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Abstract
Premature ovarian failure (POF) is identified as a heterogeneous disorder leading to 
amenorrhea and ovarian failure before the age of 40 years. The first known symp-
tom of the disease is having irregular menstrual periods. The phenotype appear-
ance of POF depends significantly on the variations in hormones. Low levels of 
gonadal hormones (estrogens and inhibins) and increased level of gonadotropins 
[luteinizing hormone (LH) and Follicle stimulating hormone (FSH)] (hypergonado-
tropic amenorrhea) are well documented as causes of POF. There is an association 
between the failure of germ cell development and complete ovarian failure, and 
consistently decreased number of germ cells is more likely associated with partial 
ovarian failure resulting in secondary amenorrhea. A literature  review on recent 
findings about POF and its association with genomic alterations in terms of genes 
and chromosomes. POF is a complex heterogeneous disorder. Some of POF cases 
are carriers of a single gene mutation inherited in an autosomal or X-linked manner 
while a number of patients suffer from a chromosome abnormality like Turner syn-
drome in mosaic form and manifest secondary amenorrhea associated with ovarian 
dysgenesis. Among many of the known involved genes in POF development, several 
are prove to be positively associated to the disease development in different popula-
tions. While there is a promising association between X chromosome anomalies and 
specific gene mutations with POF, genome-wide analysis could prove a powerful 
tool for identifying the most important candidate genes that influence POF mani-
festation.
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Introduction 
Premature ovarian failure (POF [MIM 311360]) 

is an early ovarian malfunction different from men-
opause, which disturbs production of follicles re-
sulting in amenorrhea under the age of 40 in 1-3% 
of reproductive age women (1-3). About 10-28% 
of the patients experience primary amenorrhea and 
about 4-18% show secondary Amenorrhea (2). Af-
fected women show menstrual problems followed 

by an elevated level of gonadotropines [follicle 
stimulating hormone (FSH) ≥40IU/L] and hypoes-
trogenism for an average four months (4). Measur-
ing serum FSH is a routine diagnosis procedure 
for the disease (2, 5). Genetic analysis of the 
early menopause patients showed that a variety 
of gene defects and chromosome anomalies in-
volving X chromosome and autosomes were as-
sociated with POF. The studies confirmed that 
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the multifactorial and heterogeneous biological 
events including infection, autoimmune disor-
ders and metabolic factors are likely respon-
sible for the disorder development. In 90% of 
observed cases, the etiology is unknown and the 
disease is defined as idiopathic POF (2, 6-8).

Most POF cases are sporadic and it is sug-
gested that between 4-31% of them are familial 
(9-11). In this regard, the abnormalities of the 
X chromosome are presented as the most im-
portant causes of the disease (12-17), followed 
by the fragile X mental retardation (FMR1) pre-
mutation which is present in POF patients with 
frequencies of 13 and 6%, respectively (18, 19).

Loss of one X chromosome as X monosomy 
[Turner syndrome (TS)], the related gene dele-
tions and X/autosome translocations, trisomy 
X, X linked gene mutations and premutations 
and anomalies of autosomal linked genes have 
been widely studied in correlation with POF 
disease. In examining the genetic mutations re-
sponsible for POF, each mutation could affect 
part of the disease phenotype. The diagnosis of 
the disease could be confirmed by two separate 
blood tests for FSH (4). Studies in different 
populations have shown various factors in as-
sociation with POF. In addition to the genetic 
anomalies and chromatin structure of specific 
genome environment, autoimmune factors and 
toxins are reported as other important causes of 
the disease. The exact reason for POF develop-
ment still remains unknown in many cases.
 
Cytogenetic analysis for POF
Chromosome abnormalities
 

In different reports, chromosomal abnormalities 
have been recognized as the most common causes of 
POF disease (12-17, 20), confirming the importance 
of cytogenetic analysis in reproductive management 
and genetic counseling for this disease. Investigations 
in this regard show the association of POF with chro-
mosome abnormalities, particularly those of X chro-
mosome such as structural anomalies, translocation of 
X with autosomes, isochromosomes and the related 
aneuploidies (21-25). Also, translocation of Y chro-
mosome heterochromatic regions on derivative X 
chromosome which affected the X chromosome 
inactivation was reported (26). Presence of a Y 
chromosome in a woman’s genome is a clear 

sign of chromosome abnormality which mostly 
causes tumor formation in mosaic karyotypes. 
Pouresmaeili et al. reported a patient with POF 
who carried aneuploidy of this kind (27). Un-
known X-linked gene imbalance is an expected 
cause of POF in these patients.

A critical region from Xq13.3 to Xq27 has been 
characterized for ovarian development and func-
tion (28). Studies have shown that deletion of the 
short arm and the long arm of the X chromosome 
result in either early primary or secondary amen-
orrhea (29). These observations suggested that 
important genes for normal ovarian function are 
located on both arms of the X chromosome (30).

Translocational studies between X chromosome 
and autosomes have been significant in determin-
ing the involvement of autosomal as well as X 
chromosomal genes in the development of POF 
disease. For example, the association of HS6ST1, 
HS6ST2, MATER and CHM genes with POF were 
identified following to the analysis of the POF pa-
tients with karyotypes 46, X, der (X) t (X; 19) (p21; 
q13), 46, X, t (X; 2) (q21; q14), 46, X, der (X)t (X; 
Y) (q25-26; q11.22), 46, X, t (X; 4) (q21.2; p16.3) 
respectively (31, 32). One possible explanation 
for the disease occurrence in these cases was at-
tributed to the positional effect of an autosome-
X chromosome translocation. In fact, transferred 
genes to the highly heterochromatic region of the 
X chromosome tolerate epigenetic effects after 
a rearrangement which changes their chromatin 
structure and consequently result in lower expres-
sion of genes associated with ovarian function and 
fertility (33).

Moreover, some studies have reported a Rob-
ertsonian translocation (13, 14) in some women 
with sporadic POF. It was also suggested that the 
functional changes and interruptions in some criti-
cal genes for ovarian function on acrocentric chro-
mosomes, due to translocation, could be a possible 
reason of the disease etiology in this group of pa-
tients (20, 34, 35).

Also, there are POF patients with trisomy X who 
were diagnosed after showing an endocrine disor-
der, hypergonadotropic hypogonadism (36). It is 
suggested that the genes located on the X chro-
mosome escaping inactivation could be overex-
pressed in 47, XXX patients, resulting in the dis-
order revelation (37). It is identified that complete 
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absence or a segmental deletion of one X chro-
mosome (TS) causes abnormalities throughout 
the reproductive system. Using fluorescent in situ 
hybridization (FISH) and several specific mark-
ers to the short arm of X chromosome including 
DXS1058, DXS6810, DXS1302 and ZXDB, dele-
tion of Xp11.2-p22.1 was introduced as a critical 
area related to TS and POF (38). Therefore, we un-
derstand that the presence of two intact X chromo-
somes is indigence vital for normal ovarian func-
tion (8, 39-41) and prevents follicle apoptosis and 
atresia (41). This hypothesis is supportive for the 
POF etiology when there is a significant difference 
between the highest and lowest follicle numbers in 
mosaic Turner syndrome and subjects with 45, X 
karyotype (42).

Trisomy X with or without Turner’s syndrome
Chromosome aneuploidy leading to trisomy X is 

known as one of the genetic reasons of POF which 
causes elevated endocrine gonadotropine hormone 
(FSH) with an incidence rate of 1:1000 female live 
births. Although the ovarian function is normal in 
most of trisomy X patients, but the ovarian dys-
function in some 47, XXX might manifest as early 
menopause, secondary amenorrhea and oligomen-
orrhea (36).

Mosaic types of the syndrome include 10% of 
the cases with various karyotypes such as 46, 
XX/47, XXX or 45, X/47, XXX. The mosaic tri-
somy X might be the result of a post-zygotic non-
disjunction event or post-zygotic trisomy rescue. 
The manifestation of symptoms depends on the 
time at which the causing events occurred.

The cytogenetic analysis done on POF patients 
indicated that trisomy X (regardless of mosaic or 
non-mosaic) have low frequency in individuals 
with POF (30, 37, 43).

The patients carried different symptoms with ab-
normalities in genitourinary tract which could be 
associated with the trisomy status (44). Although 
some of the cases showed uterine dysgenesis, oth-
er cases had no defects in the reproductive system 
and sexual development (37).

Investigations have shown that the autoimmune 
thyroid disease is related to many POF cases with 
trisomy X (45). The ovarian failure in 47, XXX 
patients (either mosaic or non-mosiac) could be 
the result of meiotic disorganization of three X 

chromosomes (20). However, more studies on 47, 
XXX patients with POF are required.

POF and gene mutations 
Numerous studies have identified different genes 

whose functions were significant in ovarian devel-
opment and also play a role in POF progression. 
However, inconsistent results have been observed 
in different studies which are presumably the re-
sult of genetic variability between studied ethnic 
groups (46-48). Table 1 describes several candi-
date genes with possible involvement in ovarian 
function and POF genesis. All the introduced gen-
ic variation as mutations and polymorphisms are 
thought to affect POF (30). 

The FMR1 premutation of CGG repeats with 
incidence of 1:800 in males and 1:100-200 in 
women is recognized as the most important gene 
associated with POF (49-51). The authors mention 
that carrier women of the premutation are predis-
posed to POF disease. Expression study on frag-
ile X mental retardation protein has demonstrated 
that the variation in the level of the gene product 
(FMRP) could be utilized as a candidate biomarker 
to evaluate a person with folliculogenesis disrup-
tion, heavy follicle atresia and eventual POF. In 
this study immunocytochemistry was applied on 
ovarian sections to show different FMRP1 signals 
in tissues with different CGG repeats. These ex-
pression studies showed that the elevated amount 
of the expressed gene in fetus germ line cells have 
a negative effect on the number of oocytes and 
their development (52, 53). The incidence of the 
disease is about 0.1-1% in normal individuals but 
20-28% in the carriers of premutation FMR1, 13 
times more than controls, respectively (54-58). 
Some studies indicated that the intermediate al-
leles of FMR1 CGG repeats could also increase 
the risk of POF development (57, 59-66).
  SF1, a nuclear receptor which is expressed in vari-
ous cell types in fetus and adult, regulates different 
genes involved in development of the reproductive 
system, hypothalamic-pituitary-steroidogenesis and 
familial or isolated POF. The gene polymorphism 
Gly146Ala resulted from GGG to GCG sequence is 
known to be associated with POF in either familial or 
isolated form. Carriers of the 146Ala allele showed 
a significant decline in plasma stradiol. Therefore, 
this polymorphism could be a risk marker for POF is 
some women (67-72).
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Table 1: Some candidate genes with positive influence on ovarian development and function
ReferenceThe function of gene in association with POFChromosome 

location
Gene

Allen et al. 2007 (53)Oocyte development and number of oocytesXq27.3FMR1

Lakhal et al. (2012), Ikeda 
et al. (1994), Leers-Sucheta 
et al. (1997), Jeyasuria et al. 
(2004), Reinhart et al. (1999), 
Luo et al. (1994) (67-72) 

Regulation of gonadal sexual differentiation, 
follicular maturation and regulation of ovarian 
steroidogenesis

11q13SF1

Shelling et al. (2000), Chand 
et al. (2010) (73, 74)

Folliculogenesis2q33-36INHA
(Inhibin-alpha)

Pakarainen et al. (2005) (78)Follicular growth and oocyte maturation2p21LHR (Luteinizing 
hormone receptor)

Ohkubo et al. (2013), Wei  et 
al. (2013) (82, 83)

Follicular development2p21FSHR 
(Follicle stimulating 
hormone receptor)

Uhlenhaut  and Treier, (2006), 
Pisarska et al. (2004), Schmidt 
et al. (2004), Mu et al. (2013) 
(89-92)

Ovarian follicle development3q23FOXL2

Watkins et al. (2006) (98)Regulatory role in follicular activation6q21FOXO3a

Kolibianakis et al. (2005) (100)Regulation of  folliculogenesis6q25ER (Estrogen 
Receptor)

Duffy et al. (2010), Kohno et 
al. (2010), Kim et al. (2011) 
(108-110)

Regulation of folliculogenesis through epistatic 
interaction with ESR1 gene; Ovary differentiation

15q21.1CYP19A1

Doitsidou et al. (2002), Knaut 
et al. (2003), Molyneauxet al. 
(2003), Stebler et al. (2004), 
Herpin et al. (2008) (111-115)

Primordial germ cell migration, colonization and 
survival, primordial to primary follicle transition

10q11.1CXCL12
(Chemokine)

Murray et al. (1999) (118)UnknownXq28FMR2

Rajkovic et al. (2004) (119)Early folliculogenesis7q25NOBOX

Bione et al. (1998), Mandon-
Pépin  et al. (2003) (124, 125)

The ovarian follicular developmentXq22DIAPH2

Laanpere et al. (2010) (127)Folliculogenesis1p36.3   MTHFR
(Methylene tetrahydro-
folate reductase)

Pyun et al. (2012) (132)High expression during ovulation1q31LAMC1 (Laminin 
gamma 1 gene)
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Inhibins are of other POF candidate genes pre-
dominantly produced in the ovary at different times 
of the menstrual cycle and play a regulatory role in 
folliculogenesis (73, 74).  Among these proteins, 
Inhibin alpha (INHA) gene polymorphisms have 
been shown to have a significant association with 
risk of POF in certain ethnic populations (74-77).

The luteinizing hormone (LH) through luteiniz-
ing hormone receptor (LHR) plays an important 
role in the follicular growth and oocyte maturation. 
Women carrying LHR mutations showed anovula-
tion and primary amenorrhea (78-81).

FSH receptor (FSHR) is expressed in the 
granulosa cells of the ovary and has an impor-
tant function in follicular development (82, 83). 
In different studies on Chinese, Argentinian and 
British women, it has been revealed that FSH 
receptor gene mutations are seldom identified 
in POF patients. First, mutations of FSHR and 
later sentences are talking about them FSHR 
gene polymorphisms which are different terms 
(84-88).

FOXL2 was found in undifferentiated granulosa 
cells of the ovary which are involved in ovarian 
follicle development (89-92). The studies have in-
dicated that FOXL2 mutations are rarely associ-
ated with POF disease (93-95).

The FOX3a is also expressed in the ovary with a 
regulatory role in the follicular activation (96). Al-
though some mutations of the encoding gene have 
been reported in women with POF, it seems that 
FOX3a mutations could not be counted as a com-
mon cause (97-99).

Estrogen stimulates gonadotropins releasing at 
the hypothalamus-hypophysis-ovarian axis by act-
ing on estrogen receptor-α (ESR1) which enhances 
folliculogenesis (100). It has been reported that 
several single nucleotide polymorphisms (SNPs) 
such as rs2234693, rs9340799 and rs2234693 of 
ESR1 are associated with the increased risk of 
POF (101-104). Some studies have suggested an 
association between Estrogen receptor alpha gene 
polymorphism, PvuII and XbaI restriction frag-
ment length polymorphisms (RFLPs) and low 
bone mineral density (BMD) (105), while others 
observed no significant correlation between these 
polymorphisms with age, menopausal status and 
BMD (106). Nevertheless, it has been revealed 

that baseline BMD and change in menstrual status 
contributed more to the magnitude of the differ-
ence in bone change (107).

The CYP19A1 gene encodes aromatase, the key 
enzyme in biosynthesis of estrogens. High expres-
sion of aromatase during the ovary differentiation 
has been reported previously (108, 109). Investi-
gations on Korean patients with POF have shown 
a significant association between 3’ UTR SNPs 
"rs10046" and "rs4646" of CYP19A1 with the dis-
ease (110).

It has been demonstrated that CXCL12 through 
its receptor acts on migration and survival of pri-
mordial germ cells (PGCs) (111-115). The asso-
ciation between CXCL12 polymorphisms and POF 
has been observed in the studied populations (116, 
117).

The FMR2 gene is another candidate gene for 
POF manifestation. Microdeletions within FMR2 
have been found in some individuals with POF 
disease.  However, the function of FMR2 in oocyte 
development is still unclear (30, 118).

The newborn ovary homeobox gene (NOBOX) 
functions as an oocyte-specific gene in early follic-
ulogenesis (119).  However, the mutation analysis 
of NOBOX indicated that NOBOX mutations are 
an uncommon cause of POF (120-122).

In some POF patients, deletions within DIAPH2 
have been found along with the breakpoints at 
Xq22 (123). Researchers believe that the human 
DIAPH2 influences the ovarian follicular develop-
ment (124, 125) and that the gene is a potential 
candidate for POF manifestation (126).

The variants of methylenetetrahydrofolate re-
ductase (MTHFR) gene are evidenced to be as-
sociated with folliculogenesis (127). The MTHFR 
C677T and A1298C polymorphisms are signifi-
cantly associated with the elevated risk of POF in 
different studied populations (128, 129).

Laminin is one of the most abundant compo-
nents of the basal lamina. It has been demonstrated 
that the LAMC1 expression increases during fol-
licular development (130, 131). LAMC1 variations 
presented a significantly association with suscepti-
bility to POF (132).

Other genetic variations associated to POF in ad-
dition to the discussed genes in table 1, is much 
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evidence confirming the involvement of other 
genes coding for small RNAs (like miRNA) 
during folliculogenesis (133-137). The exact 
function of these miRNAs is not clear yet, but 
germ cell development and maturation is influ-
enced by several small RNAs such as piRNA, 
and siRNA that are supposed to be effective in 
oocyte maturation (138). The experiments indi-
cated that the mutations or alterations of the in-
volved genes in miRNA processing, biosynthe-
sis or miRNA targets could result in increased 
susceptibility to sex reversal or infertility (139-
143). This effectiveness depends on the gonad-
otropin hormone surge (like LH and FSH) and 
the pathway where a gene is able to diminish 
or elevate another specific activity of a gene in 
a certain developmental time and in a specific 
gonad or specific tissue during embryogenesis 
or ovarian development (144, 145).

In the recent years, copy number variation ar-
ray (CNV array) has been an effective tool to 
assess the numerical variation (micro-deletion 
and micro-duplication) of important genes in 
early menopause (146). It is believed that chro-
mosomal alterations could negatively affect 
germ cell apoptosis through meiotic DNA re-
pair disruption (147).

SNPs are genetic variations which in interac-
tion with other genes are thought to increase the 
risk for premature ovarian failure (148). The as-
sociation data obtained from analysis of TGFR3, 
HSD17B4, LAMC1, ESR1, HK3 and BRSK1 are 
of the recent studies explaining how gene variants 
could be correlated to the etiology of premature 
ovarian failure (117, 132, 149).

Diagnosis and treatment 
A woman is diagnosed for POF if she has 

lost her regular menstrual periods for at least 
4 months before the age 40. The reduction of 
antral follicle in POF patients could be exam-
ined by Pelvic ultrasonography (150). A new 
diagnostic method is the measurement of anti-
Mullerian hormone (AMH) produced by antral 
follicles. The AMH secretion is decreased in 
POF patients (151, 152). The measurement of 
anti-adrenal, anti-ovarian and anti-thyroid au-
toantibodies could be useful in the diagnosis of 
the immune system deficiency leading to POF 

(150, 153). After confirming the diagnosis of 
POF, karyotyping and analysis of FMR1 premu-
tation should be done to exclude major genetic 
causes (150). The hormone replacement therapy 
(HRT) is the accepted management for POF pa-
tients. Estrogen replacement is recommended to 
decrease the risk of osteoporosis and cardiovas-
cular disease (154). Anxiety and depression in-
creases in women with POF, thus, psychologi-
cal support could be useful in the management 
of the disease (155, 156). POF is associated 
with complete follicular depletion and infertil-
ity. Infertility in patients with POF could be re-
solved by ovum donation (157). Recent studies 
have focused on stem cell therapy of POF. One 
of these investigations used CD44+/CD105+ 
HuAFCs (human amniotic fluid cells) to treat 
POF in mice and demonstrated that the cells 
were valid candidates for stem cell transplanta-
tion of POF due to their long half-life in vitro 
and mesenchymal potential (158).

Conclusion 

Premature ovarian failure is a complicated dis-
order which inhibits women’s fertility potential 
years before normal menopause. Most of the cases 
are idiopathic. Genetic variation, aberrant interac-
tion between genes, autoimmune ovarian atrophy, 
iatrogenic factors, radiotherapy or chemotherapy, 
various environmental factors like viruses, tox-
ins and smoking are recognized as the important 
agents affecting POF.

Women may encounter POF from the time of 
menarche and before having babies to the final 
years of their 30s. Many genes are found to be 
associated with the development, formation 
and function of the female reproductive sys-
tem. Polymorphisms of these genes are likely 
to be used for the diagnosis of POF in women 
with normal karyotypes. What could be useful 
for screening and early diagnosis of mutations 
in these genes is the study of the association 
of gene polymorphisms in a large population 
of patients and a deeper scan of the genome 
including entire exons, introns and regulatory 
upstream and downstream regions, 5'UTR and 
3'UTR regions. 

Fortunately, it is easy to collect a large num-
ber of patients for testing candidate genes due to 
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the considerable frequency of POF among fertile 
women (1%). Technology for mutation screening 
is also improving rapidly, and it will be feasible to 
screen a large set of candidate genes rapidly in the 
near future.

It is difficult to find a single candidate gene 
for a complex disease. Identification of the role 
of some important genes in POF etiology is la-
borious due to their involvement in several bio-
logical functions. One of these genes encodes 
the estrogen receptor, a nuclear factor involved 
in the pathogenesis of several diseases such as 
lung cancer, bladder cancer, osteoporosis as 
well as its critical role in sexual development 
and reproductive organization (106, 159-161). 
Certainly, screening a group of the genes in-
volved in creating POF becomes easier in the 
future. Genetic analysis through genome-wide 
tests using microarray technology may identify 
candidate genes in patients with POF. This kind 
of information is helpful and informative for 
genetic counseling and risk assessment of POF 
susceptibility in family members of a particular 
patient.

There are conflicting data about  association 
between some gene variants with POF, sug-
gesting the effectivness of interactions between 
haplotypes of different genes on the disease 
etiology (75, 76, 162). A variety of analytical 
tools such as genome-wide association study 
(GWAS) could be used to find genetic varia-
tions associated with the disease (163). Another 
well-known and useful method is linkage analy-
sis which can find the defective chromosomal 
haplotype associated with POF etiology of non-
syndromic POF (164).

It is helpful to screen women at risk for POF 
in early age to preserve their fertility with new-
ly available technologies. Based on the present 
information, the study of X chromosome abnor-
malities is the easiest way to look at the im-
mediate genetic cause of POF. Surely, after the 
identification of POF associated genes in the 
future, easier and cheaper genetic tests for early 
diagnosis of POF will improve the livelihood 
of women.
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