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Although one is unlikely to ever want to brute-force an Android lock pattern, 

many do wonder about the relative strength of the lock pattern versus a multi-

digit personal identification number (PIN). It becomes obvious pretty quickly 

that there are many more lock patterns than the 10,000 possible four-digit 

PINs. 

 

Figure 1 Android lock pattern screen 

But, how many lock patterns are there? The often-cited number of Android 

lock patterns is 986,328, which I first found from A. Hoog (personal 

communication, October 2012) and S. Brothers (personal communication, 

October-November, 2012). Brothers went so far as to observe that this number 

could be found in the Android's gesture file and, more to the need for an actual 

formula, that the number can be derived from the formula for permutations. 
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The well-known formula to calculate the number of ways with which to choose 

r items out of a possible pool of n items–without replacement and in all 

possible sequences–is: 

 P (n,r) = n!/ (n-r)!        [1] 

According to Formula [1] and the fact that the Android screen has nine 

possible positions, we could find the theoretical maximum number of lock 

patterns (T) of length R from the formula for permutations: 

 T(1) = 9!/8! = 9 

 T(2) = 9!/7! = 72 

 T(3) = 9!/6! = 504 

 T(4) = 9!/5! = 3,024 

 T(5) = 9!/4! = 15,120 

 T(6) = 9!/3! = 60,480 

 T(7) = 9!/2! = 181,440 

 T(8) = 9!/1! = 362,880 

 T(9) = 9!/0! = 362,880 

Androids only allow lock pattern lengths of three to nine, so summing up the 

appropriate T(r) values above yields: 

∑ T(r)  = ∑ 9!/(9-r)!  =  986,328    [2] 

r=3,9          r=3,9 

For the remainder of this paper, Formula [2] will be referred to as the 

Theoretical Maximum Formula (TMF). 

While this calculation certainly makes it clear how the value 986,328 was 

derived, it does not appear to accurately count the real number of lock patterns 

that are possible. This is because all points are not adjacent and, therefore, one 

cannot actually select all theoretically possible patterns; e.g., there is no way to 

go directly from one corner to another. The question then is, what is a precise 

formula for computing the actual number of lock patterns and, further, what is 

the difference between the actual value and the value derived from the TMF? 

Let us label each point in the pattern with a number using the following 

scheme: 

 1  2  3 

 4  5  6 

 7  8  9 
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Furthermore, we will classify each point as a Corner (the set C = {1, 3, 7, 9}), 

Edge (E = {2, 4, 6, 8}), or Middle (M = {5}). 

When a user selects a lock pattern, there are certain rules that must be 

followed: 

1) The lock pattern run length must be between three and nine unique 

positions. 

2) A point in the lock pattern can be repeated but it does not get counted 

more than once (e.g., the sequence 1, 2, 3, 2, 3, 6 is a legal pattern of 

length four). 

3) For counting purposes, a point in the lock pattern must be adjacent to 

some point already in the pattern (e.g., if the pattern so far is 1, 2, 3, 

the next point can be 4, 5, 6, 7, 8, or 9). 

4) A corner point is adjacent to five other points (e.g., 1 is adjacent to 2, 

4, 5, 6, and 8). An edge point is adjacent to seven other points (e.g., 2 

is adjacent to 1, 3, 4, 5, 6, 7, and 8). The middle point is adjacent to all 

other eight points. 

The difference between the actual number of patterns versus the theoretical 

maximum number comes about, as suggested earlier, because it is against the 

rules to just select a random set of points from the pool. The key appears to be 

that M is adjacent to every other point and, therefore, the TMF and general 

permutation formula applies to the lock pattern only after the middle point has 

been selected. Therefore, we need to know how many patterns we can have 

before M is selected. I attribute this logical leap to discussion with D. 

Velleman (personal communication, November 2012), who produced a paper 

by Ponstein (1966). While Ponstein did not directly address this problem, the 

paper provided some new insights. 

We will define: 

 R = lock pattern run length (which can be between 3 and 9) 

 L(i) = the number of lock patterns of length i 

 NoM(i) = the number of patterns of length i that do not include the 

middle point 

The "NoM(i)" concept is important because after the lock pattern includes the 

middle point, every other point is adjacent and we can rely on the general 

formula for permutations to determine the number of choices for the rest of the 

lock pattern. Before that, we need a Modified Maximum Formula (MMF) for 

counting lock patterns that accounts for all of the possible patterns without the 

middle point and then merely applies the TMF (which is, of course, the 

permutation formula). 

Before going further, let us take a look at how this "NoM" concept works. 

Suppose we want to calculate the number of lock patterns of length three 
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(R=3), which is the minimum legal lock pattern. There are, then, four possible 

generic sequences: 

 Case I: If the first position is the middle point, then there are eight 

possible second positions and seven possible third positions. Put 

another way, after the middle, there are two more points in the 

sequence to choose out of a remaining pool of eight possible choices. 

 Case II: If the first position is a corner or edge (of which there are 8 

choices), and the second position is M, then there are seven possible 

third positions. Put another way, after the middle, there is one more 

point in the sequence to choose out of a remaining pool of seven 

possible choices. 

 Case III: If the first two positions are a corner or edge, the third 

position might be M. 

 Case IV: None of the positions is M. 

In the table below, M = middle position, x = either a corner or edge, and a 

number represents the number of remaining legal choices in that place in the 

sequence. The number of possible patterns for each case can be found by 

multiplying: 

 Case I: M 8 7  NoM(0) x P(8,2) = NoM(0) x 8!/6! 

 Case II: x M 7  NoM(1) x P(7,1) = NoM(1) x 7!/6! 

 Case III: x x M  NoM(2) 

 Case V: x x x  NoM(3) 

Note that for any value of R, there will always be R+1 cases, which can be 

generalized from the notes above. From this case, we can generalize that the 

MMF with which to accurately count the number of possible lock patterns can 

be given by: 

L(R) = NoM(R) + NoM(R-1) + ∑ NoM(i-1) x (9-i)!/(9-R)! for 2≤R≤9 [3] 

                                             i=1,R-1 

For completeness, we can define: 

 L(0) = 0 (i.e., no runs of length 0) 

 L(1) = 9 (i.e., nine possible runs of length one) 

To calculate L(R), then, we need a table of NoM(i) values where i = 0, 8. 

NoM(0) is a trivial case; there is a single pattern where the middle point is first, 

hence, NoM(0) = 1. NoM(9) is another trivial case; there are no sequences of 

nine points without a middle so NoM(9)=0. 

For the remaining NoM values, one just needs to count the various 

possibilities. A number of interesting properties appear, however, which 
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requires additional nomenclature. NoM(1) is a rather simple case but provides 

a way to generalize the rest. First, note that it is obvious that there are eight 

possible patterns that have a single point and no middle; thus, NoM(1) = 8. 

But, in a slightly more formal fashion, let us quantify the possibilities. (While a 

lock pattern of length one is invalid, it does get us started.) There are two 

possible initial point types; i.e., either corner or edge. So, we can denote the 

general sequence pattern as either: 

 C or 

 E 

That tells us that there are two general patterns that we might see. 

To actually count the number of legal sequence, we need to return to the 

possible patterns and determine how many points are available for each 

position in the pattern. In this case, of course, there are four possible corners or 

four possible edges. We will denote the number of valid points in a given 

position of the sequence by use of a superscript; thus, our possible patterns 

now emerge as: 

 C4 ==> 4 

 E4 ==> 4 

Adding these values together yields a possible eight points, which we already 

knew from NoM(1) = 8. 

We can extend this reasoning to determine NoM(2), which is the pattern that 

includes two points and no middle. First, start with the two patterns that we had 

above, namely: 

 C 

 E 

Next, note that a C position in a sequence must be followed by an E, whereas 

an E position in the sequence can be followed by a C or another E. From this, 

we find that there are three possible patterns for a run of two that does not 

include the middle: 

 C E 

 E C 

 E E 

At this point, we can quantify the number of valid points in each position. If 

the first point is a corner, then there are four legally adjacent edge points; since 

there are four corners, there are 16 possible two-position patterns starting at a 

corner. Similarly, if the first point is an edge, then there are four legally 

adjacent corner points for another 16 possibilities. Finally, if the first point is 



Journal of Digital Forensics, Security and Law, Vol. 8(4) 

 

62 

an edge, there are only two legally adjacent edges, yielding eight more 

possibilities. Using our new nomenclature: 

 C4 E4 ==> 16 

 E4 C4 ==> 16 

 E4 E2 ==> 8 

Summing up, we find NoM(2) = 40. 

For NoM(3), we again build on the prior set of sequences. In building these 

sequences, we know that if a C point can only be followed by an E, and an E 

can be followed by by either a C or an E. Our new patterns are: 

 C E C 

 C E E 

 E C E 

 E E C 

 E E E 

With the patterns intact, we can now apply superscripts to represent the number 

of legal positions remaining in the sequence. Note that an edge only has two 

legal adjacent edges (e.g., 2 can move directly to 4 or 6 but cannot move to 8). 

 C4 E4 C3 ==> 48 

 C4 E4 E2 ==> 32 

 E4 C4 E3 ==> 48 

 E4 E2 C4 ==> 32 

 E4 E2 E2 ==> 16 

Thus, NoM(3) = 176. 

Unfortunately, everything changes at NoM(4) because the ability to repeat a 

point upsets the orderly rules from above. Consider this example. 

Under "ordinary" circumstances, there should be no way to have two C points 

in a row. Indeed, if the first point is a C and the second point an adjacent E, 

then the next two points must be a CE, EE, or EC. However, if the first point is 

a C and the second point a non-adjacent E, then it can be followed by two C 

points (e.g., 1, 6, 3, 9 is a valid CECC sequence). Indeed, a legal eight-position 

pattern could be EEEECCCC (e.g., 2, 4, 8, 6, 9, 7, 1, 3). 

This work is, obviously, not yet complete; NoM(4) through NoM(8) values 

have not yet been calculated and may well need a brute-force program. 

Nevertheless, an observation can be made about the theoretical and actual 

number of lock patterns, which is really what this work is all about. Although 

only NoM(0) through NoM(3) values are supplied here, we can calculate the 
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number of lock patterns of length three with what we already know. From 

Formulas [1] and [3], we find: 

R P(9,R) L(R) L(R)/P(9,R) 

3 504 328 0.6508 

At first blush, then, it appears that L(R) will be noticeably smaller than the 

theoretical maximum. The remaining work is to determine NoM(R) for R=4,8; 

L(R) for R = 4,9; and: 

 ∑ L(r) 

   r=3,9 
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