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Abstract: The vast amounts of biological data present in standard repositories are the heart of bioinformatics today. This has been possible 

due to the sequence alignment, microarray, etc approaches over the years. The huge biochemical networks have certain assemblies of 

modules called the reaction motifs. There are different types of such motifs in a network and it is of foremost importance to identify such 
motifs and get insights of their functions and regularities. It is also required study the intensity of occurrences of these motifs to establish 

certain evolutionary and functional relationships in and amongst pathways. The inference that these motifs have been selected for function 
rests on the idea that their occurrences are significantly more frequent than random. Such motifs have not only been identified in a wide 
range of networks across many scientific disciplines and are suggested to be the basic building blocks of most complex networks. 
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1 INTRODUCTION 

In biological organisms, networks of chemical reactions control the 
processing of information in a cell. A general approach to study 

the behavior of these networks is to analyze modules that are 
frequently observed in natural systems. Numerous network motifs 

that perform computational tasks have been discovered in 

biochemical reaction networks. Reaction networks are able to 
compute Boolean operations and implement simple binary 

computers [1] Cell signaling networks are known to exhibit 
parallelism, the integration and amplification of signals, bistable 

behavior and hysteresis through feedback and memory [2]. 
 

The science of systems biology has the aim of understanding the 
functional constraints and design principles of biological networks. 

Alon and colleagues were the first to introduce the notion of 

"motifs" in biological networks [3]. Motifs are small patterns 
observed to recur throughout a network, with frequencies 

statistically higher than expected in random networks of similar 
connectivity parameters. Since the introduction of this concept, 
motifs have been reported in many biological networks: metabolic, 

signaling pathway, protein-protein interaction, and ecological 
networks amongst others [4, 5]. Moreover, the prevalence of 

motifs is often considered as evidence for evolutionary selection, 

for implementing a specific function [6]. Motifs are believed to be 
building blocks of the functional architecture of a biological 

network. 
 

A major issue concerning the study of biochemical networks is the 
problem of their organization. Several attempts have been made to 

decompose the metabolic network into parts. These parts are called 
modules or “motifs”. Modules were first coined by Heartwell et al 

who outlined the general features of a module but did not give a 

specialized definition reguarding them. Motifs can be considered 
as the building blocks of the network. In terms of metabolic 

networks the definition of motifs could be based on the partition of 
the metabolic network into metabolic pathways as present in the 
databases. The advantage of such a technique is it helps the better 

understanding of metabolism. Graph based methods ranges from 
the study of graphs showing the simple connectivity amongst the 

metabolites to studying the maximization of the criteria expressing 
the modularities.  

2     TYPES OF MOTIFS IN BIOCHEMICAL NETWORKS 

 

A. Single-input modules (SIM): SIM’s contain a source 

node that is responsible for the transmission of inputs at 
the top and the intermediate and target nodes are present 

below the source nodes. The source node individually 
accesses all of these nodes. (Figure 1-a). 

 
    Figure 1-a: Single-input modules 

B. Multiple-input modules (MIM): MIM’s contain many 

source nodes that can access same or different 

intermediate and target nodes at a specific given time 

[7]. All the nodes present are interconnected in a 

network. (Figure 1-b). 

 
Figure 1-b: Multiple-input modules 

 

C. Feed-forward loops (FFL): FFL’s contain the target 
node at the top, the intermediate node at the bottom left 
and the target node at the bottom right. (Figure 1-c). The 
top node can access both the nodes [8]. 

 



 H CHAUDHARI AND S TAGORE 

Copyright © 2009 Bioinfo Publications Advances in Computational Research, ISSN: 0975–3273, Vol. 1, Issue 1, 2009, pp. 5-8 

 
6

 
Figure 1-c: Feed forward loops  

D. 3-Cycle: It is a three node directed cyclic graph. (Figure 
1-d). 

 
Figure 1-d: 3-cycle 

 

E. Bifan: SIM, MIM, and Bifan are two-layered graphs 
with edges from nodes in top- to bottom-layer [9]. A 
Bifan is a MIM with exactly 2 parent and 2 child nodes. 

(Figure 1-e). 
 

 
 

Figure 1-e: Bifan motif 

3 ASSEMBLIES OF MOTIFS 

Kashtan et al. observed that regulatory networks contain multi-

output FFL generalizations (see Figure 2(a)) in frequencies much 
higher than multi-input (Figure 2(d)) and multi-intermediate 
(Figure 2(f)) generalizations [10]. 

 
Figure 2: Self-assemblies of two FFL’s 

 
Here the varied frequencies of motifs found due to the occurrence 

of FFL’s around the hubs. i.e. the nodes share a common edge. 
SIMs and MIMs are variable sized sub graphs. Alon et al defined 
the dense overlapping regulon (DOR) as a two-layered sub graph 

with not necessarily complete connections between them. MIMs 
are special DORs, a concept that arose as a generalization of the 

Bifan (Figure 1(e)) sub graph [11]. These Bifans were observed to 
be present in large numbers in biological networks. However, 
some investigators fail to impose the criterion of maximality while 

counting MIMs. This can lead to significant inflation of counts . A 
maximal MIM with m parents and n children contains [2m - (m + 

1)] × [2n - (n + 1)] - 1 easily enumerable nonmaximal "subMIMs". 
Our definition of a Bifan ensures that we are only counting 

(maximal) MIMs that contain 2 parents and 2 children. Counting 
subMIMs as Bifans will combinatorially increase their counts, as 

each maximal MIM will contribute to mC2 × nC2 Bifans. It is also 

studied that biparate cliques appear sufficiently dense in biparate 
graphs [12]. 

 
 

4 CURRENT STRATEGIES FOR MOTIF 

IDENTIFICATION 

4.1. Using probability: 

4.1.1. Network motifs also have uncertainties. 
4.1.2. A stochastic network can be thought of as 

coming into being by embedding a family of 
mutually similar interconnection patterns 
(subgraphs) in a background random ensemble with 

a probability alpha. 
4.1.3. The set of patterns defines a foreground 

stochastic network motif and is described by a 

probability matrix 

 is the probability 
that node i and node j are connected. The 

background ensemble is characterized by the degree 
distributions of the given stochastic network 

.With such a mixture model, the network 

motif can be recovered by fitting the stochastic 
network with a foreground motif and a suitable 

background ensemble [13]. 
 

4.2. Based on Hardness results: 

4.2.1. Every motif is given color. Hence each motif 
while identification be recognized on the basis of color. 
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4.2.2. It may assume the graph is connected and all 
vertices have colors that appear in the motif. 

4.2.3. Otherwise, we preprocess the graph throwing 

away all the vertices having no color appearing in the 
motif and solve the problem in each component of the 
resulting graph. 

4.2.4. Given a motif and a labeled graph, checking 
for the motif and deciding whether the motif occurs in 
the graph or not. 

4.2.5. If ‘yes’ then the motif is validated and the type 

is identified, if ‘no’ then the search is continued until 
motifs are found [14]. 

 
4.3. Topological approach: 

4.3.1. This method was suggested by Schuster et al. 

and Holme et al. It works by removing the metabolites 
that participate in many reactions (nodes with a high 

degree). 
4.3.2. Create modules by removing entities. 
4.3.3. Remove nodes that exhibit large betweeness 

centrality. The most central node has to be identified 

and removed. 

4.3.4. Number of shortest paths between pairs of 
nodes that pass through the considered node. 
4.3.5. The highest degree or the central node is 

checked for interactions within other reactions in the 
same pathway or other pathways. 

4.3.6. Found results are validated and fixed [15]. 

. 

5 APPLICATION IN PATHWAY ENGINEERING 

Many networks have been shown to share global statistical 

features, such as the ‘‘small world’’ property of short paths 
between any two nodes and highly clustered connections [16]. It 
has also been shown that many networks are ‘‘scale-free’’ 

networks, in which the node degrees follow a power-law 

distribution. Recent studies have shown that many networks 

contain a small set of ‘‘network motifs,’’ that is, patterns of 
interconnections occurring in networks at numbers that are 

significantly higher than those in randomized networks that are 
uniformly drawn from the networks with the same degree 
distributions as the original networks . These network motifs may 

define universal classes of networks in that similar motifs have 
been found in a wide variety of networks, ranging from the World 

Wide Web to the electronic circuits, from the transcriptional 
regulatory networks of Escherichia coli to the neural network of 
Caenorhabditis elegans. The research on network motifs is 

therefore promising in uncovering the basic building blocks of 
most complex networks [17]. 

 
Two seminal studies recently have shown that topological 

networks indeed contain statistically significant patterns indicative 

of biological functions. These motifs are patterns that occur more 
frequently in the observed network than expected in a suitable null 

ensemble. The motifs found so far have been identified because 
they occur identically at different positions in a network. If 

network evolution is a stochastic process, however, functionally 
related motifs do not need to be topologically identical. Hence, the 
notion of a motif has to be generalized to a stochastic one as well. 

Variations arise because of uncertainties in the network data, or, 

more importantly, because some of the interactions can change 
without affecting the functionality of the motif. This ‘‘noise’’ is an 

important characteristic of biological systems, familiar from 
sequence analysis, where one searches for local sequence 

similarities blurred by mutations, insertions and deletions, rather 
than for identical subsequences. It leads us to the notion of a 

probabilistic motif in which each link occurs with certain 

likelihood. Probabilistic motifs arise as consensus from finding a 
family of ‘‘sufficiently’’ similar sub-graphs in a network [18].  

 
Motifs undergo repetitions throughout the network and are thought 

to be conserved through evolution. It has also been hypothesized 
that similar repeated elements may also be functionally related. So 
these studies imply that if we find such elements in the network we 

can establish evolutionary and functional relationships among 
pathways even if they may possess different topologies and may 

not seem to be related in the beginning. 
 
 

6 CONCLUSION  

It has been invariably studied that motifs are building blocks of a 
network and hence have to be studied extensively. Until now no 

specific definition of a motif has not been formulated hence studies 

in this field is very important. Though studies have been incited 

but unfortunately they are not sufficient. It is evident that motifs 
are biologically significant from structural and functional point of 
studies and efforts further studies would in turn add up to 

metabolic studies and engineering. 
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