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ABSTRACT 
 
In this study, the problem of a ring shaped-crack contained in an infinitely long solid cylinder of elastic 
perfectly-plastic material is considered. The problem is formulated for a transversely isotropic material by using 
integral transform technique under uniform load. Due to the geometry of the configuration, Hankel and Fourier 
integral transform techniques are chosen and the problem is reduced to a singular integral equation. This integral 
equation is solved numerically by using Gaussian Quadrature Formulae and the values are evaluated for discrete 
points. The plastic zone lengths are obtained  by using the plastic strip model. 
 
Key Words : Transversely isotropic material, Ring-shaped crack, Singular integral equations, Plastic zone 

 
 

YÜZÜK ŞEKLİNDE ÇATLAKLI SONSUZ UZUNLUKLU ENİNE İZOTROP 
SİLİNDİRDE PLASTİK BÖLGENİN İNCELENMESİ 

 
 

ÖZET 
 
Bu çalışmada yüzük şeklinde çatlak bulunduran elastik-ideal plastik sonsuz uzunluklu bir silindir ele alınmıştır. 
Problem düzgün yayılı yük etkisi altında enine izotrop bir malzeme için integral dönüşüm tekniği kullanılarak 
formüle edilmiştir. Problemin geometrisi gereğince Hankel ve Fourier integral dönüşüm teknikleri seçilmiş ve 
problem bir tekil integral denklemine indirgenmiştir. Bu integral denkleminin belli noktalardaki değerleri Gauss 
Quadrature formülü kullanılarak sayısal olarak elde edilmiştir. Plastik bölge uzunlukları, plastik bant modeli 
kullanılarak elde edilmiştir. 
 
Anahtar Kelimeler : Enine izotrop malzeme, Yüzük şeklinde çatlak, Tekil integral denklemi, Plastik bölge 
 
 

1. INTRODUCTION 
 
In the process of designing structural or machine 
components, one of the important steps is the 
determination of the final geometry, dimensions of 
the part and selection of the material in such a way 
that under given loading and the environmental 
conditions the part will perform its function 
properly. 
 
The structural strength of materials generally 
depends on the material properties, the shape and the 

size of defects as well as together with the 
orientation of flaws in the medium. Thus in a design 
dealing with materials, it is necessary to have a good 
estimate of the disturbed stress state caused by these 
flaws. 
 
Fiber reinforced composite materials have been 
characterized as a transversely isotropic medium 
having five elastic constants (Jones, 1975; 
Christiensen, 1979). Hexagonal materials such as 
magnesium, cadmium and zinc are also transversely 
isotropic. 
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There is an increasing interest in anisotropic 
materials due to high strength over density ratio. 
 
Axially symmetric deformation of a transversely 
isotropic body of revolution has been studied 
(Lekhnitskii, 1981).  
 
The distribution of stress in a transversely isotropic 
cylinder containing penny-shaped crack has been 
investigated (Parhi and Atsumi, 1975). Dahan  
(1980; 1981) has searched stress intensity factor and 
stress distribution in a transversely isotropic solid 
containing a penny shaped crack. Singular stresses 
in a transversely isotropic circular cylinder with 
circumferential edge crack have been examined 
(Atsumi and Shindo, 1979). Konishi (Konishi, 1972; 
Konishi and Atsumi, 1973) has studied crack 
problems in transversely isotropic strip and medium. 
Fildiş has studied stress intensity factors for an 
infinitely long transversely isotropic solid cylinder 
containing a ring shaped cavity (Fildiş, 1991). 
 
In addition to the numerous studies stated above, 
plastic deformations have also been considered by 
some researchers. Notably among them Olesiak and 
Shadley (Olesiak and Shadley, 1969) determined the 
plastic zone in a thick layer with a disk shaped 
crack. Crack opening displacements in an 
orthotropic strip have been found by using the 
plastic strip model (Kaya and Erdoğan). Plastic 
deformations in a transversely isotropic layer and 
cylinder have been studied by Danyluk et all. 
(Danyluk and Singh, 1985; Danyluk et all., 1991). 
All the work mentioned above related to plastic 
studies are based on the Dugdale’s hypothesis 
(Dugdale, 1960). The Dugdale model of a crack in a 
ductile material was introduced to investigate the 
inelastic zone at the ends of a stationary slit in steel 
sheets under static tension. The predictions of 
Dugdale model agree closely with the experimental 
results. 
 
In this study, the governing elasticity equation for 
the transversely isotropic axisymmetric problem in 
cylindrical coordinates is obtained in terms of a 
Love type stress function. Hankel and Fourier sine 
transforms are applied to the stress function because 
of the geometry of the configuration and boundary 
conditions. The stress function is expressed in terms 
of summation of two solutions of the governing 
equation. Using the boundary conditions, the 
problem is reduced to a singular integral equation. 
This singular integral equation is solved by using the 
Gaussian Quadrature. Then the stress intensity 
factors at the crack tips are determined. Kaya and 
Erdogan’s method was modified to obtain the plastic 
zone lengths at the crack tips. 

The numerical results have been obtained for various 
ring-shaped crack sizes. The plastic zone lengths are 
obtained for axial loading. The results are illustrated 
by graphs. 

 
 

2. BASIC FORMULATION 
 
Consider the axisymmetric elasticity problem for a 
transversely isotropic cylinder shown in Figure 1. 
The equilibrium and the compatibility equations are 
expressed by (Lekhnitskii, 1981) 
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Figure 1. Geometry of the problem 
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For transversely isotropic bodies, axisymmetric 
deformations can be written as 
 

z1312r11r aaa    
 

z1311r12 aaa                                   (2.3) 
 

z3313r13z aaa    
 

rz44rz a   
 
where 
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and a11, a12, a13, a33, and a44 are the material 
constants for the transversely isotropic material. 
 
In terms of stress function (r, z), the stresses may 
be expressed as  
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where the constants a, b, c, and d are 
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For a crack in an infinite cylinder, the problem is an 
axisymmetric one and the stress function has to be 
an even function of r. The problem is also symmetric 
about z=0 plane and the stress function must be an 
odd function of z. It is necessary to select  a Love 
type potential function (r, z) of the form the Hankel 
transform of order zero and Fourier sine transform, 
that is 

 

  
 


























0 0
2022

2
2
1

10
0

zm
2

zm
1 d)zsin()rc(MI

)cc(
)rc(I.A2d)r(JeBeB)z,r( 21                                     (2.7) 

 
 
with 
 

   
2d

4dcaca
m

2

1,2


  

 

    d4caca

d2c
21


                              (2.8) 

 

   
2

d4caca
c

2

2


  

 
where J0(r) and I0(cir) are the Bessel function  of 
first kind and modified Bessel function of first kind 
respectively. We find with the help of Eq. 2.5 that 
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3. FORMULATION AND SOLUTION 
OF THE PROBLEM 

 
Let the ring-shaped crack be embedded in the mid-
plane of an infinite cylinder. The material of the 
cylinder is a transversely isotropic elastic-plastic 
material. In practice, the curved surface is stress 
free. Therefore, on the plane z=0, it is required that 
 
r(R, z) = 0         0 < z <                            (3.1.a) 
 
rz(R, z) = 0        0 < z <                           (3.1.b) 
 
rz(r, 0) = 0         0  r   R                               (3.1.c) 
 
z(r, z) = -f( r )    ap <  r  <  bp                                         (3.1.d) 
 
(r, 0) = 0           0  r   ap and bp  r   R (3.1.e) 
 
The cylindrical surface at r = R is free from normal 
and shear tractions. 
 
We are considering an axially-symmetric 
deformation of the material and under the Dugdale 
assumption there are thin annular regions of inelastic 
deformation surrounding the ring-shaped crack (see 
Figure 1). The inelastic zones at inner and outer 
crack tips are described by inner radii ap and bc, and 
outer radii ac and bp, respectively. A tensile stress, 
yield stress of the material, Y is uniformly 
distributed in the inelastic regions. Therefore, we 
find that 
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where the pressure p0 (constant) is prescribed on the 
crack faces. 
 

Boundary conditions in eq.3.1(a-c) may be used to 
eliminate three of the four unknowns. The mixed 
boundary conditions in eq. 3. 1(d-e) may be used to 
obtain a system of dual integral equations for the 
fourth unknown function. It is convenient to reduce 
the mixed boundary condition to an integral 
equation. The integral equation will be singular. In 
order to avoid strong singularity in the resulting 
equation, it is necessary to introduce a new function 
as the derivative of the displacement (r, z), rather 
than the displacement. The new unknown function 
will be defined as follows 
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with the help of eq. 2.12, boundary condition 3.1.e 
and eq. 2.12 are equivalent to 
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Substituting Eq. 2.12 into Eq. 3.3 and by using Eq. 
3.4, the following equation can be obtained 
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by substituting eq.2.10 into eq.3.1.c, we get 
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B1 and B2 can be easily obtained from eqs. 3.6 and 
3.8 
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CB1 and CB2  are given in appendix. 
 
Now by substituting eq. 2.9 into boundary condition 
eq. 3.1.a and by taking inverse Fourier-cosine 
transform, 
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By using the closed form integral (Gradshteyn and Ryzhik, 1980), eq. 3.11 takes the following form 
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Finally by substituting eq. 2.11 into eq. 3.1.b, and by taking inverse Fourier-sine transform, 
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Again by using the closed form integral (Gradshteyn and Ryzhik, 1980), eq. 3.13 takes the following form 
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A’ and M are obtained from eq.3.12 and eq.3.14 
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where C11, C12 , C13, C14 F1 , F1 and C2 are given in 
Appendix. 
 
Let us substitute A, M, B1, and B2 into eq. 2.8. 
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By substituting eq.3.17 into boundary condition 
eq.3.1.d, the unknown function G() can be found as 
follows 
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1)r,r(m                                                         (3.22.b) 

 
Here K and E are the first and second kind elliptic 
integrals respectively. 
 
From the boundary condition 3.1.e and eq. 3.3, it is 
clear that the integral equation must be solved under 
the following single valuedness condition. 
 

0dr)r(G
c

c

b

a

                                                       (3.23) 

 
For the materials considered in this paper, the 
numerical values of the modulii cij (i,j=1..4) are 
taken from Huntington (Huntington, 1958) and they 
are tabulated below. 
 
Table 1. Values of Elastic Constants for the 
Transversely  Isotropic  Materials ( in GPa) 
Material c11 c12 c13 c33 c44 
Magnesium 59.7 26.2 21.7 61.7 16.4 
Barium-titanate 168.0 78.0 71.0 189.0 5.46 

 
The elastic constants aij (i, j = 1..4) can be easily 
determined by using inverse relation between ij and 
ij . 

 
 

4. NUMERICAL SOLUTION 
 

Examining the kernel in eq. 3.18, when r= it is 
obvious that the first part of the kernel, k1(r, ) has a 
simple logarithmic singularity in the form of log-
r. The second part of the kernel, k2(r, ) is bounded 

in the closed interval a (r, )b. The unknown 
function G() is infinite but integrable at =1, 
therefore the solution is of the form (Mushkelishvili, 
1953). 
 

2/1)]b)(a)[(()(G                            (4.1) 
 
A standard numerical technique can be used to find 
out the unknown function G() (Erdogan and Gupta, 
1972). To be able to apply the numerical solution 
technique to the singular integral equation, it should 
be normalized. Normalization is carried out by the 
following quantities: 
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Eqs. 3.18 and 3.23 become, 
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where 
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Since G() has an integrable singularity, 
 

)(F)1()(G 2/12                                          (4.6) 
 
may be written. 
 
The solution of eq.4.3 is determined by using single-
valuedness condition in eq. 4.4 (Erdogan and Gupta, 
1972). 
 
Substituting eq. 4.6 into eq.4.3 we obtain 
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F() has to be obtained from eq. 4.7 subjected to the 
single-valuedness condition, 
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Eqs. 4.7 and 4.8 can be evaluated by using the 
Gauss-Chebyshev integration formula (Scheid, 
1968). Thus from Eqs. 4.7 and 4.8 we obtain 
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The set of n simultaneous algebraic equations of 4.9 
and 4.10 is solved and one can find n values for F(i) 
(i=1..n). In order to determine the stress intensity 
factors at the inner and outer crack tips, the values of 
F(+1) and F(-1) must be evaluated from the set of 
F(i). Evaluation is performed by means of the 
interpolation technique (Krenk, 1975). 
 
The Mode I stress intensity factors at the crack tips 
are defined as 
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k(ac) and k(bc) can also be expressed in terms of 
unknown function G( r) 
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4. 1. Plastic Zone Sizes 
 
It is considered that, an axially-symmetric 
deformation of the material and that under the 
Dugdale assumption, there are thin annular regions 
of inelastic deformation surrounding the ring-shaped 
crack tips. A tensile stress Y is uniformly distributed 
in the inelastic regions. 

 
Under the given  external loading (represented by   
) let the plastic zones spread to r = ap<ac and 
r = bp>bc, ac and bc being the initial crack lengths. 
Solving now the integral equation 3.18 with bp 
replacing bc, for the given external loads, one may  
obtain a stress intensity factor at bp. Also a stress 
intensity factor at ap may be obtained by solving 
singular integral equation with ap replacing ac. These 
stress intensity factors would be linearly dependent 
on the magnitude of external load  and would be 
functions of bp/R and ap/R respectively. Repeating 
the solutions with only external load (0,r)=f(r)=-
Y  bc< r <bp and ap< r <ac, may again obtain stress 
intensity factors which would be linearly dependent 
on Y and would be functions of bc/R and bp/R, ac/R 
and ap/R, respectively. Here Y is the flow stress and 
represents the yield behavior of the material. Since 
the stress state at the fictitious crack tips r = bp and 
r = ap must be bounded, the sum of these two stress 
intensity factors must be zero satisfying the 
following conditions (Kaya and Erdogan, 1980). 
 

0)b,b(k.Y)b(k. cpb2pb1                         (4.17.a) 
 

0)a,a(k.Y)a(k. cpa2pa1                         (4.17.b) 
 
Noting that k1a, k1b, k2a, and k2b correspond to the 
stress intensity factors calculated from the respective 
“unit loads”. The term .k1 gives the stress intensity 
factor under the external load  and Y.k2 gives the 
stress intensity factor under the flow stress Y. 
Eqs.4.17.a-b provide a simple meaning for 
calculating the plastic zone sizes bp-bc and ac-ap for a 
given “load ratio” /Y in an inverse manner. It must 
be emphasized here that at first a load ratio is found 
by a given plastic zone length bp-bc. Then, a plastic 
zone length ac-ap which correspond to the same load 
ratio must be found with the help of iteration. 

 
 

5. NUMERICAL RESULTS 
 
The term )cc( 2

2
2
1   in the denominator of the eq. 2.9 

becomes equal to zero for perfectly isotropic 
materials. Hence the perfectly isotropic materials 
can not be analyzed by making use of the 
formulation given in this problem. 
 
Determination of stress intensity factor in 
magnesium cylinder subjected to unit load, when the 
crack length is greatest is the one ac/R = 0.1 and bc/R 
= 0.2 at the crack inner tip, where the first 
investigation is carried out, the value of k(ac), as 
bc/R reaches to 0.9, increases approximately 6.52 
times. This increase at the outer tip of the crack is 



Plastic Zones in an Infinitely Long Transversely Isotropic Solid Cylinder Containing..., M. Uyaner, A. Akdemir, S. Erim, A. Avcı 
 

Mühendislik Bilimleri Dergisi  1999  5 (2-3)  1047-1056 1054  Journal of Engineering Sciences 1999  5 (2-3)  1047-1056 
 

3.72 times. Increases in barium-titanate material at 
the inner and outer tips of the crack, 5.53 and 3.45, 
respectively. The difference in increase for these two 
material is 15 %. 
 
The work for determining the length of a developed 
plastic zone in a various cylinders necessitated 
solving the singular integral equation 3.18 using a 
appropriate values of the elastic constants. When the 
values obtained for the length of the developed 
plastic zones are examined, it is seen that P0 / Y ratio  
in which a plastic zone is formed, is smaller in 
magnesium while it is bigger in barium-titanate. The 
difference between the values obtained for each 
material is maximum 1.5 % and minimum 0.002 %. 
Therefore, it has been considered adequate only to 
include the plastic zone variations for magnesium 
and these variations have been given in the form of 
graphics in Figs. 2 and 3. Variations of the plastic 
zone in the cylinder of barium-titanate for ac/R = 0.2, 
bc/R = 0.3 and ac/R = 0.4, bc/R = 0.5 are given in 
Figs. 4 and 5 as an example. In plastic zone 
examinations, the lengths of the plastic zone have 
been determined by equation 4.17 without 
calculating the yield stress of the materials. Since the 
load ratio P0/Y has been considered instead of yield 
stress Y, the difference among the plastic zone 
lengths obtained for each material is very little.  
 
In magnesium cylinder, the variation of the plastic 
zone length at the outer tip of the crack with the load 
ratio P0 / Y for ac/R = 0.2 is given in Figure 2. In this 
graphic, plastic zone lengths for seven different 
crack positions have been shown. A constant plastic 
zone is formed at lower load ratios as the crack 
length increases. Since the stress intensity factor will 
increase with the increase of the crack length, P0/Y 
ratio will decrease. This result is as expected in 
connection with the variation of the stress intensity 
factor along the crack length. 
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Figure 2.Variation of the plastic zone at outer crack 
tip in a cylinder of magnesium for ac/R = 0.2 
For all series in Figure 2 prior to plastic zone length 
reaching the cylinder radius R, relatively small 

increase in the plastic zone length is observed 
against comparatively large increase in P0 / Y ratio. 
As it reaches the cylinder radius R, although the      
P0 / Y increases slightly the plastic zone increases 
rapidly. This cases arises from the fact that, the 
stress intensity factor increases rapidly as the crack 
approaches the cylinder outer surface. The length of 
the final plastic zone length for the series given in 
graphics, is the length (R-bc) between the crack outer 
radius and the cylinder outer radius in which the 
plastic zone will be greatest for the crack outer tip. 
Therefore, all of the series has ended at a point 
approaching this value. 
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Figure 3. Variation of the plastic zone at inner crack 
tip in a cylinder of magnesium for ac / R = 0.2 
 
In Figure 3, the variation of the plastic zone length at 
inner tip of the crack in magnesium cylinder with the 
load ratio P0 / Y for ac / R = 0.2 is given. Plastic zone 
lengths for seven different crack positions are given 
in this graphic. As observed at the crack outer tip in 
Figure 2, a constant plastic zone is formed at lower 
load ratios as the crack length increases. In all series, 
the plastic zone expands gradually with the increase 
in P0/Y ratio and its increase accelerates as the 
plastic zone length approaches r = 0. In the 
numerical solution of stress intensity factors, the 
solution goes to infinity for ac = 0. Therefore, as the 
plastic zone approaches r = 0, the stress intensity 
factor calculated at the end of the plastic zone 
increases rapidly. This effect can be observed in 
plastic zone lengths. In the graphics, each of the 
series has been terminated as it approaches a, where 
the plastic zone will be greatest. 
 
Another solution observed in the examination of the 
plastic zone carried out for ac / R = 0.2 is the 
following: the load ratio P0 / Y corresponding to any 
plastic zone at the inner tip of the crack for each      
bc / R series, is lower than the load ratio P0 / Y 
corresponding to the same plastic zone at outer tip of 
the crack. For any crack position, the stress intensity 
factor at the inner tip of the crack is always greater 
than that at the outer tip of the crack (Fildiş, 1991). 
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Therefore, since the stress intensity factor at the 
inner tip of the crack is large, the P0 / Y ratio is also 
lower compared to the outer tip of the crack. Greater 
stress intensity factor causes wider plastic zone. On 
the contrary, the plastic zone occurring at the inner 
tip of the crack for any load ratio is greater than that 
occurring at the outer tip of the crack.  
 
The variations of the plastic zone length at the crack 
outer and inner tips with the load ratio P0 / Y in 
magnesium cylinder for other ac / R values are 
similar to that drawn in Figure 2 and 3. 
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Figure 4. Variation of the plastic zone in a cylinder 
of barium-titanate for ac / R=0.2 and bc / R=0.3 
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Figure 5. Variation of the plastic zone in a cylinder 
of barium-titanate for ac / R=0.4 and bc / R=0.5 
 
The plastic zone investigation for a penny-shaped 
crack in an infinite transversely isotropic cylinder is 
given in ref. (Danyluk et all. 1985). In this study 
graphite-epoxy, E-glass, magnesium, and zinc have 
been used as materials. The plastic zone length 
obtained from this study has been made 
dimensionless by dividing it to crack radius and its 
variation with the load ratio  has been presented 
graphically. Whether the plastic zone expands up to 
the outer radius of cylinder is not clear from these 

graphics. In our study, though, this phenomenon can 
be easily observed. 

 
 

6. CONCLUSION 
 
In this study, an infinitely long solid cylinder 
containing a ring shaped crack embedded at its mid 
plane is investigated under the effect of uniform 
load. The problem is formulated for a transversely 
isotropic material by using integral transform 
technique and then is reduced to a singular integral 
equation. This integral equation is solved 
numerically. Plastic zone lengths at the outer and the 
inner crack tips are determined for various crack 
configurations. 
  
Depending on the crack geometries, the greatest 
stress intensity factor was observed in the 
magnesium cylinder. On the contrary, the greatest 
plastic zone length develops in barium-titanate 
cylinder. The largest increase in stress intensity 
factors is observed in magnesium, the difference 
between the magnesium and barium-titanate in 
which smaller increase is observed, being 15 %. 
This difference between the stress intensity factors is 
not met however in plastic zone lengths where the 
largest value in approximately 1.5 %. The small 
difference between the plastic zones compared to the 
relatively large difference in stress intensity factors, 
arises from the fact that plastic zones are determined 
by the load ratio P0/Y instead of P0. 
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