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ABSTRACT  
 

We present a study of the effect of the spin–orbit interaction on the band structures in III-V bi-
nary semiconductor compounds like GaAs, GaP, GaSb, etc. Our calculations were performed using 
a self-consistent, full-potential linearized augmented plane wave (FP-LAPW) method as imple-
mented in Wien2k code. We found that the inclusion of spin-orbit interaction affects on the band 
structures, and the splitting of degenerate valence band occurs on high symmetry G-point. We 
obtained the results on the band structures without and with the inclusion of spin-orbit interac-
tion and compare the results. We also measured the value of the splitting energy and found that 
our results are similar to the calculated value of earlier results.  
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INTRODUCTION 
 
The spin-orbit interaction (also called spin-

orbit effect or spin-orbit coupling) is any interac-
tion of a particle’s spin with its motion. Spin-
orbit coupling makes the spin degree of freedom 
respond to its orbital environment. In solids this 
yields such fascinating phenomena as a spin 
splitting of electron states in inversion-
asymmetric systems even at zero magnetic field 
and a Zeeman splitting that is significantly en-
hanced in magnitude over the Zeeman splitting 

of free electrons.1 

The spin-orbit interaction is a relativistic ef-
fect whose magnitude increases with the atomic 
number. Consequently, it provides negligible 
contributions to the electronic structure of indi-
vidual atoms and bulk materials made of light 
elements.2 It is also the primary interaction re-
sponsible for most of the zero-field splitting and 
other properties of magnetic molecules.3 Several 
relativistic methods have been developed in vari-
ous schemes for the all-electron calculations for 
solids: the augmented-plane-wave (APW) 
method,4 the linearized muffin-tin-orbital 
(LMTO) method,5-8 the Korringa-Kohn-
Rostoker (KKR) method,9-13 and the linear-
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combination-of-atomic-orbitals (LCAO) 
method.14-18 

In semiconductors, the spin-orbit interaction 
splits the edges of the valence and conduction 
bands19 and allows electrical manipulation of the 
spin direction.20 This last effect is of paramount 
importance for the growing field of spintronics,21 
which has certainly added more impetus to the 
inclusion of the spin-orbit interaction in the de-
scription of the electronic structure. The spin-
orbit coupling determines the spin-relaxation 
time of electrons in ordinary semiconductors 
and in semiconductor heterostructures22 and also 
plays an important role in the physics of diluted 
magnetic semiconductors.23 Finally, it is worth 
mentioning that electron spin manipulation us-
ing the spin–orbit interaction was recently dem-
onstrated in the so-called spin-Hall effect,24 
which is a solid-state version of the Stern-
Gerlach measurement.  

It is therefore, clear that the spin-orbit inter-
action is becoming increasingly important for 

a number of applications, which also require 
the description of rather large mesoscopic sys-
tems.  

 

FORMALISM 
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The Dirac Hamiltonian25 can be written as  
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x , y ,
z  are the Pauli-spin matrices. 

Eigenvectors of (1) are four-component 

functions which are written in terms of two-

component functions  ,  : 
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In case of electrons,  is the `large' and   is 

the `small' component of the wave function. 
Thus equations (1-3) lead to a set of coupled 
equations: 
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From equations (4-5), we get the equation for 
the large component: 
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Using approximation and solving with some 
value, eqn. (6) leads to a differential equation for 

 given by 
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If the potential has the spherical symmetry, 
eqn.(10) reduces to: 
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The first and second term give non-relativistic 
Schrodinger equation. The third and fourth term 
are mass-velocity and Darwin correction, 
respectively. Finally, the last term corresponds 
to the spin-orbit coupling.  

The four-component function  is now written 

as: 
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where g and f are the radial function, 
jz

jlY is the r-

independent eigen function of j2, jz, l2 and s2 

formed by the combination of the Pauli spinor 
with the spherical harmonics, 
By solving eqn. (9) and eliminating f , we obtain 
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RESULTS AND DISCUSSION 
 
We discuss here the results of the effect of 

spin orbit interaction on band structure in the 
case of binary semiconductor compounds like 
GaAs, GaP, GaSb and InP which are having 
zincblende structure. The calculations were per-
formed using a self-consistent, full-potential lin-
earized augmented plane wave (FP-LAPW) 
method as implemented in WIEN2k code.27 We 
have generated the band structures without spin 
orbit coupling and with spin orbit coupling. We 
compared each of these two results and meas-
ured spin orbit splitting energy on the valence 
band. 

 

GaAs 

 

Figure 1 (a) shows the band structure of 
GaAs without spin-orbit coupling. We can see 
that the valence band is degenerate in the high 
symmetry G point. But, if we include the spin 
orbit interaction, the splitting of valence band 
occurs on high symmetry G point which is 
shown in Figure 1(b). We have found that 0.35 
eV is the spin splitting energy on GaAs com-
pound, which is in good agreement with the ear-
lier calculated result.28  

 

GaP 

 

Figure 2(a) shows the band structure of GaP 
without spin-orbit coupling. It can be observed 
that the valence band is degenerate in the high 
symmetry G point. But, if the spin orbit interac-
tion is included, the splitting of valence band 
occurs on high symmetry G point which is 
shown in Figure 2(b). We have also found that 
0.08 eV is the spin splitting energy on GaP com-
pound, which is in good agreement with the pre-
vious calculated result.28 
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The function f  is given by    
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The scalar relativistic approximation26 is 
obtained by omitting the terms which depend on 
  in eqns. (10, 11). The spin-orbit coupling may 
be then taken into account using the method 
described below. We denote the scalar 

relativistic approximation to f, g by ,f g% %: 
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and ,f g% % satisfy the set of equations: 
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The four-component wave function is now 
written as: 



 
   

 

%
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where % is a pure spin state and % contains 

mixture of up and down spin  

The functions % are not eigen functions of the 
Dirac Hamiltonian (1) and their deviation from 
eigen function is used to define the spin-orbit 
Hamiltonian Hso: 

soH H   % % % (16) 

In the basis of functions (13), Hso has the form: 
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Figure 1. Band structures of GaAs. (a) Without spin-orbit coupling (b) With spin-orbit coupling  

A B 

A B 

Figure 2. Band structures of GaP.   (a) Without spin-orbit coupling (b) With spin-orbit coupling 

Figure 3. Band structures of GaSb. (a) Without spin-orbit coupling (b) With spin-orbit coupling 

A B 
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GaSb 

 

Figure 3 (a) shows the band structure of 
GaSb without spin-orbit coupling. It can be ob-
served that the valence band is degenerate in the 
high symmetry G point. But, if we include the 
spin orbit interaction, the splitting of  valence 
band occurs on high symmetry G point which is 
shown in Figure 3(b). We have calculated that 
0.80 eV is the spin splitting energy on GaSb 
compound, which is in a good agreement with 
the previous calculated result.28 

 

InP 

 

Figure 4(a) shows the band structure of InP 
without spin-orbit coupling. It can be observed 
that the valence band is degenerate in the high 
symmetry G point. But, if we include the spin 

orbit interaction, the splitting of valence band 
occurs on high symmetry G point which is 
shown in Figure 4(b). Again, we have found 
that 0.10 eV is the spin splitting energy on InP 
compound, which is in good agreement with the 
previous calculated result28 like the case of 
GaAs, GaP and GaSb. 

 

CONCLUSION 
 
In this paper, we found that the spin-orbit 

interaction effect the valence band of III-V bi-
nary compound semiconductors. It is clear that 
the splitting energy of valence band is different 
in different compound and it values increases 
with atomic number. Table 1 below shows the 
comparison of spin splitting energy in different 
binary compounds and the comparison between 
our results and the previous calculated results.28 

Figure 4. Band structures of InP.  (a) Without spin-orbit coupling (b) With spin-orbit coupling 

A B 

Table 1. Comparison of spin splitting energy in different binary compounds. 

Sl. No. Name of compounds 

Spin splitting energy (eV) 

Our calculated value 
Ioffe physico-technical institute 

value (Ref. 27) 

1. GaAs 0.35 0.34 

2. GaP 0.08 0.08 

3. GaSb 0.80 0.80 

4. InP 0.10 0.11 
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