect detection methods 
Approach Method References 

1.       Co-occurrence matrix [17, 19, 21, 22, 23, 24, 25] 

2.       Local linear 
transforms 

[27, 28, 29, 30, 31, 32] 

3.       Fractal dimension [33, 34, 35, 36] 

4.       Edge detection [38, 39, 40, 41] 

5.       Cross-correlation [42, 43] 

6.       Bi-level thresholding [ 44, 45, 46, 47] 

7.       Morphological 
operations 

[48, 49] 

8.       Neural networks [50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ] 

9.       Histogram [60, 62, 63] 

Statistical 

  

1.       Discrete Fourier 
transform 

[ 67, 68, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83 ] 

 [69, 70, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93 ] 

       2.    Gabor filter [71, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 
107, 108 ] 

       3.    Wavelet transform 

Spectral 

  

1.       Gauss Markov 
random field 

[109, 110, 111, 112] 

2.       Poissonian model [113, 114] 

3.       Model-based 
clustering 

[115] 

Model 
based 

  

 
 


