ISSN: 2310-0133 Founder: Academic Publishing House *Researcher* DOI: 10.13187/issn.2310-0133 Has been issued since 2013.

European Journal of Technology and Design

Study of the Properties of Transition Metals and Alligations on the Basis of Major data of the Method of Positron Annihilation Spectroscopy

¹V.I. Grafutin ¹O.V. Ilyukhina ¹E.P. Prokop'ev ¹V.A. Ilyukhin ¹Yu.V. Funtikov

¹ NRC "Kurchatov Institute" Federal State Institution "State Scientific Center of the Russian Federation - Institute of Theoretical and Experimental Physics." FGBI "SSC RF - ITEP." (NRC "Kurchatov Institute" FGBI "ITEP"), Russian Federation 25, B. Cheremushkinskaya st., Moscow, 117218 E-mail: epprokopiev@mail.ru

Abstract. The article presents the data of the study of vessel steel, used in acting pressurized-water reactors–440. The studied steel patterns had vacancy deffects, also caused by neutron irradiation. The sizes of the defects were detected. The article proves that the method of positron annihilation spectroscopy is one of the most efficient methods in detecting the size of nanoobjects (vacancies, vacancies cluster), independent volume of reed marks, cavities, hollows, their concentrations and chemical compositions at the site of positron annihilation in defect materials.

Keywords: positron annihilation; transition metals; proton and neutron irradiation; nanoobjects radius; cavities, hollows, vacancies.

1. Введение.

Работа посвящена исследованию переходных металлов, используемых в сталях действующих реакторов BBЭP-440 [1, 2]. В процессе эксплуатации реакторов этого типа происходит охрупчивание конструкционных материалов. Считается, что основной причиной охрупчивания корпусных реакторных сталей является образование нанокластеров, содержащих преимущественно медь и фосфор [3, 4]. В настоящее время определены режимы отжига для продления срока службы корпусов этих типов реакторов и проведен отжиг корпусов. Дальнейшая эксплуатация отожженных корпусов реакторов, определение возможностей повторного отжига корпусов требуют проведения дополнительных исследований состояния материала в отожженном и повторно облученном состояниях. Для обоснования разрабатываемых прогнозных моделей необходима экспериментальная информация об эволюции тонкой структуры радиационно-индуцированных состояний. В рамках международной программы PRIMAVERA проведены комплексные исследования материала корпусов BBЭP-440 с использованием различных физических методик [5-9].

Данная работа посвящена исследованию переходных металлов, входящих в образцы этих сталей одним из методов позитронной аннигиляционной спектроскопии. Методы позитронной аннигиляционной спектроскопии (ПАС) являются одними из эффективных неразрушающих методов исследования нанообъектов (вакансий, вакансионных кластеров), свободных объемов пор, полостей, пустот, их концентраций и химического состава в месте аннигиляции позитронов. В последние годы комбинация этих методов широко и успешно используется для исследования радиационных дефектов в материалах атомной техники [10-16]. Целью настоящей работы являлось исследование электронных и дефектных свойств переходных металлов, входящих в состав реакторных сталей, путем измерения углового распределения аннигиляционных фотонов (метод УРАФ). Исследованы образцы переходных металлов, используемых в сварных соединениях сталей с различным содержанием фосфора, облученные нейтронами до флюенсов 6·10¹⁹ н/см², облученные и отожженные [17-19]. Для исследуемых металлов экспериментально определены такие важные характеристики металлов, как энергия Ферми, удельное число свободных электронов, приходящихся на один атом металла, их концентрация в зоне проводимости, размеры и концентрация радиационно-индуцированных дефектов. Исследовано влияние нейтронного облучения и последующего отжига на свойства конструкционных материалов, используемых в реакторах ВВЭР (облучение образцов свидетелей проводилось в каналах Ровенской АЭС). Химический состав и состояние исследованных образцов сталей представлен в таблицах 1 и 2.

Таблица 1.

Химический состав исследованных образцов стали

	C	Si	Mn	Р	S	Cr	Ni	Mo	Cu	V
LP	0.04	0.04	1.12	0.027	0.013	1.42	0.13	0.49	0.16	0.19
MP	0.04	0.39	1.15	0.031	0.013	1.42	0.13	0.50	0.16	0.18
HP	0.05	0.36	1.09	0.038	0.014	1.54	0.13	0.51	0.16	0.19

LP - Сварной шов с «низким» содержанием фосфора

МР - Сварной шов со «средним» содержанием фосфора

НР - Сварной шов с «высоким» содержанием фосфора

Таблица 2.

Состояние исследованных образцов стали реакторов ВВЭР-440: 10 х 10 х 1 мм

Маркировка образцов	P (%)	Состояние образцов	Флюенс ×10 ¹⁹ н/см ² (E>0.5 МэВ)	Кол-во
HP	0.038	необлученные	0	2
MP	0.031	необлученные	0	2
LP	0.027	необлученные	0	2
HP	0.038	облученные	1.22	2
MP	0.031	облученные	1.24	2
LP	0.027	облученные	1.22	2
MP	0.031	облученные	6.39	2
HP	0.038	облученные	5.95	2
LP	0.027	облученные	5.95	2
HP	0.038	облученные+ отожженные	5.71	2
MP	0.031	облученные + отожженные	5.94	2
LP	0.027	облученные + отожженные	5.71	2
Суммарное кол	ичество	Все позиции		24

2. Описание метода УРАФ

Позитронная аннигиляционная спектроскопия (ПАС) является современным методом изучения структуры вещества [10-20]. Ее суть состоит в имплантации в исследуемый образец позитронов, образующихся в результате β^+ - распада радиоактивного источника (как правило, ядер изотопов Na-22, Cu-64, Co-58, Ti-44) и последующей регистрации параметров аннигиляционного гамма-излучения. В позитронной спектроскопии позитрон выполняет

функции зонда, аннигиляционные характеристики которого определяются свойствами среды, окружающей его в месте аннигиляции.

В веществе процесс аннигиляции позитронов может протекать как в свободных соударениях с электронами среды, так и через образование связанных состояний позитронов с электронами, атомами, молекулами и различными дефектами, при этом каждый канал аннигиляции вносит свой специфический вклад в экспериментальный аннигиляционный спектр. Естественно, для корректной интерпретации экспериментальных спектров ПАС необходимы надежные теоретические модели образования позитронных состояний, их взаимодействия с дефектами и продуктами радиолиза среды.

В настоящее время активно используются три основные разновидности ПАС: 1) регистрация временного распределения аннигиляционных фотонов (ВРАФ). Она состоит в измерении времени жизни каждого имплантированного в образец е+ (то есть интервала времени между регистрацией стартового гамма-кванта, испускаемого радиоактивным ядром - источником позитрона в момент бета+ - распада, и одного из аннигиляционных фотонов с энергией 511 кэВ); 2) измерение углового распределения аннигиляционных фотонов (УРАФ). В этом случае регистрируется отклонение от 180 градусов угла разлета фотонов при 2γаннигиляции; 3) измерение доплеровского уширения аннигиляционной линии (ДУАЛ). Здесь измеряется отличие в энергии аннигиляционных фотонов (при 2γ-аннигиляции) от 511 кэВ.

Метод ВРАФ дает сведения об электронной плотности в месте аннигиляции позитрона, а методы УРАФ и ДУАЛ дают информацию о распределении импульсов электронов среды. Таким образом, методики ВРАФ и УРАФ дополняют друг друга и позволяют экспериментально измерять параметры всех каналов аннигиляции позитронов в среде и тем самым получать развернутую информацию об электронных и дефектных свойствах среды. В проводящих средах дефекты (например, вакансии), как правило, обладают избыточным отрицательным зарядом и поэтому притягивают позитроны. Исследование методом ВРАФ облученных нейтронами образцов сталей реакторов ВВЭР–440 показало, что доля позитронов, захваченных радиационно-индуцированными дефектами, зависит от флюенса нейтронов и при больших флюенсах (≈10·10²⁰ н/см²) практически все позитроны захватываются дефектами и аннигилируют в них [18-19].

Сопоставление измеряемых времен жизни позитронов в исследуемых материалах с известными временами жизни в дефектах различного типа позволяет идентифицировать тип дефекта, а по измерению доли позитронов, аннигилирующих в этом дефекте, получать информацию о концентрации дефектов. Параметры угловых аннигиляционных спектров содержат информацию об энергии аннигилирующей позитрон-электронной пары. Поскольку в процессе аннигиляции участвуют практически термализованные позитроны, то измеряемая энергия аннигилирующей позитрон-электронной пары определяется в основном энергией электронов атомов среды, окружающих дефект. Сопоставление измеряемой энергии с табличными значениями потенциалов ионизации дает информацию о химическом составе среды в месте аннигиляции позитронов, а энергия позитронов характеризует размер дефектов. Применение позитронной методики в атомной отрасли позволяет исследовать радиационно-индуцированные дефекты размером до одного кубического нанометра. Порог чувствительности ПАС в отношении подобных дефектов составляет примерно 10¹⁴ см⁻³.

3. Методика УРАФ

Установка по измерению углового распределения аннигиляционных фотонов (УРАФ) расположена в экспериментальном зале реактора ИРТ МИФИ. Источником позитронов в установке служит радиоактивный изотоп Cu⁶⁴, получаемый облучением нейтронами изотопа меди Cu⁶³ в ядерном реакторе: Cu⁶³ + n = Cu⁶⁴. Близость установки к ядерному реактору позволяет проводить работы с использованием мощных (несколько Кюри) источников позитронов, что существенно расширяет возможности установки, а тем самым и класс исследуемых сред. Используемые в измерениях источники позитронов представляли собой пластинки размером $2 \times 2 \times 0.2$ см, вырезанные из фольги электролитической меди. Пластинки облучались сутки в реакторе ИРТ МИФИ нейтронами до флюенса 1.7·10¹⁸ n/cm².

После выгрузки из реактора позитронные источники активностью несколько Кюри помещались в облучательную часть установки УРАФ. Угловое разрешение установки составляло 0,4 мрад. Число совпадений в максимуме кривой достигало (10 ÷ 16)·10³.

Метод углового распределения аннигиляционных фотонов УРАФ [13-15] основан на регистрации совпадений от двух гамма-квантов с энергией ~511 кэВ, возникающих в результате аннигиляции электрон-позитронных пар и разлетающихся в противоположные стороны в системе центра масс пары. При аннигиляции электрон-позитронной пары выполняются законы сохранения импульса и энергии. Если центр масс пары неподвижен γ -кванта разлетаются в противоположных направлениях (угол θ = 0) с (v = 0), то оба одинаковой энергией $k_1c = k_2c = m_0c^2 = = 0,511$ МэВ. Если V ≠ **0**, углы между то направлениями разлета *у*-квантов будут отличаться от 180°, а их энергия уже не будет равна 0,511 МэВ. Таким образом, измерение угла θ (отклонение угла разлета γ -квантов от 180°) позволяет определить импульс е+-е- пары. Позитроны к моменту аннигиляции термализуются, поэтому угол разлёта γ-квантов определяется импульсом электрона.

В рамках модели свободного электронного газа электроны проводимости в металле имеют импульсное распределение:

$$n_e(p) = \left[\exp\left(\frac{(p^2/2m) - \varepsilon_F}{k_B T}\right) + 1 \right]^{-1}$$
(1)

где ε_F - энергия Ферми; k_B - постоянная Больцмана; T - абсолютная температура.

Для низких температур это распределение близко к прямоугольному, поэтому в кривых УРАФ металлов наблюдается параболическая $f_p(\theta)$ компонента:

$$f_{p}(\theta) = \begin{cases} (3I_{p} / 4\theta_{p}^{3}) \cdot (\theta_{p}^{2} - \theta^{2}), & |\theta| \le \theta_{p}; \\ 0, & |\theta| > \theta_{p}. \end{cases}$$
(2)

Аннигиляция позитронов в металлах и сплавах происходит как на электронах зоны проводимости, так и на электронах ионного остова. Оставшаяся после вычитания параболы зависимость, как правило, описывается одной $f_g(\theta)$ или суммой нескольких гауссовых кривых вида:

$$f_{g}(\theta) = (I_{g}/\sqrt{2\pi} \cdot \theta_{g}) \exp(-\theta^{2}/2\theta_{g}^{2}), \qquad (3)$$

где: I_g - интенсивность гауссовой компоненты; θ_g - дисперсия гауссовой кривой; θ_p - угол пересечения параболой оси абсцисс θ («угол отсечки»).

На рис. 1 приведен характерный вид измеренных спектров УРАФ с разложением на параболическую и гауссову компоненты. После коррекции спектров угловой корреляции их разложение на параболические и гауссовы составляющие с учётом функции разрешения установки проводилось на ЭВМ с использованием программы ACARFIT.

Определяя из эксперимента параметр θ_p , можно оценить импульс Ферми p_F и энергию Ферми ε_F исследуемого металла:

$$p_F = \theta_p \cdot \mathbf{m} \cdot \mathbf{c};$$
 $\varepsilon_F = \theta_p^2 \cdot (\mathbf{m} \mathbf{c}^2/2)$ (4)

В приближении модели свободного электронного газа параметр θ_p определяет удельное число свободных электронов Z_c (число электронов проводимости), приходящихся на один атом металла, и их концентрацию $n_p(\theta)$

$$Z_{c} = (8\pi/3) \cdot (mc^{2}/h)^{3} \cdot (A/\rho N_{A}) \cdot \theta_{p}^{3};$$
(5)

$$\mathbf{n}_{\mathrm{p}}(\theta) = \mathbf{Z}_{\mathrm{c}} \cdot \mathbf{n}_{\mathrm{a}} = (8\pi/3) \cdot (\mathrm{mc}^2/\mathrm{h})^3 \cdot \theta_{\mathrm{p}}^3, \tag{6}$$

а параметр θ_g - энергию остовных электронов (т.е. электронов, для которых угловое распределение аннигиляционных фотонов в спектрах УРАФ описывается гауссовой функцией) $\varepsilon_g = (3/2) \cdot (mc^2/2) \cdot \theta_g^2$. Здесь N_A - число Авогадро; h - постоянная Планка; A - атомный вес металла; ρ - его плотность.

Принято сопоставлять экспериментально получаемые значения Z_c , ϵ_F , n_p с аналогичными параметрами идеального металла. Идеальным металлом считают такой металл, в котором все валентные электроны переходят в зону проводимости. В этом случае удельное число

электронов проводимости Z определяется номером группы периодической системы элементов Менделеева, а энергия Ферми є_F и концентрация электронов проводимости n_p, в рамках модели свободного электронного газа, являются его константами

$$\varepsilon_{\rm F} = (h^2/8m) \cdot (3/\pi \cdot n_{\rm A} \cdot Z_{\rm c})^{2/3};$$

$$n_{\rm p} = Z_{\rm c} \cdot n_{\rm A} = (N_{\rm A}\rho / A) \cdot Z_{\rm c},$$
(7)
(8)

где n₂ - концентрация атомов в единице объема металла.

4. Обработка экспериментальных результатов

На рис. 1 приведен характерный вид спектров УРАФ с разложением на параболическую и гауссовы составляющие. Использовалось два типа обработки экспериментальных спектров: разложение на один гаусс и параболу и разложение на два гаусса и параболу.

Рис. 1. Характерное угловое распределение аннигиляционных фотонов в образцах стали: (1) – кривая УРАФ, построенная по экспериментальным точкам; (2) – параболическая компонента спектра; (3) – гауссова компонента спектра. FWHM (full width half-maximum) – полная ширина гауссовой кривой на половине максимума.

Наилучший **х**² наблюдался при разложении экспериментальных спектров УРАФ на три компоненты – два гаусса и параболу. Каждая составляющая спектра УРАФ несет информацию о своем канале аннигиляции позитронов. Определены параметры каждого канала аннигиляции позитронов для каждого образца стали. Результаты представлены в виде таблиц (3-5) и в графической форме (рис. 2-3).

Таблица 3.

Характеристика образцов	${\Gamma}_{_{g1}},$ мрад	I _{g1} , %	Е _{g1} , э В	Г _{g2,} мрад.	I _{g2} , %	Е _{g2} , э В	<i>θ</i> _p отсеч ка (мрад.)	$I_p, \ \%$	Е _f ,э В	$N_p(\theta)$ 10 ²² cm ⁻³
необлученные	13,20 ±0,07	82,94 ±3,00	12,00 ±0,01				5,74	17,06 ±1,10	8,41 ±0,88	11,2
необлученные	10,00 ±0,38	53,15 ±14,0 0	6,91 ±0,05	16,40 ±0,6 0	40,61 ±15,00	18,60 ±0,08	5,97	6,24 ±2,70	9,08 ±5,10	12,6
облучение (12,2x10 ¹⁸)	13,60 ±0,07	79,01± ±3,20	12,80 ±0,01				5,65	20,99 ±1,00	8,132 ±0,43	10,6
облучение (12,2x10 ¹⁸)	9,39 ±0,39	42,80 ±11,00	6,09 ±0,05	16,20 ±0,47	48,74 ±14,00	18,10 ±0,07	5,63	8,46 ±2,90	8,07 ±3,30	10,5
облучение (59,5х10 ¹⁸)	13,30 ±0,07	78,97 ± ±2,80	12,20 ±0,01				5,60	21,03 ±0,87	8,00 ±0,37	10,4
облучение (59,5x10 ¹⁸)	8,94 ±0,37	34,69 ±9,10	$5,52 \pm 0,05$	15,00 ±0,33	55,63 ±14,00	$15,50 \pm 0,05$	5,61	9,68 ±2,70	8,02 ±2,40	10,4
облучение (57,1х10 ¹⁸) + отжиг	13,20 ±0,06	79,73 ±2,40	12,10 ±0,01				5,37	20,27 ±0,74	7,36 ±0,31	9,2
облучение (57,1х10 ¹⁸) + отжиг	11,60 ±0,40	$63,65 \pm 17,0$	9,23 ±0,06	18,80 ±1,70	20,80 ±14,00	24,40 ±0,23	5,31	15,54 ±3,60	7,18 ±0,82	8,8

Параметры спектров УРАФ для образцов стали LP

Здесь Γ_{gi} – полная ширина (FWHM) гауссовой компоненты на полувысоте, θ_p – угол пересечения параболической компонентой оси θ , E_f , $N_p(\theta)$ – соответственно, энергия Ферми и концентрация электронов в зоне проводимости, E_{gi} – энергия аннигилирующих электрон-позитронных пар, I_{g1} , I_{g2} , I_p – интенсивности гауссовых и параболической составляющих спектра УРАФ, численно равные отношению площади под соответствующей компонентой спектра к суммарной площади спектра (рис. 1).

Таблица 4.

Характеристика образцов	${\Gamma}_{g1},$ мрад	<i>I^{g1}</i> ,%	Е _{<i>g</i>1} , эВ	Γ _{g2,} мрад.	<i>I</i> _{g2} ,%	Е _{g2} , эВ	${m heta}_p$ отсечка (мрад.)	$I_p, \%$	$E_{f}^{}$, эВ	$\frac{N_{p}(\boldsymbol{\theta})}{10^{22} \text{cm}^{-3}}$
необлученные	13,40 ±0,09	79,07 ±3,60	12,40 ±0,01				6,03	20,93 ±1,20	9,26 ±0,59	13
необлученные	9,97 ±0,42	48,06 ±15,00	6,86 ±0,06	16,10 ±0,59	42,53 ±16,00	17,90±0,08	6,09	9,40 ±3,40	9,45 ±3,70	13,3
облучение (12,4x10 ¹⁸)	13,30 ±0,09	79,37 ±3,50	12,20 ±0,01				5,64	20,63 ±1,10	8,12 ±0,49	10,6
облучение (12,4x10 ¹⁸)	9,14 ±0,29	46,23 ±11,00	5,76 ±0,04	15,90 ±0,45	47,55 ±13,00	17,50±0,06	5,81	6,21 ±2,50	8,62 ±4,70	11,6
облучение (63,9x10 ¹⁸)	13,90 ±0,08	77,70 ±2,90	13,30 ±0,01				5,66	22,30 ±0,93	8,17 ±0,37	10,7
облучение (63,9x10 ¹⁸)	9,16 ±0,40	35,85 ±9,20	5,79 ±0,06	15,90 ±0,38	53,77 ±13,00	17,40 ±0,05	5,68	10,39 ±3,00	8,23 ±2,70	10,8
облучение (59,4x10 ¹⁸) + отжиг	12,90 ±0,08	83,76 ±3,30	11,50 ±0,01				5,35	16,24 ±0,92	7,29 ±0,52	9,0
облучение (59,4х10 ¹⁸) + отжиг	9,79 ±0,38	57,04 ±14,00	6,61 ±0,05	16,70 ±0,67	38,09 ±14,00	19,30 ±0,09	5,14	4,87 ±2,30	6,73 ±4,40	8,0

Параметры спектров УРАФ для образцов стали МР

Здесь Γ_{gi} – полная ширина (FWHM) гауссовой компоненты на полувысоте, θ_p – угол пересечения параболической компонентой оси θ , E_f , $N_p(\theta)$ – соответственно, энергия Ферми и концентрация электронов в зоне проводимости, E_{gi} – энергия аннигилирующих электрон-позитронных пар, I_{g1} , I_{g2} , I_p – интенсивности гауссовых и параболической составляющих спектра УРАФ, численно равные отношению площади под соответствующей компонентой спектра к суммарной площади спектра (рис. 1).

Таблица 5.

Характеристика образцов	${\Gamma}_{g1},$ мрад	I _{g1} , %	Е _{g1} , эВ	Γ _{g2} , мрад.	I _{g2} , %	Е _{g2} , эВ	$ heta_{p}^{}$, мрад	I _p , %	<i>Е</i> ғ, эВ	$N_{p}(\theta)$
Необлученные	13.20± ±0.09	81.69± ±3.00	12.30± ±0.01				6.00	18.31± ±1.20	9.18± ±0.71	12.8
Необлученные	9.21± ±0.40	39.33± ±14.00	5.86± ±0.06	15.00± ±0.44	56.05± ±11.00	15.60± ±0.06	6.29	4.62± ±2.70	10.10± ±8.00	14.8
Облучение (12.2 x 10 ¹⁸)	13.90± ±0.07	75.09± ±2.40	13.30± ±0.01				6.00	24.91± ±0.83	9.18± ±0.32	12.8
Облучение (12.2 x 10 ¹⁸)	10.00± ±0.33	42.42± ±9.20	6.92± ±0.05	16.50± ±0.42	43.69± ±11.00	18.70± ±0.06	5.98	13.90± ±2.90	9.13± ±1.60	12.7
Облучение (59.5 x 10 ¹⁸)	13.40± ±0.07	79.34± ±2.60	12.50± ±0.01				5.71	20.66± ±0.82	8.31± ±0.38	11.0
Облучение (59.5 x 10 ¹⁸)	8.62± ±0.57	$27.37 \pm \pm 12.00$	5.12± ±0.08	14.00± ±0.35	64.20± ±20.00	13.50± ±0.05	5.71	8.43± ±3.50	8.31± ±4.00	11.0
Облучение (57.1 x 10 ¹⁸) + отжиг	13.80± ±0.09	77.60± ±3.10	13.10± ±0.01				5.65	22.40± ±0.99	8.13± ±0.390	10.7
Облучение (57.1 х 10 ¹⁸) + + отжиг	9.24± ±0.35	43.22± ±10.00	5.89± ±0.05	16.20± ±0.41	49.24± ±13.00	18.00± ±0.06	5.55	7.54± ±2.70	7.85± ±3.70	10.1

Параметры спектров УРАФ для образцов стали НР

Здесь Γ_{gi} – полная ширина (FWHM) гауссовой компоненты на полувысоте, θ_p – угол пересечения параболической компонентой оси θ , E_f , $N_p(\theta)$ – соответственно, энергия Ферми и концентрация электронов в зоне проводимости, E_{gi} – энергия аннигилирующих электрон-позитронных пар, I_{g1} , I_{g2} , I_p – интенсивности гауссовых и параболической составляющих спектра УРАФ, численно равные отношению площади под соответствующей компонентой спектра к суммарной площади спектра (рис. 1).

В таблицах 3-5 представлены вероятности аннигиляции позитронов по каждому каналу, энергии Ферми, концентрации свободных электронов в зоне проводимости и энергии аннигилирующих позитрон-электронных пар. Для выяснения роли отжига на облученные образцы строились разностные кривые нормированных на единицу угловых распределений аннигиляционных фотонов в облученных и отожженных и исходных образцах. Для этих целей создана специальная математическая программа обработки экспериментальных спектров.

Кроме реакторных сталей были измерены спектры УРАФ в образцах чистого железа, хрома, ванадия и никеля и других переходных металлов– основных элементов исследуемых сталей (табл. 6).

Таблица 6.

Электронные свойства чистых металлов

Метал л	Электронна я оболочка	Ориентация спинов электронов d-оболочки	Температур а плавления (°C)	N _p x 10 ²² расче т	N _p X10 ² 2 exp.	E _f , əB exp	N _A x 10 ²²	Z exp.	Z расче т	I p (%)
In	4d ¹⁰ 58 ² 5p ¹		156	11,50	11,4	8,5	3,8 0	3	3	56
Sn	4d ¹⁰ 5s ² 5p ²		232	14,80	13,8	9,6	3,70	3 ,7	4	64
Bi	5d106s26p3		271	14,10	12,9	9,2	2,8 0	4,6	5	55
Pb	5d106s26p2		328	13,20	10,5	8,0	3,3 0	3,2	4	41
Zn	3d10482		420	13,10	11,9	8,7	6,57	1,8	2	45
Mg	2s ² 2p ⁶ 3s ²		649	8,60	9,4	7,5	4,3 0	2,18	2	72
Al	38 ² 3p ¹		660	18,10	18,8	11,6	6,0	3,13	3	69
Sc	3d ¹ 4s ²		1541	8,0					2	
Ti	3d ² 4s ²	<mark>↑</mark> ↑	1660	11,4	15,3	10,	5,7	2,6 8	2	16, 2
V	3d34s2	$\uparrow \uparrow \uparrow$	1887	14,45	8,0	6 ,7	7,2	1,1	2	2
Cr	3d ⁵ 4s ¹	<u>↑ ↑ ↑ ↑ ↑</u>	1857	8,3	11,3	8,5	8,3	1,36	1	9,2
Mn	3d5482	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	1246	15,8					2	
Fe	3d64s2	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$	1540	17,0	9,0	7,3	8,5 0	1,05	2	12,
Со	3d74s ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$	1495	18,2			0		2	7
Ni	3d ⁸ 4s ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	1453	18,26	8,2	6,8	9,13	1,0	2	17,
		↑								8
Cu	3d10481	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	1084	8,50	10,3	8,0	8,5	1,2	1	38
		$\uparrow\downarrow$					0			
Y	4d ¹ 58 ²	^	1522	6,06					2	
Zr	4d ² 58 ²	\uparrow	1852	8,58					2	
Nb	4d45s1		2468	5,56					1	
Мо	4d55s1	<u>↑ ↑ ↑ ↑ ↑</u>	2617	6,41	2,2	2,9	6,4	0,3 4	1	0,9
Тс	4d ⁶ 5s ¹ (4d ⁵ 5s ²)	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$	2172	7,07					1	
Rn	4d75s1	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$	2061	7,39					1	
Rh	4d ⁸ 5s ¹	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	1966	7,26					1	
Pd	4d ¹⁰		1554							
		$ \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$								
Yb	4f ¹⁴ 6S ²		824	2,42					2	1
Lu	4f ¹⁴ 5d ¹ 6S ²	↑	1663	3,39					2	
Hf	4f ¹⁴ 5d ² 6S ²	↑ <u>↑</u>	2230	4,49					2	
Та	4f ¹⁴ 5d ³ 6S ²	↑ ↑ ↑	2741	5,54					2	
W	4f ¹⁴ 5d ⁴ 6S ²		3422	6,32					2	
Re	4f ¹⁴ 5d ⁵ 6S ²	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	3180	6.80	1				2	t
Os	4f145d66S2	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$	3054	7,15					2	
Ir	4f ¹⁴ 5d ⁷ 6S ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$	2174	7,10					2	
Pt	4f145d96S1	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	1772	6,62					1	
Au	4f145d106S1	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	1064	5,91					1	
		$\uparrow \downarrow$								

Hg	4f ¹⁴ 5d ¹⁰ 6S ²	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	-39	4,07			2	
		$\uparrow \downarrow$						

Здесь $N_p = 4,6 \cdot 10^{21} \cdot (E_f)^{3/2}$; $E_f = 0,256 \cdot \Theta_p^2$

 N_p - концентрация электронов в зоне проводимости; E_f - энергия Ферми; N_A – концентрация атомов металла, Z – число валентных электронов, приходящихся на один атом; I_p – доля параболической составляющей в спектре углового распределения аннигиляционных фотонов (УРАФ); Θ_p – угол пересечения параболической составляющей спектра УРАФ с осью абсцисс.

При обработке экспериментальных спектров УРАФ гауссовы составляющие спектра аппроксимировались функцией

$$\varphi(\theta) = \mathbf{A} \cdot \exp(-\theta^2/2\theta_g^2), \tag{9}$$

где θ_{g} - дисперсия.

В таблицах 3-6 приведены значения Γ_g - ширины гауссовой кривой на полувысоте и θ_p - угла пересечения параболой оси θ .

$$\Gamma_{g} = 1,665109 \cdot \theta_{g}, \qquad (10)$$

а также энергия

$$E_{g} = \frac{3}{2} \cdot \frac{mc^{2}}{2} \cdot \theta_{g}^{2} = 0,0693246 \, (\Gamma_{g})^{2}, \tag{11}$$

где [Γ_g] = мрад, [E_g] = эВ.

и энергия Ферми

$$E_{f} = \theta_p^2 \cdot (mc^2/2), \qquad (12)$$

где $[\theta_p]$ = мрад, $[E_f]$ = эВ.

В свою очередь концентрация электронов в зоне проводимости связана с параметрами спектра УРАФ и с энергией Ферми выражениями

$$n_{p}(\theta) = (8\pi/3) \cdot (mc^{2}/h)^{3} \cdot \theta_{p^{3}} = 5,942 \cdot 10^{20} \theta_{p^{3}},$$
(13)

$$n_{\rm p}(\theta) = 4,6.10^{21} \cdot (E_{\rm f})^{3/2}, \qquad (14)$$

где энергия Ферми - в эВ, а $n_p(\theta)$ – в см⁻³.

5. Обсуждение экспериментальных результатов.

Для исследуемых сплавов экспериментально определены такие важные характеристики металлов, как энергия Ферми, удельное число свободных электронов, приходящихся на один атом металла, и их концентрация в зоне проводимости, размер и концентрация радиационных дефектов.

Проведены измерения углового распределения аннигиляционных фотонов (УРАФ) в необлученных, облученных и отожженных образцах сталей действующих реакторов ВВЭР-440. Исследованы образцы сварных швов с различным содержанием фосфора и с разной степенью облучения. Образцы облучались в каналах реактора Ровенской АЭС. Флюенс нейтронов варьировался от 1·10¹⁹ н/см² до 6·10¹⁹ н/см². Химический состав и состояние исследованных образцов сталей представлен в таблицах 1-2.

Для выяснения влияния отжига на облученные образцы строились разностные кривые нормированных на единицу угловых распределений аннигиляционных фотонов в облученных и отожженных и исходных образцах.

Сопоставление разностных спектров УРАФ необлученных образцов с различным содержанием фосфора в пределах ошибок показало их идентичность (рис. 2).

Таким образом, фосфор не является позитрончувствительным элементом. В спектрах УРАФ образцов стали НР с высоким содержанием фосфора, облученных до больших флюенсов 59·10¹⁸ н/см², в области малых углов, а следовательно и малых энергий (< 19В)

аннигилирующих позитрон-электронных пар, наблюдается повышенная интенсивность (рис. 3).

Это может быть связано с аннигиляцией позитронов (квазипозитрония) в радиационных дефектах, индуцированных нейтронным облучением, либо порах на границе раздела трех кристаллитов. Существует большое количество экспериментальных данных, косвенно подтверждающих возможность образования позитрония. Так, в работе [21] в образцах Fe, Al, Ni, Pd, Cu наблюдалась компонента с малой интенсивностью и со временем жизни порядка наносекунды, в нашей работе [22] по исследованию пористого кремния с декорированной палладием, также наблюдался поверхностью, термализованный позитроний. При этом экспериментально определенный размер пор составлял 10-20 Å. Вообще, по нашему мнению, интенсивность данной компоненты должна зависеть от размера кристаллитов. Если размер кристаллитов много больше длины диффузии термализованных позитронов, т.е. ≈ 100 нм, то большая часть позитронов будет аннигилировать внутри кристаллитов и на границе раздела зерен и, следовательно, уменьшается вероятность захвата позитронов дефектами в тройном стыке кристаллитов. Из параметров ширины узкого пика (рис. 3) можно оценить размеры радиационных дефектов. Ширина на полувысоте этого пика равна примерно 3-4 мрад. Такому уширению соответствует полость радиусом ≈ 4-5 Å. Интенсивность этого пика увеличивается с увеличением флюенса и значительно уменьшается в отожженных образцах сталей. В образцах с низким содержанием фосфора, LP, также наблюдается узкая составляющая с аналогичной шириной. Отжиг на интенсивность этой составляющей практически не оказывает влияния.

В образцах стали со средним содержанием фосфора МР узкая составляющая слабо выражена и при низких флюенсах 12,4·10¹⁸ н/см² практически незаметна.

В таблицах 3-5 представлены экспериментальные результаты при двух вариантах обработки экспериментальных спектров УРАФ: разложение на гаусс и параболу, разложение на два гаусса и параболу.

В этих таблицах приведены вероятности аннигиляции позитронов по каждому каналу, энергии Ферми, концентрации свободных электронов в зоне проводимости и энергии аннигилирующих позитрон-электронных пар.

Здесь Γ_{gi} – полная ширина (FWHM) гауссовой компоненты на полувысоте, θ_p – угол пересечения параболической компонентой оси θ , E_f (эВ), $N_p(\theta)$ – соответственно, энергия Ферми и концентрация электронов в зоне проводимости, E_{gi} – энергия аннигилирующих электрон-позитронных пар, I_{g1} , I_{g2} , I_p – интенсивности гауссовых и параболической составляющих спектра УРАФ, численно равные отношению площади под соответствующей компонентой спектра к суммарной площади спектра (рис. 1).

Во всех образцах стали облучение и отжиг сопровождаются перестройкой электронной подсистемы – уменьшается энергия Ферми и концентрация электронов в зоне проводимости (табл. 3-5), что свидетельствует о возникновении дополнительных химических связей.

Для интерпретации полученных результатов измерены с большой статистикой спектры УРАФ в образцах железа высокой чистоты и ряде чистых металлов (Cu, Cr, Mo, Ni), входящих в состав реакторных сталей. В таблице 7 в качестве примера представлены параметры спектров УРАФ для чистого железа и хрома.

Таблица 7.

	${\varGamma}_{g1},$ мрад	<i>I</i> _{g1} ,%	Е _{<i>g</i>1} , эВ	Г _{g2,} % мрад.	<i>I</i> _{g2} ,%	Е _{g2} , эВ	<i>θ_p</i> отсечка (мрад.)	<i>I</i> _p ,%	Е _f , эВ	$N_p(heta)$ 10 ²² cm ⁻³
Fe	12,50 ± 0,06	87,62 ± 2,90	10,80 ± 0.01				5,34	12.38 ± 0,72	7.26 ± 0,58	9

Fe	10,10	64,99	7,05	16,70	32,29	19,20	5,01	2,71	6,40	7,45
	\pm 0,31	<u>±</u>	± 0,04	± 0,72	±	\pm 0,10		±	± 5,60	
		14,00			12,00			1,60		
Cr	11,90	90.82	9,75				5.76	9,18	8,45	11,3
	±	±4,30	± 0.01					±	±1,44	
	0,08							1,00		
Cr	9,84	54,60	6,6	14,60	41,76	14,60	6,41	3,63	10,48	15,6
	±	±	8	± 0,91	±	$\pm 0,13$		±	±8,40	
	0,45	30,00	± 0,06		30,00			2,60		

Таблица 8.

Химический состав образцов стали LP и потенциалы ионизации элементов, входящих в состав стали

Название образца	Fe	C	Si	Mn	Р	S	Cr	Ni	Мо	Cu	V
Содержание, %	~ 97	0,04	0,04	1,12	0,027	0,013	1,42	0,13	0,49	0,16	0,19
U1, 9B	7,9	11,3	8,15	7,43	10,56	10,3 5	6,76	7,63	7,13	7,72	6,74
U2, 9B	16,2	24, 4	16,34	15,64	19,65	23,4	16,49	18,15	15,72	20,29	14,65

 $\rm E_{g1}$ – необлученные образцы сталей ~ 5.86-6.91
эВ (табл. 3-5)

 E_{g_2} – необлученные образцы сталей ~ 15.6-18.6
эВ (табл. 3-5)

аннигиляционной Метолом позитронной спектроскопии проведены исследования электронных свойств переходных экспериментальные металлов, применяемых в атомной промышленности. Для переходных металлов наблюдается четкая корреляция температуры плавления с числом неспаренных d-электронов (помечены желтым). Чем больше этих (неспаренных) электронов тем выше температура плавления. Корреляции с общим числом d-электронов нет. Так у меди (3d -электроны), палладия (4d электроны), золота (5d - электроны) оболочки с d-электронами заполнены полностью, а температуры самые низкие в своих рядах. Обращают на себя внимание технеций, вольфрам и рений. У технеция в различных справочниках приводится разнык конфигурации внешней электронной оболочки 4d⁶5s¹ (4d⁵5s²). На наш взгляд в этом случае более правильной будет конфигурация с шестью d-электронами. Если такого рода рассуждения правильны, то у вольфрама оболочка должна быть 4f145d56s1, а у рения 4f145d66s1. Нам кажется, что неспаренные d-электроны характеризуют склонность металлов к образованию ковалентных связей, которые более сильные чем металлические связи. Этот процесс образования таких связей. Обработка экспериментальных результатов и сопоставление их с литературными данными позволила выявить вакансионные дефекты, в том числе и вызванные нейтронным облучением, и определить их размеры.

Сопоставление результатов обработки спектров УРАФ для исследованных образцов стали со спектрами УРАФ для чистых металлов показывает, что позитроны преимущественно аннигилируют на электронах железа (хрома) – сопоставимы значения энергии E_{g1} и E_{g2} для чистого железа (хрома) с аналогичными параметрами для сталей.

Экспериментальные величины концентрации электронов зоны проводимости сопоставлены с расчетными значениями. Показано, что выбранная для расчета модель свободного электронного газа, хорошо зарекомендовавшая себя в таких металлах как магний, алюминий, медь, цинк, индий, олово, свинец, висмут для металлов переходной группы с 3d электронной оболочкой малопригодна. Из экспериментальных данных следует, что все исследованные металлы, кроме хрома (железо, никель, ванадий), отдают в зону проводимости всего лишь по одному электрону, в то время как их внешняя электронная оболочка содержит по два S-электрона (их конфигурация 3dⁿ4S²). Концентрации электронов

в зоне проводимости и энергии Ферми для этих металлов соответственно составляют 7,4×10²² см⁻³ ($E_F = 6,45$ эВ) для железа, 15,6×10²² см⁻³ ($E_F = 10,48$ эВ) для хрома, 9,1×10²² см⁻³ ($E_F = 7,29$ эВ) для никеля и 8,0×10²² см⁻³ ($E_F = 6,7$ эВ) для ванадия. Вероятно, в этих металлах часть валентных электронов идет на образование химических связей, чем и объясняется присущая им высокая температура плавления (а также высокие механические свойства). Для хрома (3d⁵4S¹) экспериментально измеренная концентрация электронов в зоне проводимости значительно больше (в 1,6÷2 раза) расчетного значения, выполненного в предположении, что хром может отдавать в зону проводимости только один электрон. Этот вопрос требует дальнейших исследований и может быть связан с тем, что электронная конфигурация хрома, входящего в состав кристалла, отличается от электронной конфигурации изолированного атома хрома, например (3d⁴4S²).

Проведенные сопоставления измеренных и расчетных концентраций электронов в зоне проводимости дают основания полагать, что позитронная спектроскопия может быть с успехом применена и для исследования внутренних связей в металлах.

6. Определение размеров дефектов и их концентрации

Существуют модели, позволяющие сопоставлять параметры аннигиляционных спектров (ВРАФ и УРАФ) со средним размером пор и их концентрацией.

Время жизни позитронов в веществе зависит от пространственной плотности электронов в месте аннигиляции позитронов. При наличии свободного объема (поры) в веществе время жизни позитронов определяется размером поры. Обычно для расчетов используется простая модель [23-25]: позитрон находится в сферической яме радиусом R_0 с бесконечно высоким потенциальным барьером. При этом скорость λ его аннигиляции в приграничном слое ΔR зависит от радиуса свободного объема поры R

$$\lambda = \lambda_0 \left[1 - \frac{R}{R_0} + (2\pi)^{-1} \sin\left(\frac{2\pi R}{R_0}\right) \right],\tag{15}$$

где [λ] = [Hc^{-1}], $R = R_0 - \Delta R$, а λ_0 - скорость аннигиляции в бездефектной части вещества.

Анализ аннигиляции позитронов в материалах с известными значениями радиусов пор в молекулярных твердых телах и цеолитах показал, что величина $\Delta R = R_0 - R = 1,66$ Å. Вообще говоря, значение величины ΔR зависит от природы вещества. Поэтому уравнение (15) возможно применять лишь для оценок размеров радиусов пор. Размер пор можно также найти, используя только данные УРАФ.

В рамках рассматриваемой модели энергия частицы *E* в основном состоянии в потенциальной яме, моделирующей пору, дается выражением

$$E = \frac{\pi^2 \hbar^2}{2mR^2},\tag{16}$$

где т - масса частицы.

В случае позитрона его энергия будет связана с размером поры соотношением

$$E = \frac{37,7}{R_0^2},$$
 (17)

где 37,7 - переводной множитель, R – в ангстремах.

Из параметров аннигиляционных спектров УРАФ можно определить энергию позитрона, аннигилирующего в поре, и тем самым оценить размер поры. Поскольку позитрон перед аннигиляцией успевает практически термализоваться, то измеряемая энергия аннигилирующей позитрон-электронной пары в основном будет определяться энергией электрона.

Рассмотрение кинетической схемы гибели термализованных позитронов в среде позволяет по параметрам аннигиляционных спектров определять средние величины концентрации дефектов.

Экспериментальный спектр углового распределения фотонов представляет собой суперпозицию отдельных кривых, характеризующих аннигиляцию позитронов в бездефектной области и в дефектах разных типов [13-15].

Для определения средней величины концентрации дефектов и их размеров по основным характеристикам аннигиляционных спектров в случае, когда в образце имеется два типа дефектов (N = 2), можно написать следующие уравнения для скорости захвата термализованных позитронов в вакансию и в кластер [10, 13-15]:

$$k_{d1}N_{d1} = \frac{I_1}{1 - I_1 - I_2}\lambda_0, \ k_{d2}N_{d2} = \frac{I_2}{1 - I_1 - I_2}\lambda_0,$$

$$I_1 = \frac{k_{d1}N_{d1}}{\lambda_0 + k_{d1}N_{d1} + k_{d2}N_{d2}}, \ I_2 = \frac{k_{d2}N_{d2}}{\lambda_0 + k_{d1}N_{d1} + k_{d2}N_{d2}},$$
(18)

где I_i - вероятность аннигиляции позитронов в областях, соответствующих дефектам *i*-го типа, λ_0 - скорость аннигиляции позитронов в бездефектной области, k_d - константа захвата позитронов дефектами, N_d - концентрация дефектов.

Среднее значение константы захвата позитронов дефектами можно записать в виде

$$k_d = \sigma \cdot \upsilon = 4 \cdot \pi \cdot D_+ \cdot R_d \tag{19}$$

Здесь D_+ - коэффициент диффузии позитронов, R_d - средний радиус дефектов (пор), σ - сечение захвата дефектами позитрона, υ - скорость термализованного позитрона.

Если имеются образцы с разной концентрацией дефектов одного типа, то можно найти разностный спектр

$$\Delta I = I_1^{"} - I_1^{'} = \lambda_0 k_d (N_{d1}^{"} - N_{d1}^{'}) / (\lambda_0 + k_d N_{d1}^{"} + k_d N_{d2}^{"}) (\lambda_0 + k_d N_{d1}^{'} + k_{d2} N_{d2}^{'})$$
(20)

В частном случае дефектов одного типа и изначально бездефектного образца $N_d^{||} >> N_d^{|}$

$$\Delta I = k_d N_d^{\parallel} / (\lambda_0 + k_d N_d^{\parallel})$$
⁽²¹⁾

Здесь ΔI – экспериментально измеряемая величина методом УРАФ, λ_0 – скорость аннигиляции позитронов в объеме материала, измеряется методом ВРАФ. Используя приведенные выражения, можно оценивать радиусы свободных объемов в пористых системах, дефектных материалах по параметрам экспериментально измеренных спектров УРАФ и ВРАФ.

Рассмотрим, для примера, сталь с низким содержанием фосфора (LP). Результаты математической обработки экспериментальных спектров УРАФ показывают, что во всех образцах сталей LP имеются высокоинтенсивные гауссовы компоненты с интенсивностями $I_{g1} \sim (34-63)$ %, $I_{g2} \sim (20-55)$ % и энергиями $E_{g1} \sim (6-9)$ эВ и $E_{g2} \sim (15-24)$ эВ и параболическая компонента с интенсивностью $I_p \sim (4-15)$ % и энергией Ферми $E_{f} \sim (7-9)$ эВ. По нашему мнению, высокоинтенсивные гауссовы компоненты обусловлены аннигиляцией позитронов, захваченных вакансионными дефектами, а параболическая компонента обусловлена аннигиляцией позитронов на делокализованных электронах проводимости (Ферми-газе объектов). Обращает на себя внимание низкая интенсивность параболической компоненты (табл. 3-5). Интенсивность этой компоненты для всех исследованных образцов сталей не превышает 15% и уменьшается с ростом флюенса нейтронов. Этот эффект, по-видимому, связан с тем обстоятельством, что большая часть позитронов захватывается и аннигилирует в дефектах. Так в работах [18, 19], выполненных методом ВРАФ, показано, что при флюенсе нейтронов 3,3·10²⁰ см⁻² В аналогичных сталях практически все позитроны захватываются дефектами. Увеличение концентрации позитрончувствительных дефектов с ростом флюенса электронов в сплавах Fe-Ni, Fe-Ni-Al, Fe-Ni-Si наблюдалось также по изменению S-параметра (доплеровского уширения аннигиляционной линии) в работе [26]. В работе [27] показано, что S-параметр характеризует концентрацию вакансионных кластеров малых размеров.

Экспериментально определенная концентрация электронов в зоне проводимости для всех исследованных образцов сплавов уменьшается с ростом флюенса нейтронов (см. табл. 3-5). Даже после отжига при 475 °C концентрация делокализованных электронов не возвращается к исходному состоянию. Подобные результаты для чистого железа наблюдались в работе [28], где концентрация электронов проводимости уменьшалась с дозой облучения. По нашему мнению, такое уменьшение концентрации электронов при облучении сплавов обусловлено увеличением межкристаллитных ковалентных связей на границе зерен и формированием упорядоченных структур из примесных атомов. Наблюдается корреляция между характером изменения концентрации делокализованных электронов (рис. 4) и изменениями температуры вязко-хрупкого разрушения материала образцов [6, 7].

Рис. 2. Разностный спектр УРАФ необлученных образцов с высоким (НР) и низким (LP) содержанием фосфора

Рис. 3. Разностный спектр УРАФ облученных и необлученных образцов с высоким (НР) содержанием фосфора

Флюенс нейтронов 10¹⁸ н/см²

Рис. 4. Образцы стали (МР) со средним содержанием фосфора

Здесь N_p^0 и N_p - соответственно концентрация электронов в необлученных и облученных образцах сталей.

Таким образом, появляется возможность исследования методами ПАС внутренних связей в металлах.

На рис. 4 представлено относительное изменение концентрации электронов в зоне проводимости в зависимости от флюенса нейтронов для стали МР со средним содержанием фосфора. Для сталей с низким (LP) и высоким (HP) содержанием фосфора характер зависимости аналогичный (см. табл. 3-5).

Как уже говорилось выше, по параметрам аннигиляционных спектров УРАФ можно определить энергию позитрона, аннигилирующего в поре, и тем самым оценить размер поры.

Из данных табл. 6 и 7 видно, что экспериментально измеренные значения E_{g1}, E_{g2} образцов стали, железа, хрома и никеля сопоставимы со значениями энергий связи $E_1 = U_1$ и $E_2 = U_2$ внешних валентных электронов атомов элементов, входящих в состав стали (табл. 8).

Назовем эти центры аннигиляции позитронов с параметрами I_{g1}, E_{g1} центрами первого рода. Отличие величины E_{g1} от значения $E_1 = U_1$ атомов Fe и Cr, по-видимому, обусловлено уменьшением $E_1 = U_1$ в кристалле (сплаве) по сравнению со значением $E_1 = U_1$ электрона свободных атомов Fe и других атомов за счет образования химических связей с другими элементами сплава. В свою очередь, значения E_{g2} для образцов стали, Fe и Cr по своим значениям ближе всего к значениям энергий связи $E_2 = U_2$ внешних электронов положительно заряженных ионов атомов Fe и других элементов, входящих в состав стали (табл. 8). Назовем эти центры аннигиляции позитронов с параметрами I_{g2}, E_{g2} центрами второго рода. Из данных табл. 3-5 следует, что эти центры аннигиляции первого и второго рода при облучении и отжиге претерпевают значительные трансформации.

Будем считать центрами аннигиляции первого рода поры в тройном стыке кристаллитов и дислокации (либо комплексы вакансий), декорированные атомами железа и примесей. Аннигиляция позитронов из этих состояний дает компоненту $I_{g1}(E_{g1})$. Центрами захвата второго рода могут служить вакансии на границе раздела кристаллитов и радиационно-индуцированные вакансии Fe и их комплексы. Из экспериментальных данных (табл. 3-5) следует, что при отжиге происходит преимущественно трансформация радиационно-индуцированной части центров захвата второго рода в центры захвата с более глубокими позитронными уровнями. В такой модели с ростом флюенса нейтронов увеличивается концентрация радиационно-индуцированных вакансионных дефектов и, как следствие, увеличивается захват позитронов этими дефектами и, соответственно, уменьшается доля позитронов, аннигилирующих со свободными электронами и в дефектах первого рода (см. табл. 3-5).

При этом аннигиляция позитронов протекает в основном на внешних (валентных) электронах атома железа и заряженного иона Fe^+ , так как $E_{e1} \rightarrow U_1, E_{e2} \rightarrow U_2$.

Таким образом, по экспериментально определенным энергиям E_{g1} и E_{g2} (см. табл. 3-5) можно также найти состав и радиусы нанообъектов (пор, вакансий, зерен и включений второй фазы – нанокластеров и возможно дислокаций, декорированных различными примесями и т.д.), используя только данные УРАФ [29-31]. Для этого приведем выражение, связывающее энергию аннигилирующей электрон-позитронной пары с полной шириной на полувысоте соответствующей гауссовой компоненты спектра УРАФ

$$E_{gi} = 6.9 \cdot 10^{-2} \cdot \Gamma_{gi}^2 \tag{22}$$

Здесь *E* - энергия в *эВ*, а Γ_g - полная ширина кривой УРАФ на полувысоте в мрад. Так для образцов сплава LP (табл. 3) рассчитанные по этой формуле значения средних энергий аннигилирующих электрон-позитронных пар оказались равными E_{g1} =6,91, 6,09, 5,52, 9,23 эВ и E_{g2} = 18,6, 18,1, 15,5, 24,4 эВ. Табличные значения энергий электронов (табл. 8) внешних оболочек атомов железа и иона железа составляют величины 7,89 и 16,19 эВ, а для хрома эти же величины соответственно равны 6,76 и 16,49 эВ. Как видим, значения величин энергий E_{gi} , E(Fe) и $E(Fe^+)$ близки друг другу. Таким образом, можно полагать, что позитроны аннигилируют в основном на внешних валентных электронах атомов железа (хрома) «стенки» вакансий и комплексов вакансий. В этом случае, разность величин E - E(Fe) обусловлена вкладом энергии позитрона, находящегося в вакансиях, в энергию аннигилирующих электрон-позитронных пар. Для оценки размера вакансий можно использовать выражения вида

$$R_{sp} = \left(\frac{37,7}{E - E(Fe)}\right)^{1/2}, \quad R_{sp} = \left(\frac{37,7}{E - E(Fe^+)}\right)^{1/2}$$
(23)

Здесь величины имеют размерности R_{sp} в Å, E в эВ. Определим размеры центров захвата второго рода, используя параметры ионов железа $E = E_{g2} - E(Fe^+)$. Для $E_{g2} = 18,6$ эВ и $E(Fe^+) = 16,19$ эВ получим размер пор 4 Å. Значение $E(Fe^+)$ для всех исследованных образцов сталей (LP, MP, HP) меняется от 15,5 до 24,4 эВ, а размер дефектов, соответственно, от 5 до 2 Å.

Из выражения (21) можно получить связь между скоростью захвата позитронов $K_d N_d$ центрами второго рода и интенсивностью компоненты I_{a2}

$$k_d N_d \cong \lambda_0 \Delta I \cong \Delta I / \tau_0.$$
(24)

Здесь ΔI_g - разность между интенсивностями гауссовых компонент I_{gi} (Irradiated), облученных образцов стали, и I_{gi} (Not irradiated) исходных необлученных образцов стали в

спектрах УРАФ, K_d - константа захвата позитронов дефектами, а N_d - концентрация дефектов.

Оценим значение $k_d N_d$ для значения $\Delta I_{g2} = 0,08$ (см. табл. 3) и значения $\tau_2 = (1,10 \pm 0,05) \cdot 10^{-10}$ с [18,19] для данной стали. С этим значением ΔI_g получаем $k_d N_d \simeq 0,08/1,10 \cdot 10^{-10} = 7,3 \cdot 10^8$ с⁻¹.

Величина скорости захвата $k_d N_d$ в свою очередь может быть определена на основе известного выражения $k_d N_d = \sigma \cdot \upsilon \cdot N_d$. Здесь σ - сечение захвата дефектами позитрона; υ - скорость термализованного позитрона; N_d - средняя концентрация дефектов (в дефектной области кристалла). Средняя тепловая скорость позитрона при комнатной температуре T = 293K оценивалась по формуле $\upsilon = \left(8k_0T/\pi n_+^*\right)^{1/2} \approx 1,05\cdot 10^7$ см/с, где k_0 – постоянная Больцмана, $m_{+}^{*} \approx m_{0}^{}$ - эффективная масса позитрона, $m_{0}^{} = 9.1 \cdot 10^{-28}$ г - масса свободного позитрона. Предполагая, что сечение захвата позитронов центрами захвата примерно равно геометрического значению сечения дефекта, среднему получим $\sigma \approx \pi \cdot R_d^2 = 3,14 \cdot 0,16 \cdot 10^{-14} \approx 5 \cdot 10^{-15}$ см² (приняли, что $R_d \approx 0,4$ нм). Используя определенные выше значения $R_d \approx 0.4 \cdot 10^{-7}$ см, k_d и υ , можно оценить среднее значение центров захвата позитронов в облученных образцах концентрации стали $N_{d} = \lambda_{0} \Delta I / \sigma \cdot \upsilon = 7,3 \cdot 10^{8} / 5 \cdot 10^{-15} \cdot 10^{7} \approx 1,4 \cdot 10^{16}$ см⁻³. При использовании данных [1819] $\Delta I_2 = 0,06$ $\tau_0 = 1,1 \cdot 10^{-10}$ с и радиусе вакансий $R_d \approx 0,25$ нм (радиус вакансий из данных ВРАФ) получим значение $k_d N_d \cong 0.06 / 1.10 \cdot 10^{-10} = 5.5 \cdot 10^8$ с⁻¹ и концентрацию дефектов $N_{d} = k_{d} N_{d} / \sigma \cdot \upsilon = 5,5 \cdot 10^{8} / 2 \cdot 10^{-15} \cdot 10^{7} \approx 2,7 \cdot 10^{16} \,\mathrm{cm}^{-3}.$

7. Заключение.

В табл. 6 приведены ряд данных по электронным свойствами чистых металлов. Для переходных металлов наблюдается четкая корреляция температуры плавления с числом неспаренных d-электронов (помечены желтым). Чем больше этих (неспаренных) электронов тем выше температура плавления. Корреляции с общим числом d-электронов нет. Так у меди (3d - электроны), палладия (4d - электроны), золота (5d - электроны) оболочки с dэлектронами заполнены полностью, а температуры самые низкие в своих рядах. Обращают на себя внимание технеций, вольфрам и рений. У технеция в разных справочниках приводится разная кофигурация внешней электронной оболочки $4d^65s^1$ ($4d^55s^2$). На наш взгляд в этом случае более правильной будет конфигурация с шестью d-электронами. Если такого рода рассуждения правильны, то у вольфрама оболочка должна быть 4f¹⁴5d⁵6S¹, а у рения 4f145d66S1. Нам кажется, что неспаренные d-электроны характеризуют склонность металлов к образованию ковалентных связей, которые более сильные чем металлические связи. Этот процесс образования таких связей имеет вероятнее всего активационный характер. Эти свойства и определяют увеличение температуры плавления с ростом числа неспаренных d-электронов. В литературе ссылок на подобное объяснение мы не нашли. Эти эффекты также могут объяснять наличие возможных модифицированных вязко-хрупких переходов типа Иоффе-Давиденкова и др. [3, 4] в конструкционных материалах (металлах и сплавах) в условиях облучения их нейтронами при повышенных температурах [3]. Температура хрупко-вязкого перехода Иоффе чувствительна к содержанию примесей (особенно примесей внедрения в о. ц. к. металлах) и структуре материала.(!) Особо важным является хрупкое разрушение в тех случаях, когда оно происходит при достаточно высоких температурах (комнатной и выше). Действительно, облучение металлов и сплавов нейтронами при температурах ниже 0,3 T_m, где T_m - температура плавления, повышает их прочность в результате образования радиационных нарушений и дефектов, являющихся препятствием для движения

дислокаций, но при этом радиация существенно, а при больших дозах катастрофически ухудшает их деформационные и пластические свойства. Это обстоятельство (радиационная хрупкость) ограничивает эксплуатационный ресурс многих сплавов, используемых в ядерной энергетике: с ростом дозы облучения чувствительность сплавов к ударным нагрузкам возрастает.

В наших экспериментах с реакторными сталями было обнаружено, что концентрация электронов в зоне проводимости уменьшается с увеличением флюенса нейтронов. При больших флюенсах каждый атом испытывает несколько смещений и, вероятно, новая конфигурация сопровождается образований новых ковалентных связей, что возможно и приводит к увеличению температуры вязко-хрупкого перехода.В классическом хрупковязком переходе Иоффе такого типа явление наблюдается при понижении температуры [32-34].

Проведены исследования корпусных сталей, используемых в действующих реакторах ВВЭР–440. В исследованных образцах сталей выявлены вакансионные дефекты, в том числе вызванные нейтронным облучением, и определены их размеры. Показано, что метод позитронной аннигиляционной спектроскопии (ПАС) является одним из эффективных методов определения размеров нанообъектов (вакансий, вакансионных кластеров), свободных объемов пор, полостей, пустот, их концентраций и химического состава в месте аннигиляции позитронов в дефектных материалах.

Установлено, что позитронная спектроскопия может с успехом применяться для исследования внутренних связей в металлах и, в частности, для исследования границ раздела кристаллитов. В связи с этим нами были проанализированы ряд данных по электронным свойствами чистых металлов [1-6]. Для переходных металлов наблюдается четкая корреляция температуры плавления с числом неспаренных d-электронов. Чем больше этих (неспаренных) электронов тем выше температура плавления. Корреляции с общим числом d-электронов нет. Так у меди (3d - электроны), паллалия (4d - электроны). золота (5d - электроны) оболочки с d-электронами заполнены полностью, а температуры самые низкие в своих рядах. Обращают на себя внимание технеций, вольфрам и рений. У технеция в разных справочниках приводится разная кофигурация внешней электронной оболочки 4d⁶5s¹ (4d⁵5s²). На наш взгляд в этом случае более правильной будет конфигурация с шестью d-электронами. Если такого рода рассуждения правильны, то у вольфрама оболочка должна быть 4f145d56s1, а у рения 4f145d66s1. Мы поэтому предположили, что неспаренные d-электроны характеризуют склонность металлов к образованию ковалентных связей, которые более сильные чем металлические связи. Этот процесс образования таких связей имеет вероятнее всего активационный характер. Эти свойства и определяют увеличение температуры плавления с ростом числа неспаренных d-электронов. В литературе ссылок на подобное объяснение мы не нашли. Эти эффекты также могут объяснять наличие возможных модифицированных вязко-хрупких переходов типа Иоффе-Давиденкова и др. в конструкционных материалах (металлах и сплавах) в условиях облучения их нейтронами при повышенных температурах [3]. Температура хрупковязкого перехода Иоффе чувствительна к содержанию примесей (особенно примесей внедрения в о. ц. к. металлах) и структуре материала.(!) Особо важным является хрупкое разрушение в тех случаях, когда оно происходит при достаточно высоких температурах (комнатной и выше). Действительно, облучение металлов и сплавов нейтронами при температурах ниже 0,3 T_m , где T_m - температура плавления, повышает их прочность в результате образования радиационных нарушений и дефектов, являющихся препятствием для движения дислокаций, но при этом радиация существенно, а при больших дозах катастрофически ухудшает их деформационные и пластические свойства. Это обстоятельство (радиационная хрупкость) ограничивает эксплуатационный ресурс многих сплавов, используемых в ядерной энергетике: с ростом дозы облучения чувствительность сплавов к ударным нагрузкам возрастает.

В наших экспериментах с реакторными сталями было обнаружено, что концентрация электронов в зоне проводимости уменьшается с увеличением флюенса нейтронов. При больших флюенсах каждый атом испытывает несколько смещений и, вероятно, новая конфигурация сопровождается образований новых ковалентных связей, что возможно и приводит к увеличению температуры вязко-хрупкого перехода.В классическом хрупковязком переходе Иоффе такого типа явление наблюдается при понижении температуры.

Мы ввели величину

 $\alpha_k = [n(необл) - n(обл)] / n(необл),$

(25)характеризующую собой степень ковалентности химической связи. Здесь n(обл) концентрация электронов в зоне проводимости проводимости в облученном металле, а n(необл)] – концентрация электронов в зоне проводимости необлученного металла. На основании экспериментальных данных работ [4-6] значение [n(необл)]= 11,9.10²² см⁻³, а [n(обл)] = 9.10²² см⁻³. Отсюда степень ковалентности химической связи для образцов стали LP составляет величину $\alpha_k \sim 0, 3$. Примерно такие же значения α_k наблюдаеются и для образцов сталей MP и LP. Анализ данных $\alpha_{k \ X}$

Установлено, что позитронная спектроскопия может с успехом применяться для исследования внутренних связей в металлах и, в частности, для исследования границ раздела кристаллитов.

Полученные результаты могут быть использованы для понимания эксплуатационных свойств материалов, используемых для создания космических аппаратов и приборов для работы в условиях космического пространства.

8. Примечания:

V. Slugen, D. Segers, P. M. A. de Bakker, E. de Graveb, V. Magula, T. van Hoecke and B. van Waevenberge, Journal of Nuclear Materials 274, Issue 3, 273 (1999)

2. V. Slugen, G. Kogel, P. Sperr, W. Triftshauser, Journal of Nuclear Materials 302, 89 (2002)

3. L. Debarberis, A. Kryukov, D. Erak, Yu. Kevorkyan and D. Zhurko, International Journal of Pressure Vessels and Piping **81**, Issue 8, 695 (2004)

4. Y. Nishiyama, K. Onizawa, M. Suzuki, J. W. Anderegg, Y. Nagai, T. Toyama, M. Hasegawa and J. Kameda, Acta Materialia 56, Issue 16, 4510 (2008)

S. Rogozkin et al., in Proceedings of PVP2009, July 26-30, 2009, Prague, Czech 5. Republic.

6. A. Chernobaeva, J. Shtrombah, A. Krjukov, D. Erak, P. Platonov, J. Nikolaev, E. Krasikov, L. Debarberis, Yu. Kohopaa, M. Valo, S. Vodenicharov and T. Kamenove, International Journal of Pressure Vessels and Piping 84, Issue 3, 151 (2007)

7. O. Zabusov, E. Krasikov, M. Kozodaev, A. Suvorov, P. Pareige, B. Radiguet, Physica of radiation damage and radiation material science N3 (83), 66 (2003)

8. A. Zeman et al., Journal of Nuclear Materials **360**, Issue 3, 272 (2007)

V. Krsjak et al., Applied Surface Science 255, Issue 1, 153 (2008) 9.

10. M. Lambrecht, A. Almazouzi, Journal of Nuclear Materials 385, Issue 2, 334 (2009)

11. A. P. Druzhkov, D. A. Perminov, in *Nuclear Materials Research Developments*. Ed. by J. E. Keister ISDN 1-60021-432-0, (Nova Science Publishers, Inc. 2007), Chapter 5

12. M. J. Puska and R. M. Nieminen, Reviews of Modern Physics, 66, № 3, 841 (1994)

13. V. I. Grafutin and E. P. Prokopev, Physics - Uspekhi **45**, (1), 59 (2002)

14. V. I. Grafutin et al., Phys. Solid State **40**, 549 (1998)

15. V. I. Grafutin et al., Phys. Solid State **41**, 843 (1999)

16. M. J. Puska, R. M. Nieminen, J.Phys. F: Metal Phys. **13**, Nº2, 333 (1983)

17. V. Slugen, Preprint EUR 22468 EN (European Commission, Joint Research Centre, 2006)

18. J. Kocik, E. Keilova, J. Cizek, I. Prochazka, Journal of Nuclear Materials **303**, 52 (2002)

19. J. Cizek, F. Becvar, I. Prochazka, Nuclear Instruments and Methods in Physics research A 450, 325 (2000)

20. А. И. Гусев, Наноматериалы, наноструктуры, нанотехнологии (Физматлит, Москва, 2009), с. 415

21. H. E. Schaefer, Phys.Stat.Sol.(a) 102, Nº 1, 47 (1987)

22. О. М. Бритков, С. А. Гаврилов, В. И. Графутин, В. В. Калугин, О. В. Илюхина, Г. Г. Мясищева, Е. П. Прокопьев, С. П. Тимошенков, Ю. В. Фунтиков, Химия высоких энергий 41, Nº1, 1 (2007)

European Journal of Technology and Design, 2014, Vol.(3), № 1

23. S. J. Tao J. Chem. Phys. **56**, 5499 (1972)

24. M. Eldrup, D. Lightbody, J. N. Sherwood, Chem. Phys. **63**, 51 (1981)

25. Q. Deng, Y. Jean, Macromolecules **26**, 30 (1993)

26. A. P. Druzhkov, D. A. Perminov, A. E. Davletshin, Journal of Nuclear Materials, **384**, 56 (2009)

27. W. Brandt, Appl. Phys. 5, 1 (1974)

28. M. Eldrup and B. N. Singh, Preprint R-1241(EN), ISBN 87-550-2824-1, (Risø report, 2001).

29. В. И. Графутин, О. В. Илюхина, Г. Г. Мясищева, Е. П. Прокопьев, С. П. Тимошенков, Ю. В. Фунтиков, Украинский физический журнал **54**, № 5, 443 (2009)

30. Y. A. Chaplygin, S. A. Gavrilov, V. I. Grafutin, E. Svetlov-Prokopiev and S. P. Timoshenkov, Proc. IMechE. Part N: J. Nanoengineering and Nanosystems **221**, 125 (2009)

31. Yu.A. Chaplygin, V.I. Grafutin, E.P. Svetlov-Prokopiev, S.P. Timoshenkov, Positronics and nanotechnologies: possibilities of studying nano-objects in technically important materials and nanomaterials. in book: advances in na <u>https://www.novapublishers.com /catalog/</u><u>product info.php?cpath=23 96&products id=10207&oscsid=9c7f4bdf96ee0b265245e976a7c8d2</u> fc, <u>http://www.svarka-lib.com/node/29/print /139. html</u> Notechnology. Volume 1, 2010. (Editors: E. J. Chen and N. Peng, Nova science publishers, New York, 2010). P. 191-208.

32. В.И.Графутин, Е.П.Прокопьев Определение методом УРАФ электронных свойств переходных металлов // Современные материалы и технологии. 2012. №3. URL: www.es.rae.ru/mmt/145-470 (дата обращения: 26.03.2012).

33. Малыгин Г.А. Анализ параметров хрупко-вязкого перехода при ударном нагружении облученных нейтронами металлов и сплавов с оцк – решеткой // ФТТ. 2006. Т.48. Вып.9. С. 1622-1628.

34. <u>http://soprotmat.ru/dinamika.htm</u>, <u>http://www.femto.com.ua/ articles/part 2/4487.</u> <u>html http://www.svarka-lib.com/node/29/print/139.html</u>

35. В. И. Графутин, Е. П. Прокопьев, В. Крщак, Р. Бурцл, П. Хэнер, А. Земан, О. В. Илюхина, Д. Ерак, М. А. Могилевский, Г. Г. Мясищева, Ю. В. Фунтиков. Изучение конструкционных материалов активной зоны реакторов методами позитронной аннигиляционной спектроскопии. Ядерная физика. 2011, Т.74. №2. С.195-206.

36. В.И.Графутин, Е.П.Прокопьев, Ю.В.Фунтиков. Позитронная аннигиляционная спектроскопия в ИТЭФ. Инженерная физика. Специальный выпуск. 2007. №1. С.33-39.

37. З.Р.Абдурасулев, П.У.Арифов, Н.Ю.Арутюнов, С.Н.Вассерман, А.Р.Группер, Н.Н.Емелин, Г.И.Журавлева, П.А.Кебель, Ю.П.Кочерга, М.В.Кремков, Ф.Ли, В.М.Мальян, А.А.Пайзиев, В.А.Пикут, Е.П.Прокопьев, С.А.Скопинов, С.А.Тишин, С.В.Шевелев, А.В.Шевченко. Методы позитронной диагностики и расшифровки спектров аннигиляции позитронов. Ташкент: Изд-во «ФАН», 1985. 312 с.

38. Графутин В.И., Прокопьев Е.П., Тимошенков С.П., Фунтиков Ю.В., Позитроника и нанотехнологии: Определение размеров нанообъектов пористых В системах, наноматериалах и некоторых дефектных материалах методом позитронной аннигиляционной спектроскопии (обзор). Заводская лаборатория. 2009. Т.75. №6. С.27-36. http://zldm.ru/upload/iblock/53b/20097506027.pdf

39. В.И. Графутин В.И., Прокопьев Е.П., Тимошенков С.П., Фунтиков Ю.В. Размеры и концентрации нанообъектов в облученных металлах и сплавах по данным метода позитронной аннигиляционной спектроскопии. Заводская лаборатория. 2012. Т.78. №5. С.27-34.

40. Графутин В.И., Илюхина О.В., Козлов Ю.Ф., Мешков И.Н., Мясищева Г.Г., Прокопьев Е.П., Савельев Г.И., Тимошенков С.П., Чаплыгин Ю.А., Фунтиков Ю.В., Хмелевский Н.О., Яковенко С.Л. Определение природы, концентраций и размеров нанообъектов в технически важных материалах и наноматериалах методами позитронной аннигиляционной спектроскопии. // Современные научные исследования и инновации. – Октябрь, 2012. http://web.snauka.ru/wp-content/uploads/2012/10/snauka_prokop_paper.pdf

Исследования свойств переходных металлов и сплавов на основе данных метода позитронной аннигиляционной спектроскопии

¹ В.И. Графутин ¹ О.В. Илюхина ¹ Е.П. Прокопьев ¹ В.А. Илюхин ¹ Ю.В. Фунтиков

¹ НИЦ «Курчатовский институт» Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации - Институт Теоретической и Экспериментальной Физики». ФГБУ «ГНЦ РФ – ИТЭФ». (НИЦ "Курчатовский Институт" ФГБУ "ГНЦ РФ ИТЭФ"), Российская Федерация 117218 Москва, ул. Б.Черемушкинская, 25 E-mail: epprokopiev@mail.ru

Аннотация. Проведены исследования корпусных сталей, используемых в действующих реакторах ВВЭР–440. В исследованных образцах сталей выявлены вакансионные дефекты, в том числе вызванные нейтронным облучением, и определены их размеры. Показано, что метод позитронной аннигиляционной спектроскопии (ПАС) является одним из эффективных методов определения размеров нанообъектов (вакансий, вакансионных кластеров), свободных объемов пор, полостей, пустот, их концентраций и химического состава в месте аннигиляции позитронов в дефектных материалах.

Ключевые слова: Аннигиляция позитронов переходные металлы стали облучение протонами и нейтронами радиусы нанообъектов пор полостей вакансий.