
Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009, pp-1-09

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

A Comprehensive Note on Complexity Issues in Sorting Algorithms

Parag Bhalchandra*, Nilesh Deshmukh, Sakharam Lokhande, Santosh Phulari*
*School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS,
India, 431606, Email: pub1976@ rediffmail.com

Abstract- Since the dawn of computing, the sorting problem has attracted a great deal of research. In
past, many researchers have attempted to optimize it properly using empirical analysis. We have
investigated the complexity values researchers have obtained and observed that there is scope for fine
tuning in present context. Strong evidence to that effect is also presented. We aim to provide a useful
and comprehensive note to researcher about how complexity aspects of sorting algorithms can be best
analyzed. It is also intended current researchers to think about whether their own work might be
improved by a suggestive fine tuning. Our work is based on the knowledge learned after literature
review of experimentation, survey paper analysis being carried out for the performance improvements of
sorting algorithms. Although written from the perspective of a theoretical computer scientist, it is
intended to be of use to researchers from all fields who want to study sorting algorithms rigorously.
Keywords: Algorithm analysis, Sorting algorithm, Empirical Analysis Computational Complexity
notations.

1. Introduction
Searching and Sorting are the tasks that are
frequently encountered in various Computer
Applications. Since they reflect fundamental
tasks that must be tackled quite frequently,
researchers have attempted in past to develop
algorithms efficient in terms of optimum
memory requirement and minimum time
requirement i.e., Time or Space Complexities.
Together with searching, sorting is probably the
most used algorithm in Computing, and one in
which, statistically, computers spend around
half of the time performing

 a
. Sorting algorithms

are always attractive because of the amount of
time computers spend on the process of sorting
has always been a matter of research attention.
For this reason, the development of fast,
efficient and inexpensive algorithms for sorting
and ordering lists and arrays is a fundamental
field of computing. By optimizing sorting,
computing as a whole will be faster. When we
look to develop or use a sorting algorithm on
large problems, we came across previous
research literature where it was mentioned
clearly to concentrate on how long the
algorithm might take to run. We discovered
that, the time for most sorting algorithms
depends on the amount of data or size of the
problem and in order to analyze an algorithm,
we required to find a relationship showing how
the time needed for the algorithm depends on
the amount of data. We found that, for an
algorithm, when we double the amount of data,
the time needed is also doubled. The analysis
of another algorithm told us that when we
double the amount of data, the time is
increased by a factor of four. The latter
algorithm would have the time needed increase
much more rapidly than the first. We have
discovered that, some factors other than the
sorting algorithm selected to solve a problem,
affect the time needed for run [1]. It is just
because different people carrying out a solution
to a problem may work at different speeds,
even when they use the same sorting method,
as different computers work at different

speeds. The different speeds of computers
can be due to different "clock speeds”, the
rates at which steps in the program are
executed by the machine and different
"architectures," the way in which the internal
instructions and circuitry of the computer are
organized. Consequently, analysis of sorting
algorithm can not predict exactly how long it will
take on a particular computer. We also found
that, the analysis of efficiency depends
considerably on the nature of the data. For
example, if the original data set is almost
ordered already, a sorting algorithm may
behave rather differently than if the data set
originally contains random data or is ordered in
the reverse direction. The purpose of this
investigation is to magnify analysis of sorting
algorithms considering all possible factors and
make a concise note of it. Our work may be
useful for some applications that seek to
determine which sorting algorithm is the fastest
to sort the lists of different lengths, and, to,
therefore determine which algorithm should be
used depending on the list length. For example
Shell sort should be used for sorting of small
(less than 1000 items) arrays. It has the
advantage of being an in-place and non-
recursive algorithm, and is faster than
Quicksort up to a certain point. For larger
arrays, the best choice is Quicksort, which uses
recursion to sort lists, leading to higher system
usage but significantly faster results. We have
attempted to review the rich body of sorting
literature in accord with their utility and
performance so as to make a critical analysis of
them in order to discover tuning factors. These
factors are intended to help the reader to avoid
wasted efforts in order to produce correct
complexity values. Most of the part of this
paper concentrates on the study of algorithms
for problems in the standard format where both
instances and outputs are finite objects, and
the key metrics are resource usage (typically
time and memory).Several of the suggestions
enunciated here may be somewhat
controversial, but we have, at least elaborated

A Comprehensive Note on Complexity Issues in Sorting Algorithms

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 2

them. Indeed, although there is much common
agreement on what makes good experimental
analysis of sorting algorithms, certain aspects
have been the subject of debate, such as the
relevance of running time comparisons.

2. Background Knowledge
In computer science and mathematics, a
sorting algorithm is an algorithm that puts
elements of a list in a certain order. The most
used orders are numerical order and
lexicographical order. Sorting algorithms are
often prevalent in introductory computer
science classes, where the abundance of
algorithms for the problem provides a gentle
introduction to a variety of core algorithm
concepts. Herein, we restrict the scope of
sorting to ordering of data by a digital
computer. Given a collection of data entries
and an ordering key, sorting deals with various
processes invoked to arrange the entries into a
desired order. Sorting algorithms are of two
types. Internal and External, depending upon
ordering a list of elements residing in primary
storage or secondary storages. There are two
types of each of them viz, the comparative and
the distributive. The comparative algorithms
order the list by making a series of
comparisons of the relative magnitude of the
ordering keys of the elements. The distributive
algorithms order the list by testing a key or a
digit of a key against a standard and collecting
all members of a group together. Group
definitions are then modified so that all
elements and groups are ordered during a last
pass. The performance of comparative
algorithms varies with the number of elements
to be sorted and the permutation of the
elements. The performance of distributive
algorithm varies with the range of the keys and
their distribution. The criteria for measuring the
performance of an ordering algorithm include,
the number of comparisons that must be
performed before the list is ordered, the
number of movements of data on the list before
the list is ordered, the amount of space
required beyond that needed to hold the list,
and the sensitivity to certain kinds of order of
the data. The number of comparisons among
algorithms varies considerably. A minimum
storage algorithm is one that requires little or
no additional storage to perform the ordering.
Algorithmic complexity of sorting algorithm is
generally written in a form known as Big-O
notation, where the O represents the
complexity of the algorithm and a value n
represents the size of the set the algorithm is
run against. For example, O (n) means that an
algorithm has a linear complexity [2]. Generally,
the complexity notational terminology is
covered as in [3]. Research on efficiency
analysis of sorting algorithms [4] uses Big Oh
(O), Omega (Ω) and Theta (Θ) notations to give
asymptotic upper, lower, and tight bounds on
time and space complexity of sorting
algorithms. The best and worst cases in a
given algorithm express what the resource

usage is at least and at most, respectively. An
algorithm's average performance is its behavior
under "normal conditions". In almost all
situations the resource being considered is
running time, but it could also be memory, for
instance. The worst case is most of concern
since it is of critical importance to know how
much time would be needed to guarantee the
algorithm would finish. Let us see how
complexity of a sorting algorithm is measured
[1] .Consider Merge Sort algorithm. The merge
sort function/algorithm (merge sort l) takes a list
l of length n, and does a merge on the merge
sort of the first half of l, and the merge sort of
the second half of l. The stopping condition is
when the list l is of size 0 or 1. Let the merge
function takes two sorted lists l1 and l2. At each
step merge takes the smaller of the head of l1
and the head of l2, and appends it to a growing
list, and removes that element from the list
(either l1 or l2). A merge on lists of length n/2
is O (n).The running time of merge sort on a list
of n elements is then , t(0) = 0 , t(1) = 1 ,
…… t(n) = 2.t(n/2) + c.n , where c.n is the cost
of merging two lists of length n/2, and the term
2t(n/2) is the two recursive calls to merge sort
with lists l1 and l2 of length n/2. Consequently,
 T (n) = 2.t (n/2) + c.n
 = 2. (2. t (n/4) + c.n/2) + c.n
 = 2. (2. (2.t (n/8) + c.n/4) + c.n/2) + c.n
 = 8.t (n/8) + 3.c.n
 A pattern emerges and by
induction on i we obtain

 t (n) = 2^i.t(n/2^i) + i.c.n , Where
the operator ^ is "raised to the power".

If we assume that n is a power of 2 (i.e., 2, 4, 8,
16, 32, generally 2^k) the expansion process
comes to an end when we get t (1) on the right,
and that occurs when i=k, whereupon
 t(n) = 2^k.t(1) + k.c.n
We have just stated that the process comes to
an end when i=k, where n = 2^k. Put another
way, k = log n (to the base 2 of course),
therefore
 t (n) = n + c.n.log n = O(n
log n).
Thus O(n log n) is the threshold value of
complexity of sorting algorithms.
In our work, if the size of unsorted list is (n),
then for typical sorting algorithm, good behavior
is O (n log n) and bad behavior is Ω (n²). The
Ideal behavior is O (n). Sort algorithms which
only use an abstract key comparison operation
always need Ω (n log n) comparisons in the
worst case. Literature review carried out in [5]
indicates the man’s longing efforts to improve
running time of sorting algorithm with respect to
above core algorithmic concepts.
In addition to algorithmic complexity, the speed
of the various sorts can be compared with
empirical data. Since the speed of a sort can
vary greatly depending on what data set it
sorts, accurate empirical results require several
runs of the sort be made and the results
averaged together. We feel that this description

Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande, Santosh Phulari

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

3

is slightly inaccurate, since the running time
can significantly deviate from a precise
proportionality, especially for small n.
Technically, it's only necessary that for large
enough n, the algorithm takes more than an
time and less than bn time for some positive
real constants a , b. Keeping in mind this
discussion on the current practices to analyze
sorting algorithms , we can say that for a given
sorting algorithm, it can be proven that there
exists an order of number which this sorting
algorithm will execute in linear time. However,
for a general case, we agree that, no sorting
algorithm can perform better than n (log n) [6].
At last but not the least , we take an opportunity
to quote that , even though Linear time is often
viewed as a desirable attribute for a sorting
algorithm ,much research has been invested
into creating algorithms exhibiting (nearly)
linear time or better. These researches
included both software and hardware methods.
In the case of hardware, some algorithms
which, mathematically speaking, can never
achieve linear time with the standard
computation model are now able to run in linear
time. We found that there are several hardware
technologies which exploit parallelism to
provide this. An example is associate memory.
[17]

3. Some Light on Proper Tuning of Sorting
Algorithm’s Analysis
In above discussions, by analysis of algorithm
we meant theoretical and algorithmic analysis
only. Generally empirical analysis of sorting
algorithms is considered to be easy, but that it
is in fact difficult and requires a place in
research topics. Empirical analysis of
algorithms is also an important idea in its own
right. Theoretical analysis does not give much
of an idea of how well a given algorithm will
perform in a specific situation [7], empirical
analysis would help here. Empirical analysis is
also important in comparing two algorithms
which may or may not have the same order of
complexity – when would one use one and not
the other. As an example of this consider
Insertion Sort and Quick sort, where for small
input instances Insert Sort could be a better
algorithm to use and is certainly easier to
understand and code (and has a good best
case performance). We believe that the
improvement of efficiency of a sorting algorithm
is a continuing process. A large body of
literature about sorting has been developed as
the result of continuous and intensive work in
the area since the invention of the general-
purpose digital computer. At different times
during the history of sorting, workers in the field
were preoccupied with different problems. In
the late 1950’s, concern was with improved
techniques using tape drives; in the early
1960’s, with efficient methods using minimum
storage space; in the mid 1960’s, with disk-
oriented methods; and currently the industry is
becoming concerned with sorting on parallel
processors and in virtual memory

environments. Work in sorting is progressing
along several lines. Some effort is aimed at
developing greater insight into known
techniques and at discovering more details
about their behavior in different situations. A
second line is the development of improved
techniques. For example, the search for
algorithms combining efficient use of storage
space with a small number of comparisons has
resulted in significantly different techniques
from those that appear as “standard” in the
early literature. Other activity is concerned not
so much with the fundamental techniques of
achieving order but with the environment in
which an ordering process occurs.
Investigations of new kinds of devices, new
data-handling techniques for new devices, new
processor or channel architectures, etc., are
constantly underway. A very thorough
understanding of sorting is based on a usable
knowledge of these disciplines. But the
development of sorting programs is an activity
far more extensive than the development of
sorting algorithms. The worker with little
mathematics or statistics can make important
contributions to the field once he has
understood an algorithm theoretically
developed. Therefore, those who wish only to
find and implement reasonable sort knowledge
need no associated specialized knowledge.
Working descriptions of sorting methods with
usable guides to relative performance exist in
the extensive literature of the field. We feel
that, the contributions made by non
mathematicians may be mere superficial.
Though, many of the articles tend to be
oriented toward statisticians or mathematicians,
there exists sufficient narrative material so that
a programmer or analyst without this
background can familiarize himself with
techniques and alternatives. Thus we are
indulged in a dilemma of authentic work. We
feel that, those who desire to specialize in the
development or analysis of sort algorithms or to
be very careful in their choice of a sort
procedure must have a statistical and
mathematical background. An appreciation of
the derivation, applicability, and generality of
formulas used to project performance requires
concepts of permutation, distribution,
randomness, non parametric tests for
randomness, autocorrelation, etc. Developing
performance analysis methods for new
techniques or new combinations of techniques
requires facility in algebra and calculus.
Algebra is often used to describe sorting
processes. Bounds or limits on performance
are often expressed in the calculus. The past
emphasis among theoreticians on the more
rigorous and theoretical modes of analysis is of
course to be expected. Moreover, it has strong
justifications. To this day it is difficult to draw
useful extrapolations from experimental
studies. Indeed, it was the lack of scientific
rigor in early experimental work that led Knuth
and other researchers in the 1960’s to
emphasize worst- and average-case analysis

A Comprehensive Note on Complexity Issues in Sorting Algorithms

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 4

and the more general conclusions they could
provide, especially with respect to asymptotic
behavior. The benefits of this more
mathematical approach have been many, not
only in added understanding of old algorithms
but in the invention of new algorithms and data
structures, ones that have served us well as
faster machines and larger memories have
allowed us to attack larger problem instances.
Almost all theoretical computer scientists would
choose experimental analysis, but such gets
often treated almost as an afterthought. Indeed,
experimental analysis of sorting algorithms has
been almost common these days to distinguish
between different approaches to analyze
invisible in the theoretical computer science
literature. We saw experimental work
dominates algorithmic research in most other
areas of computer science and related fields
such as operations research. Recently,
however, there has been an upswing in interest
in experimental work in the theoretical
computer science community. This is not
because theorists have suddenly discovered a
love of programming or because they are
necessarily good at it, but because of a
growing recognition that theoretical results
cannot tell the full story about real-world
algorithmic performance. Encouragement for
experimentation has come both from those like
ourselves who are trying to experimenting and
from funding agencies who view
experimentation as providing a pathway from
theory into practice. We are interested in
influences that go in the other direction. How
can theoretician’s concern for asymptotic,
generality, and understanding can help to
derive a more scientific approach and how can
expertise be obtained in the form of fine tuning
from the background in theoretical analysis. It
is this scientific bias that we will be stressing in
this part, while also providing more general
advice for would be can such expertise helps in
doing experimentation? Unfortunately, as many
researchers have already discovered, the field
of experimental analysis of sorting algorithm is
fraught with pitfalls. In many ways, the
implementation of a sorting algorithm is the
easy part. The hard part is successfully using
that implementation to produce meaningful and
valuable (and publishable!) research results.
Although much of what we have to say here is
due to the opportunity to read in the
experimental literature, with special emphasis
on papers about the Sorting Problem, which we
have surveyed as annexed here. Literature
review makes impression that the sorting
algorithms have widely analyzed using criterion
discovered by Baase [8], which are
Correctness, Work done, Space used,
Simplicity or clarity and Optimality. Similarly
Sedgewick [9] devotes a chapter to the
“Implementation of Algorithms” Here he makes
the claim that “it is unfortunately all too often
the case that mathematical analysis can shed
very little light on how well a given algorithm
can be expected to perform in a given

situation”. He stresses the importance of
empirical analysis in this case. He also
advocates the use of empirical analysis in
comparing two algorithms to solve the same
problem – “run both to see which takes longer”.
Moret and Shapiro [10] do not just present
algorithms in pseudocode but give actual
running programs in Pascal. They give three
reasons for doing this. Two of their reasons
have relevance here – that the distance from
the pseudocode description of an algorithm to
its implementation is often considerable and
requires nontrivial decisions; and that where
algorithms with similar asymptotic behaviors
have been proposed for the same problem then
an informed choice can only be made by
implementing and comparing them. Chapter 8
of their book “Sorting: A case study in efficient
coding” gives some insight into the complexity
of the task of empirical analysis. Brunskill and
Turner [11] give a list of some things that the
execution time of a given program will depend
on the CPU ,the compiler , the programming
language ,the way the program is constructed ,
time for disk accesses and other IO , whether
the system is single or multitasking. They do
not discuss in any detail how these things
would / could affect the program or what is
required to understand them. A combined
reading of Baase, Sedgewick, Moret & Shapiro
and Brunskill & Turner create an impression
that the analysis of sorting algorithms carried
out previously mere on theoretical basis or
experimentally emphasizing running time,
suffers a fine tuning. In order to speak correctly
about the complexity aspects, we need to
understand a number of areas and the interplay
between them clearly. This gives some insight
into the difficulty of the problem of correctly
formulating complexity values. This is the
reason why we consider empirical analysis of
sorting algorithms a crucial part of the analysis
of algorithms. Even many course curriculums
on analysis of algorithms expects that topics
like Divide and Conquer, Amortized Analysis,
Greedy Approaches need to be taught through
the perspective of analysis of Sorting
Algorithms. We are of the opinion that beside
above discussions a contribution from
Sedgewick and Flajolet [12] is most important
for proper tuning. In their approach, Sedgewick
and Flajolet made it clear that doing empirical
analysis of sorting algorithms properly is a non-
trivial exercise.
In order to do proper analysis we need to
a. understand the theoretical analysis
b. decide on what should be measured
c. decide on appropriate hardware
d. decide on an appropriate implementation

language
e. decide on appropriate data structures
f. implement the algorithms
g. implement some form of timing device
h. Create the input data sets necessary to

produce the measurements we
need

Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande, Santosh Phulari

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

5

i. measure the performance of the
algorithm on the different input data
sets

j. interpret the results and relate the results
to the theoretical analysis

Few of these tasks are trivial. To deal with
them adequately, knowledge and
understanding of a number of theoretical
concepts / areas is required including
asymptotic notation, probability theory,
machine architecture, programming languages,
compilers, data structures and machine
representation of these, and experimental
statistics. In addition, programming and
presentation skills are necessary to complete
the task successfully. We admire that, it is
essential to be aware of them and to be able to
determine which require more attention in a
particular case. Previous researchers did not
consider all of these aspects in every empirical
analysis and hence those results are rather
relative than absolute. To support our opinion
we consider an example based on the
probability of the number being searched for
being in each position in the list or not in the list
at all. Clearly an understanding of asymptotic
notation and some probability theory is required
to understand this analysis. This implies that, in
our sorting experiments, we must decide that,
for each instance size we need to test every
possibility and then average the resulting
running times for each case. This would be the
most exact thing to do but it would probably not
be practical for any reasonably sized lists. We,
thus, have to try to approximate this average
case performance. This, hence, means making
decisions- which must be clear and well
motivated – about how many cases to test and
how to generate these test cases that too
having an understanding of probability theory
and statistics as well as perhaps knowing about
pseudo-random numbers generators is
essential. In addition, some understanding of
the machine architecture is required to make
sure that we can handle the test cases we
decide on. Once we have made these
decisions we still have lot of other factors to
consider. Since past researchers of sorting
theory have not looked upon this sphere of
intelligence, we doubt in the absolute values.
Further , even though the effective way to
compare how different algorithms perform on a
system, the main disadvantage of empirical
data we have observed , that it is entirely
dependent on the computer where it has been
obtained on. Very different results can arise
from running algorithms on systems as
dissimilar as a mainframe and a cell phone.
Different variables, such as memory,
processor, operating system, and currently
running programs can affect the runtime of the
algorithms. Even though they are kept constant
in an investigation, by always running all the
algorithms on the same system, nonetheless,
we will not come to any system-independent
conclusions. Many research scholars have
restricted their work to Algorithmic best, worst

and average cases. We found that, the average
and worst-case performances are mostly used
in sorting algorithm analysis while best-case
performance is more of a fantasy description of
a sorting algorithm. Computer scientists use
probabilistic analysis techniques, especially
expected value, to determine expected average
running times. Similarly, worst case
performance analysis is often easier to do than
"average case" performance. Determining what
"average input" is a bit difficult, and often that
"average input" has properties which make it
difficult to characterize mathematically.
Similarly, even when a sensible description of a
particular "average case”, which will probably
only be applicable for some uses of the
algorithm, is possible, they tend to result in
more difficult to analyze equations. For many
sorting algorithms, it is difficult to analyze the
average-case complexity. Generally speaking,
the difficulty comes from the fact that one has
to analyze the time complexity for all inputs of a
given length and then compute the average.
This is in fact a difficult task. Researchers have
tackled it by using the incompressibility
method, where we can choose just one input
as a representative input and via Kolmogorov
complexity, we can show that the time
complexity of this input is in fact the average-
case complexity of all inputs of this length [13].
However in our opinion, constructing such a
“representative input” is impossible, but many
times we know it exists and this is sufficient for
the proper analysis. The price of this generality
is exponential complexity; with the result that
many problems of practical interest are
solvable better than mare such knowledge of
sorting. For these reasons, the analysis for
sorting algorithms often considers separate
cases, depending on the original nature of the
data or the method deployed with optional
considerations of the under laying hardware.
We observed that the limitations of
computational capacity prevent them from
being solved in practice. The increasing
diversity in computing platforms motivates
consideration of multi-processor environment.
Literature review suggests that no substantial
efforts were found mentioned regarding
complexity in multiprocessor environment in
past time .Recently, many results on the
computational complexity of sorting algorithms
were obtained using Kolmogorov complexity
(the incompressibility method). Especially, the
usually hard average-case analysis is
amenable to this method. A survey [13] shows
such results about Bubble sort, Heap sort,
Shell sort, with stacks and queues in sequential
or parallel mode. It is also found that the trade-
off between memory and sorting is enhanced
by the increase in availability of computer
memory and the increase in processor speed.
Currently, the prices of computer memory are
decreasing. Therefore, acquiring larger
memory configurations is no longer an
obstacle, making it easier to equip a computer
with more memory. Similarly, every year there

A Comprehensive Note on Complexity Issues in Sorting Algorithms

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 6

is an increase in computer speed. Increasing
computer speed causes acceleration of
comparison based algorithms. Thus knowledge
proved by some researcher for a sorting
algorithm on its complexity can not be
considered absolute as it may be increased or
decreased analogously. We are also of the
opinion that, the programming language and
compiler / interpreter used can also affect the
speed of programs. A research [14] used
Python, but if the algorithms were implemented
in a language such as C, the result would have
probably been much faster sorting, due to C’s
compiled nature over Python’s interpreted
approach. Likewise, if the language the sorting
algorithm is to be implemented with is
particularly efficient for some aspects like
recursion, Quick sort might have gotten a much
smaller runtime. This leads to another limitation
of sorting investigation as past researchers did
not conclude anything about code-independent
algorithms. In our view, the solution to this
drawback would be to use a system-
independent method of analyzing algorithms by
using asymptotic analysis. By obtaining
relevant data from the analysis of algorithms, a
concrete comparison regarding their speed can
be used to obtain system and programming
language independent results. Thus previous
research has limitation of a runtime-based
comparison. Similarly, we found other limitation
of a comparison based on random arrays.
Major sorting algorithms investigated so far are
on purely random arrays. Such analysis may
show the expected time needed for an
algorithm to sort a random list. However, most
of the time lists in computing are not entirely
random. Usually, long lists are not created from
scratch, but rather they are continuously being
created by adding items to it. Therefore, most
unsorted lists in computing will actually be
mostly sorted. This kind of list, however, was
not explicitly studied in any investigation. Apart
from only random and mostly sorted lists,
arrays sorted in reverse order and arrays with
duplicate elements could also have been
investigated to lead to more thorough
conclusions on the best algorithm.

4. Analysis of Sorting Algorithms
In the context of Reviewed Literature and
Discovery of Suggestive Tuning Factors
Keeping in mind discussions of introductory
part, we now speak on complexity issues in
sorting algorithms. Although asymptotic
analysis of the algorithms is touched upon
herein, the main type of comparison discussed
is an empirical assessment based on running
each algorithm against random lists of different
sizes. We have borrowed some readymade
results of known and authentic work [14,15,16]
so as to avoid reparative findings as nothing is
said beyond O(n log n) as far as sorting
algorithms are concerned [6] .This reduces the
length of the paper there by making a concise
representation. For simplicity, we assume that

the common sorting algorithms can be divided
into two classes by the complexity of their
algorithms as,
(n

2
), which includes the bubble, insertion,

selection, and shell sorts , and
(n log n) which includes the heap, merge, and
quick sorts.

A) Bubble Sort
The bubble sort is the oldest and simplest sort
in use. Unfortunately, it’s the slowest one. The
bubble sort works by comparing each item in
the list with the item next to it, and swapping
them if required. The algorithm repeats this
process until it makes a pass all the way
through the list without swapping any items (in
other words, all items are in the correct order).
This causes larger values to "bubble" to the
end of the list while smaller values "sink"
towards the beginning of the list. The bubble
sort is generally considered to be the most
inefficient sorting algorithm in common usage.
While the insertion, selection and shell sorts
also have O (n2) complexities, they are
significantly more efficient than the bubble sort.
A fair number of algorithm purists (which
means they've probably never written software
for a living) claim that the bubble sort should
never be used for any reason. Realistically,
there isn't a noticeable performance difference
between the various sorts for 100 items or less,
and the simplicity of the bubble sort makes it
attractive. The bubble sort shouldn't be used
for repetitive sorts or sorts of more than a
couple hundred items. Clearly, bubble sort
does not require extra memory.

B) Selection Sort
The selection sort works by selecting the
smallest unsorted item remaining in the list,
and then swapping it with the item in the next
position to be filled. The selection sort has a
complexity of O (n

2
). It is simple and easy to

implement and it is Inefficient for large lists, so
similar to the more efficient insertion sort that
the insertion sort should be used in its place.
The selection sort is the unwanted stepchild of
the n

2 sorts. It yields a 60% performance
improvement over the bubble sort, but the
insertion sort is over twice as fast as the bubble
sort and is just as easy to implement as the
selection sort. In short, there really isn't any
reason to use the selection sort - use the
insertion sort instead. The worst case occurs if
the array is already sorted in descending order.
The Selection sort spends most of its time
trying to find the minimum element in the
"unsorted" part of the array. It clearly shows the
similarity between Selection sort and Bubble
sort. Bubble sort "selects" the maximum
remaining elements at each stage, but wastes
some effort imparting some order to "unsorted"
part of the array. Selection sort is quadratic in
both the worst and the average case, and
requires no extra memory. We highlight that
these observations hold no matter what the
input data is. In the worst case, this could be

Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande, Santosh Phulari

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

7

quadratic, but in the average case, this quantity
is O (n log n). It implies that the running time of
Selection sort is quite insensitive to the input. If
you really want to use the selection sort for
some reason, try to avoid sorting lists of more
than a 1000 items with it or repetitively sorting
lists of more than a couple hundred items.

C) Insertion Sort
The insertion sort works just like its name
suggests - it inserts each item into its proper
place in the final list. The simplest
implementation of this requires two list
structures - the source list and the list into
which sorted items are inserted. To save
memory, most implementations use an in-place
sort that works by moving the current item past
the already sorted items and repeatedly
swapping it with the preceding item until it is in
place. Like the bubble sort, the insertion sort
has a complexity of O (n

2
). Although it has the

same complexity, the insertion sort is a little
over twice as efficient as the bubble sort. It is
relatively simple and easy to implement and
inefficient for large lists. Best case is seen if
array is already sorted. It is a linear function of
n. The worst-case occurs; when array starts out
in reverse order .It is a quadratic function of n.
The insertion sort is a good middle-of-the-road
choice for sorting lists of a few thousand items
or less. The algorithm is significantly simpler
than the shell sort, with only a small trade-off in
efficiency. At the same time, the insertion sort
is over twice as fast as the bubble sort and
almost 40% faster than the selection sort. The
insertion sort shouldn't be used for sorting lists
larger than a couple thousand items or
repetitive sorting of lists larger than a couple
hundred items. Since multiple keys with the
same value are placed in the sorted array in
the same order that they appear in the input
array, Insertion sort is stable. This algorithm
does not require extra memory.

D) Shell Sort
Invented by Donald Shell in 1959, the shell sort
is the most efficient of the O (n

2
) class of

sorting algorithms. It is a "diminishing
increment sort", better known as a "comb sort"
to the unwashed programming masses. The
algorithm makes multiple passes through the
list, and each time sorts a number of equally
sized sets using the insertion sort. The size of
the set to be sorted gets larger with each pass
through the list, until the set consists of the
entire list. (Note that as the size of the set
increases, the number of sets to be sorted
decreases.) This sets the insertion sort up for
an almost-best case, run each iteration with a
complexity that approaches O (n). It is efficient
for medium-size lists. It is somewhat complex
algorithm, not nearly as efficient as the merge,
heap, and quick sorts. The function form of the
running time for all Shell sort depends on the
increment sequence and is unknown. For the
above algorithm, two conjectures are n (log n)

2

and n
1.25

. Furthermore, the running time is not

sensitive to the initial ordering of the given
sequence, unlike Insertion sort. The shell sort
is by far the fastest of the N

2
 class of sorting

algorithms. It's more than 5 times faster than
the bubble sort and a little over twice as fast as
the insertion sort, its closest competitor. The
shell sort is still significantly slower than the
merge, heap, and quick sorts, but its relatively
simple algorithm makes it a good choice for
sorting lists of less than 5000 items unless
speed is hyper-critical. It's also an excellent
choice for repetitive sorting of smaller lists.

E) Quick Sort
The quick sort is an in-place, divide-and-
conquer, massively recursive sort. As a normal
person would say, it's essentially a faster in-
place version of the merge sort. The quick sort
algorithm is simple in theory, but very difficult to
put into code .This recursive algorithm consists
of making decisions based on the pivot
element. It then splits the array into two parts -
one with elements larger than the pivot and the
other with elements smaller than the pivot. If
there are one or less elements in the array to
be sorted, then returns immediately. The
efficiency of the algorithm is majorly impacted
by which element is chosen as the pivot point.
The worst-case efficiency of the quick sort, O

(n
2
), occurs when the list is sorted and the left-

most element is chosen. Randomly choosing a
pivot point rather than using the left-most
element is recommended if the data to be
sorted isn't random. As long as the pivot point
is chosen randomly, the quick sort has an
algorithmic complexity of O (n log n). It is
extremely fast. It is very complex algorithm,
massively recursive. The running time of quick
sort depends on whether partition is balanced
or unbalanced, which in turn depends on which
elements of an array to be sorted are used for
partitioning. A very good partition splits an
array up into two equal sized arrays. A bad
partition, on other hand, splits an array up into
two arrays of very different sizes. The worst
partition puts only one element in one array
and all other elements in the other array. If the
partitioning is balanced, the Quick sort runs
asymptotically as fast as merge sort. On the
other hand, if partitioning is unbalanced, the
Quick sort runs asymptotically as slow as
insertion sort. The best thing that could happen
in Quick sort would be that each partitioning
stage divides the array exactly in half. The
quick sort is by far the fastest of the common
sorting algorithms. It's possible to write a
special-purpose sorting algorithm that can beat
the quick sort for some data sets, but for
general-case sorting there isn't anything faster.
We conclude with an observation. It has been
brought to our notice that the empirical data
obtained reveals the speed of each algorithm,
from slowest to fastest , for a sufficiently large
list, ranks as 1) Quicksort , 2)Shell sort , 3)
Selection sort , 4)Insertion sort , 5)Bubble sort.
There is a large difference in the time taken to
sort very large lists between the fastest two and

A Comprehensive Note on Complexity Issues in Sorting Algorithms

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 8

the slowest three. This is due to the efficiency
Quicksort and Shell sort have over the others
when the list sorted is sufficiently large. Also,
the results show that for a very small list size,
only selection sort and insertion sort are faster
than Quick and Shell sort, and by a very small
amount. It should also be noted that Quicksort
is eventually faster than Shell sort, though it is
slower for small lists. In a practical sense, the
difference between the speeds of Quicksort
and Shell sort are not noticeable unless the list
is very large (has over 1000 items). For very
small lists, the difference between all the
algorithms is too small to be noticeable.
However, Shell sort is much less system-
intensive than Quicksort because it is not
recursive. Considering all this, for lists
expected to be less than 1000 items, Shell sort
is the optimal algorithm. It is in- place, non-
recursive, and fast, making it sufficiently
powerful for everyday computing. For lists
expected to be very large (for example, the
articles in a news website’s archive, or the
names in a phonebook) Quicksort should be
used because, despite its larger use of space
resources, it is significantly faster than any
other of the algorithms in this investigation
when the array is sufficiently large

5. Epilogue
Past researches on sorting algorithms have
more emphasis on theoretical and empirical
analyses. We regret that the algorithmic study
based mere on time of execution of sorting
random lists alone is not complete. Although
speed of algorithms is a very important factor, it
is not the only factor that must be taken into
account when comparing sorting algorithms
and saying that “X” is faster than “Y” and hence
recommended for a “Z” situation. There are
many other aspects that need to be taken into
account, such as memory usage, CPU usage,
algorithm correctness, code reusability, et
cetera. Though sorting algorithms are blazingly
fast, that speed comes at the cost of
complexity. Recursion, advanced data
structures, multiple arrays, etc make extensive
use of those nasty things. Keeping note of
these points, we have identified some
intelligent tuning factors. Through our extended
paper, we have come with a new perspective to
do a comparison of these factors so as to
determine which algorithm, as a whole, is most
efficient. But as with everything else in the real
world, there are trades-offs so do with the
sorting algorithms. Thus knowledge proved by
some researcher for a sorting algorithm on its
complexity can not be considered absolute as it
may be increased or decreased analogously.

Conclusion
In our paper, asymptotic analysis of the
algorithms is mainly touched upon and efforts
are made to point out some deficiencies in
earlier work related to analysis of sorting
algorithms. Till today, sorting algorithms are
open problems and in our view, complexity

research regarding sorting algorithm, up to
some extent, is the momentarily belief among
people. These researches are not absolute as
their results are specific some factors
discussed herein. We have shown that, every
sorting algorithm can undergo a fine tuning with
the intelligence aspects we have discovered so
as to gain significant reduction in complexity
values. The important thing we want to share
is to forget the prejudice i.e., pick the sorting
algorithm that we think is most appropriate for
the task at hand, there by neglecting its
literature values as those values are not
absolute, rather relative. We are aware that the
efficiency gain will not go beyond O (n log n),
but hopeful enough to reduce complexities by
using intelligent tactics , for example, there
could be a smooth transition from quadratic
complexity to linear one observed in
comparative sorts due to intelligently using
linked lists instead of arrays to hold data . This
drastically reduce the space requirement
since no need to swap the data as we need to
change the pointers only , there by keeping the
contents of nodes , the same . We have also
showed that the choice of sorting algorithm is
not a straight forward matter, as a number of
issues may be relevant. It may be the case that
an O (n*n) algorithm is more suitable than an O
(n log n) algorithm. Some factors may be the
quality of object code, computing platforms
available, size of objects to be swapped,
number of times algorithm is to be used versus
time to develop (if not already in place),
criticality of run time (maybe we don't care),
size of input.

References

[1] Joyannes Aguilar, 2003, 360
[2] Darlington J. (1978) Acta Inf. II, 1-30.
[3] Andersson T., Nilsson H.S. and Raman

R. (1995) Proceedings of the 27
th

Annual ACM Symposium on the
Theory of Computing.

[4] Liu C. L. (1971) Proceedings of Switching
and Automata Theory, 12

th
 Annual

Symposium, East Lansing, MI, USA ,
207-215.

[5] Sedgewick (1997) Talk presented at the
Workshop on the probabilistic analysis
of algorithms, Princeton.

[6] Nilsson S. (2000) Doctor Dobbs Journal.
[7] Richard Harter. (2008) ERIC Journal

Number 795978, Computers &
Education, v51 n2, 708-723.

[8] Baase S., Computer Algorithms:

Introduction to Analysis and Design,
Addison Wesley, Reading,
Massachusetts, second edition, 1988.

[9] Sedgewick R., Algorithms, Addison-
Wesley, Reading, MA, second edition,
1988.

[10] Moret B.M. E., Shapiro H. D., Algorithms
from P to NP: Volume I, Design and
Efficiency, Benjamin Cummings,
Redwood City, CA, 1991.

Parag Bhalchandra, Nilesh Deshmukh, Sakharam Lokhande, Santosh Phulari

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

9

[11] Brunskill D. Turner J. (1997)
Understanding Algorithms and Data
Structures, MCGraw-Hill,
Maidenhead, England.

[12] Sedgewick R., Flajolet P. An Introduction
to the Analysis of Algorithms,
Addison-Wesley, Reading, MA, 1996.

[13] Paul Vitanyi (2007) Analysis of Sorting
Algorithms by Kolmogorov Complexity
(A Survey), appeared in Entropy,
Search, Complexity, Bolyai Society
Mathematical Studies, Eds., Springer-
Verlag, 209—232.

[14] Juliana Pena Ocampo, An empirical
comparison of the runtime of five
sorting algorithms, International
Baccalaureate Extended Essay,

Clegio Colombo Britanico, Santiago
DeCali, Colombai, English version
2008

[15] Parag Bhalchandra, Proliferation of
Analysis of Algorithms with application
to Sorting Algorithms, M.Phil
Dissertation, VMRF, India, July 2009

[16] John Harkins, Tarek El-Ghazawi, Esam
El-Araby, Miaoqing Huang,
Performance and Analysis of Sorting
Algorithms on the SRC 6
Reconfigurable Computer, The
George Washington University , USA

[17] Li Xiao, Xuedong Zhang, Stefan A. (2000)
ACM Journal on Experimental
Algorithmics, 5 (3), 1-22.

