
International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

8

Horizontal Aggregations Based Data Sets for Data Mining
Analysis: A Review

1Mr.Gaurav J.Sawale and 2 Prof. Dr.S. R.Gupta
1Department of computer science & engineering, PRMIT&R, Badnera, Amravati, Maharashtra, India
2Department of computer science & engineering, PRMIT&R, Badnera, Amravati, Maharashtra, India

Abstract
Preparing a data set for analysis is generally the most time consuming task in a data mining project, requiring
many complex SQL queries, joining tables and aggregating columns. Existing SQL aggregations have
limitations to prepare data sets because they return one column per aggregated group. In general, a significant
manual effort is required to build data sets, where a horizontal layout is required. We propose simple, yet
powerful, methods to generate SQL code to return aggregated columns in a horizontal tabular layout, returning a
set of numbers instead of one number per row. This new class of functions is called horizontal aggregations.
Horizontal aggregations build data sets with a horizontal denormalized layout (e.g. point-dimension,
observation-variable, instance-feature), which is the standard layout required by most data mining algorithms.
We propose three fundamental methods to evaluate horizontal aggregations: CASE: Exploiting the
programming CASE construct; SPJ: Based on standard relational algebra operators (SPJ queries); PIVOT:
Using the PIVOT operator, which is offered by some DBMSs. Experiments with large tables compare the
proposed query evaluation methods. Our CASE method has similar speed to the PIVOT operator and it is much
faster than the SPJ method. In general, the CASE and PIVOT methods exhibit linear scalability, whereas the
SPJ method does not.
Keyword: Aggregation; Data Preparation; Pivoting; SQL

I. Introduction
In a relational database, especially with normalized
tables, a significant effort is required to prepare a
summary data set [16] that can be used as input for a
data mining or statistical algorithm [17] [15]. Most
algorithms require as input a data set with a
horizontal layout, with several records and one
variable or dimension per column. Consider the case
with models like clustering, classification,
regression, and PCA; consult [10] [15]. Each
research discipline uses different terminology to
describe the data set. In data mining the common
terms are point-dimension. Statistics literature
generally uses observation-variable. Machine
learning research uses instance-feature. This report
introduces a new class of aggregate functions that
can be used to build data sets in a horizontal layout
(denormalized with aggregations), automating SQL
query writing and extending SQL capabilities. A
show evaluating horizontal aggregations is a
challenging and interesting problem and A introduce

alternative methods and optimizations for their
efficient evaluation. Horizontal aggregation is new
class of function to return aggregated columns in a
horizontal layout. Most algorithms require datasets
with horizontal layout as input with several records
and one variable or dimensions per columns.
Managing large data sets without DBMS support
can be a difficult task. Trying different subsets of
data points and dimensions is more flexible, faster
and easier to do inside a relational database with
SQL queries than outside with alternative tool.
Horizontal aggregations can be performing by using
operator, it can easily be implemented inside a query
processor, much like a select, project and join.
PIVOT operator on tabular data that exchange rows,
enable data analysis, and data presentation. There
are many existing functions and operators for
aggregation in SQL. The most commonly used
aggregations is the sum of a column And other
aggregation operators return the average, maximum,
minimum or row count over groups of rows. All
operations for aggregation have many limitations to

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

9

build large data sets for data mining purposes.
Database schemas are also highly normalized for
On-Line Transaction Processing (OLTP) systems
where data sets that are stored in a relational
database or data warehouse. But data mining,
statistical or machine learning algorithms generally
require aggregated data in summarized form. Data
mining algorithm requires suitable input in the form
of cross tabular (horizontal) form, significant effort
is required to compute aggregations for this purpose.
Such effort is due to the amount and complexity of
SQL code which needs to be written, optimized and
tested. Data aggregation is a process in which
information is gathered and expressed in a summary
form, and which is used for purposes such as
statistical analysis. A common aggregation purpose
is to get more information about particular groups
based on specific variables such as age, name,
phone number, address, profession, or income. Most
algorithms require input as a data set with a
horizontal layout, with several records and one
variable or dimension per column. That technique is
used with models like clustering, classification,
regression and PCA. Dimension used in data mining
technique are point dimension.
1.1 Motivation
Building a suitable data set for data mining purposes
is a time-consuming task. This task generally
requires writing long SQL statements or
customizing SQL code if it is automatically
generated by some tool. There are two main
ingredients in such SQL code: joins and
aggregations [16]. The most widely known
aggregation is the sum of a column over groups of
rows. Some other aggregations return the average,
maximum, minimum, or row count over groups of
rows. There exist many aggregation functions and
operators in SQL. Unfortunately, all these
aggregations have limitations to build data sets for
data mining purposes. The main reason is that, in
general, data sets that are stored in a relational
database (or a data warehouse) come from Online
Transaction Processing (OLTP) systems where
database schemas are highly normalized. But data
mining, statistical,or machine learning algorithms
generally require aggregated data in summarized
form. Based on current available functions and
clauses in SQL, a significant effort is required to
compute aggregations when they are desired in a

crosstabular (horizontal) form, suitable to be used
by a data mining algorithm. Such effort is due to the
amount and complexity of SQL code that needs to
be written, optimized, and tested. There are further
practical reasons to return aggregation results in a
horizontal (cross-tabular) layout. Standard
aggregations are hard to interpret when there are
many result rows, especially when grouping
attributes have high cardinalities

 1.2 Objectives

1) The proposed dissertation objective is a new class of
extended aggregate functions, called horizontal
aggregations which helps in investigating data sets
for data mining and OLAP cube exploration.

2) It also investigate three query evaluation method for
horizontal aggregation in order to optimize the
query required for preparing summary data sets and
the three methods are SPJ, PIVOT and CASE.

3) Combining any of three methods(SPJ, PIVOT ,
CASE) with horizontal aggregations used to
generate SQL code to build data set for data
mining. Aim is to provide a more efficient, better
integrated and more secure solution compared to
external data mining tools.

II. Literature Review
 2.1 Data Mining
 Generally, data mining (sometimes called data or
knowledge discovery) is the process of analyzing
data from different perspectives and summarizing it
into useful information - information that can be
used to increase revenue, cuts costs, or both. Data
mining software is one of a number of analytical
tools for analyzing data. It allows users to analyze
data from many different dimensions or angles,
categorize it, and summarize the relationships
identified. Technically, data mining is the process of
finding correlations or patterns among dozens of
fields in large relational databases. The Scope of
Data Mining Data mining derives its name from the
similarities between searching for valuable business
information in a large database — for example,
finding linked products in gigabytes of store scanner
data — and mining a mountain for a vein of
valuable ore. Both processes require either sifting
through an immense amount of material, or
intelligently probing it to find exactly where the
value resides. Given databases of sufficient size and

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

10

quality, data mining technology can generate new
business opportunities by providing these
capabilities:
Automated prediction of trends and behaviors: Data
mining automates the process of finding predictive
information in large databases. Questions that
traditionally required extensive hands-on analysis
can now be answered directly from the data —
quickly. A typical example of a predictive problem
is targeted marketing. Data mining uses data on past
promotional mailings to identify the targets most
likely to maximize return on investment in future
mailings. Other predictive problems include
forecasting bankruptcy and other forms of default,
and identifying segments of a population likely to
respond similarly to given events.
Automated discovery of previously unknown
patterns: Data mining tools sweep through databases
and identify previously hidden patterns in one
step.The most commonly used techniques in data
mining are:

• Artificial neural networks: Non-linear
predictive models that learn through
training and resemble biological neural
networks in structure.

• Decision trees: Tree-shaped structures that
represent sets of decisions. These decisions
generate rules for the classification of a
dataset. Specific decision tree methods
include Classification and Regression
Trees (CART) and Chi Square Automatic
Interaction Detection (CHAID).

• Genetic algorithms: Optimization
techniques that use processes such as
genetic combination, mutation, and natural
selection in a design based on the concepts
of evolution.

• Nearest neighbor method: A technique that
classifies each record in a dataset based on
a combination of the classes of the k
record(s) most similar to it in a historical
dataset sometimes called the k-nearest
neighbor technique.

• Rule induction: The extraction of useful if-
then rules from data based on statistical
significance.

2.2 Architecture for Data Mining

 Data mining is an iterative process that typically
involve following phases:

Fig. 1. Data mining architecture

Problem definition: A data mining project starts
with the understanding of the business problem.
Data mining experts, business experts, and domain
experts work closely together to define the project
objectives and the requirements from a business
perspective. The project objective is then translated
into a data mining problem definition. In the
problem definition phase, data mining tools are not
yet required [1].
Data exploration: Domain experts understand the
meaning of the metadata. They collect, describe, and
explore the data. They also identify quality
problems of the data. A frequent exchange with the
data mining experts and the business experts from
the problem definition phase is vital. In the data
exploration phase, traditional data analysis tools, for
example, statistics, are used to explore the data [1].
Data preparation: Domain experts build the data
model for the modeling process. They collect,
cleanse, and format the data because some of the
mining functions accept data only in a certain
format. They also create new derived attributes, for
example, an average value. In the data preparation
phase, data is tweaked multiple times in no
prescribed order. Preparing the data for the
modeling tool by selecting tables, records, and
attributes, are typical tasks in this phase. The
meaning of the data is not changed [1].
Modeling: Data mining experts select and apply
various mining functions because you can use
different mining functions for the same type of data
mining problem. Some of the mining functions
require specific data types. The data mining experts
must assess each model. In the modeling phase, a
frequent exchange with the domain experts from the
data preparation phase is required. The modeling
phase and the evaluation phase are coupled. They
can be repeated several times to change parameters
until optimal values are achieved. When the final

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

11

modeling phase is completed, a model of high
quality has been built [1].
Evaluation: Data mining experts evaluate the
model. If the model does not satisfy their
expectations, they go back to the modeling phase
and rebuild the model by changing its parameters
until optimal values are achieved.

2.4 Role of SQL in Data Mining
SQL propose three methods to evaluate horizontal
aggregations.The first method relies only on
relational operations.That is, only doing select,
project, join, and aggregation queries; A call it the
SPJ method. The second form relies on the SQL
“CASE” construct; A call it the CASE method. Each
table has an index on its primary key for efficient
join processing. The third method uses the built-in
PIVOT operator, which transforms rows to columns
(e.g., transposing).

2.4.1 SPJ Method
The SPJ method is interesting from a theoretical
point of view because it is based on relational
operators only. The basic idea is to create one table
with a vertical aggregation for each result column,
and then join all those tables to produce FH. A
aggregate from F into d projected tables with d
Select-Project-Join-Aggregation queries (selection,
projection, join, aggregation). Each table FI
corresponds to one subgrouping combination and
has {L1, . . .Lj} as primary key and an aggregation
on A as the only nonkey column. It is necessary to
introduce an additional table F0 that will be outer
joined with projected tables to get a complete result
set. A propose two basic substrategies to compute
FH. The first one directly aggregates from F. The
second one computes the equivalent vertical
aggregation in a temporary table FV grouping by
L1; . . . ; Lj; R1; . . .;Rk. Then horizontal
aggregations can be instead computed from FV,
which is a compressed version of F, since standard
aggregations are distributive [9]. The SPJ method
code is as follows (computed from F):
 INSERT INTO F1
 SELECT D1,sum(A) AS A
 FROM F
 WHERE D2=’X’
 GROUP BY D1;
 INSERT INTO F2

 SELECT D1,sum(A) AS A
 FROM F
 WHERE D2=’Y’
 GROUP BY D1;
 INSERT INTO FH
 SELECT F0.D1,F1.A AS D2_X,F2.A AS
D2_Y
 FROM F0 LEFT OUTER JOIN F1 on
F0.D1=F1.D1
 LEFT OUTER JOIN F2 on F0.D1=F2.D1;

 2.4.2 CASE Method
For this method, A use the “case” programming
construct available in SQL. The case statement
returns a value selected from a set of values based
on boolean expressions.From a relational database
theory point of view this is equivalent to doing a
simple projection/aggregation query where each
nonkey value is given by a function that returns a
number based on some conjunction of conditions.
The two basic substrategies to compute FH. In a
similar manner to SPJ, the first one directly
aggregates from F and the second one computes the
vertical aggregation in a temporary table FV and
then horizontal aggregations are indirectly computed
from FV.A now present the direct aggregation
method. Horizontal aggregation queries can be
evaluated by directly aggregating from F and
transposing rows at the same time to produce FH.
First, there is need to get the unique combinations of
R1; . . .;Rk that define the matching boolean
expression for result columns. The SQL code to
compute horizontal aggregations directly from F is
as follows:
V () is a standard (vertical) SQL aggregation that
has a “case” statement as argument. Horizontal
aggregations need to set the result to null when there
are no qualifying rows for the specific horizontal
group to be consistent with the SPJ method and also
with the extended relational model [4]. The CASE
method code is as follows (computed from F):
 INSERT INTO FH
 SELECT D1,
 SUM(CASE WHEN D2=’X’ THEN A
 ELSE null END) as D2_X,
 SUM(CASE WHEN D2=’Y’ THEN A
 ELSE null END) as D2_Y
 FROM F
 GROUP BY D1;

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

12

2.4.3 PIVOT Method
Consider the PIVOT operator which is a built-in
operator in a commercial DBMS. Since this operator
can perform transposition it can help evaluating
horizontal aggregations.The PIVOT method
internally needs to determine how many columns
are needed to store the transposed table and it can be
combined with the GROUP BY clause.The PIVOT
method SQL is as follows (computed from F):

 INSERT INTO FH
 SELECT D1,
 [X] as D2_X
 [Y] as D2_Y
 FROM (SELECT D1, D2, A FROM F) as p
 PIVOT (
 SUM(A)
 FOR D2 IN ([X], [Y]))
 AS PIVOT;

2.5 Summary and Discussion
 For all proposed methods to evaluate
horizontal aggregations a summarize common
requirements are as follows:
All methods require grouping rows by L1; . . . ; Lj in
one or several queries.

a) All methods must initially get all distinct
combinations of R1; . . .;Rk to know the number and
names of result columns. Each combination will
match an input row with a result column. This step
makes query optimization difficult by standard
query optimization methods because such columns
cannot be known when a horizontal aggregation
query is parsed and optimized.

b) It is necessary to set result columns to null when
there are no qualifying rows. This is done either by
outer joins or by the CASE statement.

c) Computation can be accelerated in some cases by
first computing FV and then computing further
aggregations from FV instead of F. The amount of
acceleration depends on how larger is N with
respect to n (i.e., if N _ n). These requirements can
be used to develop more efficient query evaluation
algorithms.

III System Analysis and Design

3.1 Horizontal Aggregations

 As proposed a new class of aggregations that have
similar behavior to SQL standard aggregations, but
which produce tables with a horizontal layout. In
contrast, A call standard SQL aggregations vertical
aggregations since they produce tables with a
vertical layout. Horizontal aggregations just require
a small syntax extension to aggregate functions
called in a SELECT statement. Alternatively,
horizontal aggregations can be used to generate SQL
code from a
data mining tool to build data sets for data mining
analysis. A start by explaining how to automatically
generate SQL code.

Fig. 2. Example of F, FV, and FH

 A Traditional vertical sum() aggregation stored in
FV , and a horizontal aggregation stored in FH. The
basic SQL aggregation query is:

SELECT D1;D2, sum(A)
FROM F
GROUP BY D1, D2
ORDER BY D1, D2;

 The table shows FV has only five rows because
D1= 3 and D2 =Y do not appear together. Also, the
first row in FV has null in A following SQL
evaluation semantics. On the other hand, table FH
has three rows and two (d =2) nonkey columns,
effectively storing six aggregated values. In FH it is
necessary to populate the last row with null.
Therefore, nulls may come from F or may be
introduced by the horizontal layout.

 3.2 Existing System
 An existing to preparing a data set for
analysis is generally the most time consuming task
in a data mining project, requiring many complex
SQL queries, joining tables and aggregating
columns. Existing SQL aggregations have
limitations to prepare data sets because they return
one column per aggregated group.

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

13

 Disadvantage:
Existing SQL aggregations have limitations to
prepare data sets.
To return one column per aggregated group

3.2.1 Previous Process Flow:

Fig 3: Previous Process Flow

3.3 Proposed System
 Proposed horizontal aggregations provide
several unique features and advantages. First, they
represent a template to generate SQL code from a
data mining tool. Such SQL code automates writing
SQL queries, optimizing them and testing them for
correctness.
Advantage:
1) The SQL code reduces manual work in the data
preparation phase in a data mining project.
2) The SQL code is automatically generated it is
likely to be more efficient than SQL code written by
an end user.
3) The data sets can be created in less time.
4) The data set can be created entirely inside the
DBMS

3.3.1 Proposed Process Flow:

Fig 4: Proposed Process Flow

Proposed System Components:

1. Admin Module
2. User Module
3. View Module
4. Download Module

Module 1 : Admin Module
 Admin will upload new connection form based on
regulations in various states. Admin will be able to
upload various details regarding user bills like a new
connection to a new user, amount paid or payable by
user. In case of payment various details regarding
payment will be entered and separate username and
password will be provided to users in large.

Module 2 : User Module
 User will be able to view his bill details on any
date may be after a month or after months or years
and also he can to view the our bill details in a
various ways for instance, The year wise bills,
Month wise bills, totally paid to bill in EB. This will
reduce the cost of transaction. If user thinks that his
password is insecure, he has option to change it. He
also can view the registration details and alloAd to
change or edit and save it.
 Module 3 : View Module
Admin has three ways to view the user bill details,
the 3 ways are
i) SPJ
ii) PIVOT
iii) CASE

i) SPJ : While using SPJ the viewing and processing
time of user bills is reduced.
ii) PIVOT : This is used to draw the user details in a
customized table. This table will elaborate us on the
various bill details regarding the user on monthly
basis.
iii) CASE :
 Using CASE query A can customize the
present table and column based on the conditions.
This will help us to reduce enormous amount of
space used by various user bill details. It can be
vieAd in two different ways namely Horizontal and
Vertical. In case of vertical the number of rows will
be reduced to such an extent it is needed and

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

14

column will remain the same on other hand the
Horizontal will reduce rows as same as vertical and
will also increase the columnar format.

 Module 4:
 Download Module User will be able to download
the various details regarding bills. If he/she is a new
user, he/she can download the new connection form,
subscription details etc. then he/she can download
his /her previous bill details in hands so as to ensure
it.

IV. Conclusion
A new class of extended aggregate functions, called
horizontal aggregations which help preparing data
sets for data mining and OLAP cube exploration.
Specifically, horizontal aggregations are useful to
create data sets with a horizontal layout, as
commonly required by data mining algorithms and
OLAP cross-tabulation. Basically, a horizontal
aggregation returns a set of numbers instead of a
single number for each group, resembling a multi-
dimensional vector. From a query optimization
perspective, proposed three query evaluation
methods. The first one (SPJ) relies on standard
relational operators. The second one (CASE) relies
on the SQL CASE construct. The third (PIVOT)
uses a built-in operator in a commercial DBMS that
is not widely available. The SPJ method is important
from a theoretical point of view because it is based
on select, project and join (SPJ) queries. The CASE
method is our most important contribution. Our
proposed horizontal aggregations can be used as a
database method to automatically generate efficient
SQL queries with three sets of parameters: grouping
columns, subgrouping columns and aggregated
column. The fact that the output horizontal columns
are not available when the query is plan is explored
and chosen to make it evaluated through standard
SQL mechanisms infeasibly.Experiments with large
tables show our proposed horizontal aggregations
evaluated with the CASE method have similar
performance to the built-in PIVOT operator. A
believe that the proposal is based on generating SQL
code and not on internally modifying the query
optimizer. Both CASE and PIVOT evaluation
methods are significantly faster than the SPJ method

V. References
[1] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph

based reorderings of outer join queries with
complex predicates. In ACM SIGMOD
Conference, pages 304–315, 1995.

[2] J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M.
Henaire, and C. Klein-erman. .NET database
programmability and extensibility in Microsoft
SQL Server. In Proc. ACM SIGMOD
Conference, pages 1087–1098, 2008.

[3] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference,
pages 425–429, 1999.

[4] E.F. Codd. Extending the database relational

model to capture more meaning. ACM TODS,
4(4):397–434, 1979.

[5] C. Cunningham, G. Graefe, and C.A. Galindo-
Legaria. PIVOT and UNPIVOT: Optimization
and execution strategies in an RDBMS. In Proc.
VLDB Conference, pages 998–1009, 2004.

[6] C. Galindo-Legaria and A. Rosenthal. Outer join
simplification and reordering for query
optimization. ACM TODS, 22(1):43–73, 1997.

[7] H. Garcia-Molina, J.D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice
Hall, 1st edition, 2001.

[8] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In Proc.
ACM KDD Conference, pages 204–208, 1998.

[9] J. Gray, A. Bosworth, A. Layman, and H.
Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab and
sub-total. In ICDE Conference, pages 152–159,
1996.

[10] J. Han and M. Kamber. Data Mining: Concepts
and Techniques. Morgan Kaufmann, San
Francisco, 1st edition, 2001.

[11] G. Luo, J.F. Naughton, C.J. Ellmann, and M.
Watzke. Locking protocols for materialized
aggregate join views. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
17(6):796–807, 2005.

[12] C. Ordonez. Horizontal aggregations for
building tabular data sets. In
Proc. ACM SIGMOD Data Mining and
Knowledge Discovery Workshop, pages 35–42,
2004.

[13] C. Ordonez. Vertical and horizontal percentage

International Journal for Research in Emerging Science and Technology, Volume-1, Issue-2, July
2014, ISSN: 2349-7610

15

aggregations. In Proc. ACM SIGMOD
Conference, pages 866–871, 2004.

[14] C. Ordonez. Integrating K-means clustering with
a relational DBMS using SQL. IEEE
Transactions on Knowledge and Data
Engineering (TKDE), 18(2):188–201, 2006.

[15] C. Ordonez. Statistical model computation
with UDFs. IEEE Transac-tions on Knowledge
and Data Engineering (TKDE), 22, 2010.

[16] C. Ordonez. Data set preprocessing and
transformation in a database system.

[17] C. Ordonez and S. Pitchaimalai. Bayesian
classifiers programmed in SQL. IEEE
Transactions on Knowledge and Data
Engineering (TKDE), 22(1):139–144, 2010.

[18] S. Sarawagi, S. Thomas, and R. Agrawal.
Integrating association rule mining with
relational database systems: alternatives and
implications. In Proc. ACM SIGMOD
Conference, pages 343–354, 1998.

[19] H. Wang, C. Zaniolo, and C.R. Luo. ATLaS: A
small but complete SQL extension for data
mining and data streams. In Proc. VLDB
Conference, pages 1113–1116, 2003.

[20] A. Witkowski, S. Bellamkonda, T. Bozkaya, G.
Dorman, N. Folkert, A. Gupta, L. Sheng, and S.
Subramanian. Spreadsheets in RDBMS for
OLAP. In Proc. ACM SIGMOD Conference,
pages 52–63, 2003.

