
Journal of Digital Forensics, Security and Law, Vol. 8(3)

21

TRENDS IN ANDROID MALWARE

DETECTION

Kaveh Shaerpour

kavehshaerpour@aol.com

Faculty of Computer Science and Information Technology

University Putra Malaysia

Ali Dehghantanha*

alid@upm.edu.my

Faculty of Computer Science and Information Technology

University Putra Malaysia

Ramlan Mahmod

ramlan@upm.edu.my

Faculty of Computer Science and Information Technology

University Putra Malaysia

*Corresponding Author

ABSTRACT

This paper analyzes different Android malware detection techniques from

several research papers, some of these techniques are novel while others bring

a new perspective to the research work done in the past. The techniques are of

various kinds ranging from detection using host based frameworks and static

analysis of executable to feature extraction and behavioral patterns. Each paper

is reviewed extensively and the core features of each technique are highlighted

and contrasted with the others. The challenges faced during the development of

such techniques are also discussed along with the future prospects for Android

malware detection. The findings of the review have been well documented in

this paper to aid those making an effort to research in the area of Android

malware detection by understanding the current scenario and developments

that have happened in the field thus far.

Keywords: Android, Malware Detection, Static Analysis, Malware Behavior

1. INTRODUCTION

Mobile devices are no longer used merely for facilitating wireless

communication in the form of phone calls, or sending brief text messages using

the Short Message Service (SMS), they have come a long way from that and

now have become much more advanced devices commonly known as smart

phones. These are devices that can connect to a wide range of networks

mailto:kavehshaerpour@aol.com
mailto:alid@upm.edu.my
mailto:ramlan@upm.edu.my

Journal of Digital Forensics, Security and Law, Vol. 8(3)

22

including the internet via 3G or Wireless Fidelity (Wi-Fi), and have numerous

applications that are developed to entertain and enhance the experience of the

user. But because these devices have the ability to browse the internet and can

exchange information with various devices and networks they become

susceptible to attacks and threats by malware, and are the primary target these

days (Daryabar et al., 2012). Previously one would find instances of malware

only on personal computers, but since people rely on their smart phones ever

so often for even sensitive interactions like online banking and these devices

are becoming ubiquitous, the risk posed by malware on smart phones is very

high. The extent of damage however is varied; a malware might render the

victim’s phone unusable, steal personal data like the victim’s location or other

confidential information, or access premium numbers from the victim’s phone

causing undesired billing (Daryabar et al., 2011; Mohtasebi et al., 2011).

There are several complexities that arise when it comes to antivirus solutions

for smart phones, unlike personal computers, mobile devices do not have

extensive computational resources, running an antivirus would consume a lot

of RAM and CPU resources which would result in a sluggish operation of the

phone along with accelerated depletion of the battery charge. For anti-virus

solutions to be effective, a constantly updated virus signature database is

needed so that all viruses can be detected with the matching of virus signature

in the database. Nevertheless, the database itself should be added for new

signatures regularly in order to detect previously unknown malware.

Smart Phones are available on several different platforms but Android platform

has the most impressive growth and global spread. However, Android has

become the breeding ground for new mobile malware. Although the platform

itself is developing and releasing newer versions at quite a fast pace, the

mobile malware is still spreading through the smart phone applications at a

rapid rate.

Sahs and Khan (2012) described how the currently existent security features of

the Android platform are largely insufficient. Besides, they mentioned that

even applications that are not malicious, they bring coded in such a way that a

lot of confidential information is collected. There has been a revolution in the

services that are being offered via mobile applications. There are so many in

numbers that there exist marketplaces for each mobile OS to centralize the

distribution of these applications. They have their own mechanisms to prevent

malicious applications from being distributed through the official channels.

The problem however does not stop there since there are various other

unofficial application marketplaces that are capable of similar distribution of

genuine and malicious applications alike except these have no review process,

and a developer may publish his Apps directly to these marketplaces.

In second paper, Zhou et al. (2012) described how most of the common

malware are Trojan horses that usually camouflage themselves as useful

Journal of Digital Forensics, Security and Law, Vol. 8(3)

23

applications like task managers, games, etc. Free applications, on Android

markets are able to sustain themselves via advertising revenues. In fact,

malware developers would tend to design and develop their Apps as a desirable

application which would be downloaded often. As users are more inclined to

download free versions of Apps instead of paying for them, malware

developers can get their malicious Apps spread even wider. While these

applications do provide the features and functionality of the legitimate app,

they may have some hidden secret features that perform malicious activities

without the user noticing it in the background. These kinds of applications are

usually spyware, which track the user’s personal data like GPS location and

preferences and often sell them to advertisers so that they may generate

targeted advertisements. Another benefit for the malware developer lies in his

ability to make premium phone calls and send premium SMS silently from the

victims phone, which causes unwanted billing for the victims.

Google tried to prevent these kinds of security breaches by making applications

to declare permissions they would require on the phone, and to use only the

required permissions for the functioning of the application. By right the victim

approves access to the malware and lets the installation continue even though

he sees that there are unnecessary permissions being requested in the

manifesto. Asking users to only install applications does not seem an effective

approach for deterring the users from downloading malicious applications. The

users rarely know the extent to which a particular permission affects their

personal data, and after installing several applications they get accustomed to

ignoring all such warnings that come prior to installation. A similar

ineffectiveness can be seen in the case of User Account Control that was

implemented by Microsoft in Windows 7 to prompt the user to allow or deny

any changes that was being made by an application on the computer, by fading

out the screen and only focusing on a dialog box. This approach became

annoying, and 69% of the users merely disabled the pop up account control

feature in Windows 7 as stated by Zhou et al. (2012).

Schmidt et al. (2009) also did a study of third party Android market. It showed

that there was a common practice of repackaging genuine applications acquired

Google Play from and uploading them to third party marketplaces.

Repackaging can have dangerous purpose which is to attach malware to it,

plant backdoors or hide malicious payloads. Legitimate application developers

are also affected by this repackaging since their reputation becomes impaired,

as the word spreads that their app is malicious, even though it was not their

intention and they become victims of intellectual property theft, and theft of

their financial capital generated via the malicious apps.

This serious situation calls for an effective manner to detect malware on the

Android platform; this paper will review few of the newer Android malware

detection techniques that have surfaced. This paper comprises of five sections

Journal of Digital Forensics, Security and Law, Vol. 8(3)

24

and will be presented as such: Section 2 describes the Android platform.

Section 3 identifies the current developments in Android malware detection

techniques. Section 4 discusses challenges encountered during Android

malware detection research. Section 5 provides some statistical data. Section 6

discusses the future prospects for Android malware detection and Section 7

provides a conclusion for this paper. All the figures in this paper are taken from

referenced papers to support the explanations.

2. ANDROID PLATFORM

Android platform is the first fully featured open source mobile operating

system that was created to serve the consumer market. The open nature of

Android and its attractive features led to its global acceptance, and rapid

growth which has given a huge boost to the market of Android applications.

There are four layers in the Android stack, the uppermost layer is the Android

Application layer, and the three layers below it are the application framework,

Android runtime and the Linux Kernel. The Linux Kernel is what acts as an

abstraction layer between the software stack of Android and the remaining

hardware of the device. Since Android is an open source OS, it allows security

researchers to focus on interactions at the kernel level and obtain useful

information. Android applications are developed using Java programming

language along with the tools and API’s provided by the Android Software

Development Kit (SDK).

The Android security model relies on its operating system, and is enforced by

making application developers declare permissions in the “Android

Manifest.xml” file in their application. The user is asked before installation

whether he would like to grant the permissions requested by the applications,

and has no control over micromanaging which permissions can be allowed and

which cannot since according to the developer all those permissions would be

required to ensure the proper functionality of the application. But often we see

permissions which are unnecessary being requested by applications, the users

must be wary of this, but sadly the only choice the user has is to install the

applications, or not install it if the permissions seems to infringing to the users

data and it is against his interest. The developer cannot remotely modify the

permissions, unless he releases a new version which upon installation would

prompt the user to once again review and accept the permissions being

requested by the application.

3. CURRENT DEVELOPMENTS IN ANDROID MALWARE

DETECTION TECHNIQUES

There have been various different approaches towards detecting Android

Malware and there have been several publications documenting them but not

particular technique has prevailed over the other, this section will review

Journal of Digital Forensics, Security and Law, Vol. 8(3)

25

current developments and contributions in the field of Android malware

detection.

Shabtai et al. (2012) proposed a behavioral framework to detect malware on

the Android platform called “Andromaly”, as shown in Figure 1, the proposed

framework is able to perform as a malware detection system by continuously

monitoring the events and features of the mobile device and passing the data

through anomaly detectors that use Machine Learning, the data that is collected

can then either be classified as safe or malicious. The framework is

implemented using small application which once installed samples various

pieces of system data like CPU usage, the bandwidth of data being used, the

intensity of packets sent via cellular or Wi-Fi networks, total number of

processes running, battery consumption etc. and then analyses if the phone is

functioning normally, or there are some anomalies in the collected data. The

framework utilizes the idea that malware that have not yet been encountered

can be detected by analyzing the similarities shown in the fluctuation of above

mentioned system data with the introduction of already known malware. This

would help users detect any suspicious activity on their devices.

Figure 1 Andromaly Architecture (Shabtai et al., 2012)

The framework is modular and can utilize various malware detection

techniques using rules and algorithms besides its behavioral approach. In order

to improve the performance of the framework and make it less resource

intensive they utilize a small number of features for the purpose of detection.

The framework to be effective however requires a certain amount of training

over a wide range of malware induced environments and safe environments to

improve its rate of detection and reduce false positives. This however might

put the user at a disadvantage should he not have ample malicious samples to

train the framework to perform in a favorable manner.

Isohara et al. (2011) however discuss how one of the effective methods of

detecting hidden threats in applications is by using some means to dynamically

Journal of Digital Forensics, Security and Law, Vol. 8(3)

26

analyze them and the technique utilized to detect malware in their system is

behavior based and their detection system consists of log analysis application

on a server machine which would be used for analysis and at the Kernel layer

they have a log collector, as shown in Figure 2, which would record all the

system calls that were made since most applications have to go through the

kernel layer, however since the logs generated would be huge and contain data

from all applications, it would make the detection mechanism less efficient due

to all the additional data, hence it implements a feature that allows it to filter

the events with the perspective of a target application. The log analyzer in turn

is able to pick up the process tree of the target application’s activity and

compares the activities with signatures created using regular expressions and is

able to detect malicious activity if anything out of the ordinary takes place.

Signatures of information leakage are also automatically generated using the

data stored on the phone like Google account details and credentials, phone

number, SIM info and IMEI numbers. And by using this technique they are

able to identify and successfully detect the malicious behavior of applications

and malware that have not been identified yet.

Figure 2 F System Architecture for Kernel-based Behavioral Analysis of Android

Malware (Isohara et al., 2011)

This technique shows a lot of promises, and it can be greatly improved with a

more sophisticated set of signatures to detect malicious activity which would

help reduce error rates of false positive and false negative in the detection

phase, also the efficiency can be improved by implementing techniques that

would lessen the clutter in the logs being collected, and using more efficient

means to reduce the log size.

Yang et al. (2012) focuses on detecting a particular kind of malicious Android

application, the kind that attempts to steal money and cause unintended

purchases from an unsuspecting user by pretending to be a legitimate

application, but instead dialing premium numbers or sending premium SMS,

from the victim’s phone. They propose a system called “MoneyGuard”, shown

Journal of Digital Forensics, Security and Law, Vol. 8(3)

27

in Figure 3, follows a systematic approach towards detecting these malicious

Android applications that steal money. Their technique also uses a behavioral

approach to detect malware. They have identified two main behavioral patterns

that seem to present in most of the money stealing malicious Android apps.

The particular application behaviors they mention are the suppression of

notifications, which allows the app to continue stealing money and charge the

victim’s by not letting the notifications surface and keeping the victim in the

dark, and then the second behavior is hardcoded exfiltration, which makes the

app send messages to hardcoded third party premium numbers or dialing to

premium numbers in the background.

Figure 3 System Architecture for MoneyGuard (Yang et al., 2012)

Yang et al. (2012) present a light weight detection approach that will help in

identifying this behavioral pattern. The system contains three components, the

Billing Permission Extractor, Billing Behavior Identifier and Notification

Suppression Detector. The first component extracts the permissions from the

Android Manifest.xml file of the applications and analyses it for any

permissions that allows the application to perform actions that are billable, like

sending and receiving SMS, making phone calls and access the Internet. The

second component decompiles the APK file of the application, and examines

the Dalvik byte code for each activity performed by the application along with

the system calls that are made, additionally it also searches for any hard-coded

phone numbers that the application might try to communicate with. Lastly the

third component, is used to detect if the application is utilizing any form of

notification suppression, and if it already had certain suspicious billing

behavior detected in the first two components, it is considered a money stealing

application if in the third component it is found to have notification

suppression features in it. This technique seems rather useful and relevant to

mitigate the practical threat of money stealing apps that many Android users

are a victim to, but are not yet aware of it. This platform can perhaps be

extended to include other kinds of Android malware in a modular fashion to

improve the usability of this system, in day to day detection of Android

Malware in this ever growing market.

Journal of Digital Forensics, Security and Law, Vol. 8(3)

28

Schmidt et al. (2009) claims that commercially available techniques to counter

malware on smartphones are largely inadequate, and that since these

techniques rely on malware signatures alone, the users relying on these

malware detection solutions are left exposed to new malware until the new

signature is developed and the system is updated with the latest malware

signatures. The extent of damage that can be done till then and the amount of

other phones the malware can spread to during that time is tremendous. Their

proposed system contains three main components, analysis on the device itself,

collaboration module and a client-server feature for remote analysis and this

system is shown in Figure 4. To communicate between the kernel layer and the

software stack they wrote a tool called “Interconnect Daemon” which is a

Linux server daemon that contains modules that perform various functions

such as monitoring the system, scanning the files and creating hashes for the

important ones, waiting for specific system signals that trigger certain events,

one specific module is used to extract all Executable and Linking Format

(ELF) object files excluding the shared library, and inspected them for a

number of system commands, they performed similar analysis for malicious

samples that were acquired from the internet and identified the static list of

function calls made by them. This finding from the static analysis of system

commands and malicious applications forms the training set for the system to

help determine safe and malicious applications. The server component is

utilized here to analyze the interdependencies between attributes of executable

to help in classifying them better, rules are synthesized after this stage and

pushed to the mobile devices, this helps in reduce false positives. The actual

performance of the malware intrusion detection of the system on the mobile

device would be possible after acquiring the rules. When a mobile device

notices an anomaly if properly implemented, it should be able to utilize the

other mobile devices around it running the system through collaboration and

obtain computational resources for faster detection, if the computation cannot

be performed on the device itself then it is sent to a remote server, and the

results are obtained. Experimentation using real devices and malware is yet to

be done using this technique, but it still seems like a viable and interesting

solution to malware detection.

Journal of Digital Forensics, Security and Law, Vol. 8(3)

29

Figure 4 Collaborative Malware Detection Overall System Architecture

(Schmidt et al., 2009)

The proposed method by Apvrille and Strazzere (2012) for detecting Android

malware is by implementing a market wide scanner as shown in Figure 5.

Their system is devised in such a way that it crawls the entire Google Play

store using a combination of parameters based on various classifiers such as

country, genre, language etc., this way their method is able to acquire all

existing applications on the market and not only those which are displayed as

available to the particular device that is accessing the market.

Journal of Digital Forensics, Security and Law, Vol. 8(3)

30

Figure 5 Risk Evaluation Heuristics Engine (Apvrille et al., 2012)

Once the application samples are collected from the market, a heuristics engine

is run in order to pre-process the samples in order to gauge which samples

possess malicious characteristics and prioritize the analysis on them. The

heuristics engine used in this method is a kind of static analysis tool that would

check for 39 different preset properties, which are broadly categorized as the

permissions requested by the app, peculiar calls to Java classes or methods,

code size, geodata indicators, executable files, URL's present in code etc. This

technique was used to minimize the time consumed in doing a large scale scan

and also appropriate filtering mechanisms were implemented where required to

ignore legitimate applications, which host a guest application to facilitate in

app advertising. Each attribute was assigned a particular risk score, and the risk

would incremented for the application as the scan progresses and give a final

risk score that would help deduce it's malicious or benign nature if the score is

beyond a particular limit. The main objective of this technique is to sift out and

prioritize which samples should be subjected to further analysis give the

number of samples being scanned. An added benefit to this approach is that it

serves as a repository of metadata which can be used to compare, any rogue

apps in the market that are pretending to be popular legitimate applications but

have their code altered to perform malicious functions.

Zhou et al. (2012) present another systematic approach to detect malicious

Android applications on both official and unofficial Android marketplaces,

shown in Figure 6. Unlike Apvrille and Strazzere (2012) that crawled only the

Journal of Digital Forensics, Security and Law, Vol. 8(3)

31

official market, they attempt to detect both known malware variants as well the

ones that are yet to be detected. They developed a prototype, tool called

"DroidRanger" in order to implement this detection approach. After the market

crawler collects the apps from various markets it stores them in repository.

"DroidRanger" then extracts the basic properties of the app like information

about the author and the permissions requested, and then it stores this

information besides the actual application in a database for the purpose of

efficiency. Two separate malware detection engines are utilized, to use the first

type of detection engine, a behavioral and permission oriented footprint is

generated of the known malware samples, this helps in detecting malicious

applications that have footprints similar to the known malware by seeing which

permissions are being abused for malicious purposes. The second detection

engine utilizes a heuristics based filtering mechanism that helps detect zero day

malware samples. They use two kinds of heuristic approaches the first analyzes

if any binary code is being loaded dynamically from a remote sure, and the

second analyzes if there is any native code being loaded dynamically, this is

usually the case when it comes to kernel level exploits, and this method aims at

finding malware that try to "root" the device.

Figure 6 DroidRanger System Architecture (Zhou et al., 2012)

Grace et al. (2012) also take a proactive stance towards detecting zero-day

Android malware by analyzing a large number of applications from both

official and unofficial Android marketplaces. Their technique does not rely on

malware samples and signatures, and categorizes the potential risk an

application can pose as high, medium and low risks as shown in Figure 7.

Applications classified as high risk are the ones that exploit platform

vulnerabilities and get unauthorized access to the devices, those classified as

medium do not perform any exploits but are capable of causing financial

damages to the user or steal personal information, those classified as low also

Journal of Digital Forensics, Security and Law, Vol. 8(3)

32

steal information but cause less impact, as it is only device specific information

like IMEI number etc. They developed an automated system called RiskRanker

to assess and assign this risk classifications. The analysis happens in two fold,

for the first phase to detect high risk apps that contain attack code, the code of

the well-known exploits is distilled and signatures are created to compare the

common characteristics between the exploits and the application being

analyzed. To detect medium risk apps, certain permissions that can potentially

harm the user if abused like "android.permission-group.COST_MONEY"

along with certain system calls which indicate the functioning of the

application silently without notifying the user are searched for by performing

static analysis. The first phase would typically work with non-obfuscated

applications. The second phase was designed malware that might be designed

to be hidden from the analysis performed in the first phase or might be

encrypted. The first part of this phase includes capturing certain behavior

which can be commonly abused but is usually legitimate, like a child

application inside a host application, utilization of Java encryption APIs to

encrypt communication, dynamic code being loaded in the background, native

code execution and hard coded access to internal directories of the device.

Figure 7 RiskRanker System Design (Grace et al., 2012)

Burguera et al. (2011) chose to use dynamic analysis of an application's

behavior as the basis of detecting malicious apps in their framework. The

framework itself is comprised of many components which are able to

complement one another and provide the mechanism and the resources to

detect Android Malware. The first component is a client application called

Crowdroid, which is shown in Figure 8, is an application that can be

downloaded by Android users from the Google Play store. This application

allows the system calls made at the kernel level to be monitored. Users can aid

Journal of Digital Forensics, Security and Law, Vol. 8(3)

33

in malware detection by providing certain data that is related to the behavior of

the applications they use regardless of where they acquired their applications

from, this method of crowdsourcing data does not collect any personal

information from the users. The output logs of the application behavior which

are created using a tool called Strace which enables the collection of system

calls are then forwarded to the remote server which is in charge of parsing the

data and creating vectors that correspond to various system calls which also

represent the number of times each system call was used, this helps in

generating a dataset of benign application behavior. For the success of this

technique it requires multiple users to use the Crowdroid application which

will increase the quality of the dataset and help detect anomalies in the

application behavior to alert all users of a malicious application. The detection

component works by using K-means clustering algorithm over the system call

vector dataset to detect any anomalous behavior.

Figure 8 Crowdroid System Architecture (Burguera et al., 2011)

Wu et al. (2012) proposes a similar technique of a feature based static analysis

to detect malicious Android applications; it utilizes the static information like

API calls, components being deployed and permissions to obtain characteristic

features of the Android applications. They developed a proof of concept

framework called DroidMat, which is shown in Figure 9 that extracts this

information from the application's manifest file, the disassembled code is then

further analyzed using "apktool", this approach also makes use of vectors for

each application that indicates whether or not a malicious element is present in

the application. The application's functional behavior is further classified using

K-means and EM algorithm using the Singular Value Decomposition method;

this analyzes the behavior of the application and its functionalities. Finally, K-

Journal of Digital Forensics, Security and Law, Vol. 8(3)

34

Nearest Neighbor (K-NN) algorithm is utilized to identify the application as

benign or malicious.

Figure 9 DroidMat System Architecture (Wu et al., 2012)

4. CHALLENGES ENCOUNTERED DURING ANDROID MALWARE

DETECTION RESEARCH

One of the most common challenges when it comes to malware detection

techniques is the occurrence of false negatives and false positives in the report.

Which causes malicious applications to be classified as safe and legitimate

applications that seem to need access to particular features in order to perform

its function seems similar to a malware and is classified as one.

Sahs and Khan (2012) identified various challenges that they faced in utilizing

their technique of anomaly detection, like the fact that the activities that

malware perform are often very short and do not provide enough data for their

framework to learn from the behavior or even detect it. Also that there was a

shortage of a training set of malicious applications that can be used to improve

the detection framework, and lastly the behavior of malware can be variable

between each attack and be polymorphic in nature, which causes additional

challenges to the researcher.

Isohara et al. (2011) used a dynamic analysis technique and relies heavily on

the log data and the signature set the system contains, to be comprehensive it

stores all the communication of applications with the kernel layer via system

calls but the drawback with using this technique, is the constant monitoring of

processes generates a large amount of log entries, and one would have to sift

Journal of Digital Forensics, Security and Law, Vol. 8(3)

35

through a lot of log data to get to the relevant information , unless an efficient

means of filtering the logs is used and also an efficient means of collecting the

logs so that the log size is reduced.

The quality of the results would also depend on how well the signature set is

developed to reduce errors in detection.

Grace et al. (2012) also faces similar challenges whereby their technique relies

on known exploit signatures, if the exploit is encrypted or obfuscated the

analysis technique used might give a false negative, the techniques utilized to

curb the flow of malwares into the markets as well the techniques used to

identify them might be studied by malware authors and countered, making the

next generation of malware even harder to detect.

Techniques like by Apvrille and Strazzere (2012) where markets are crawled to

download application to add to the repository might be banned from the

markets for excessive downloading.

Zhou et al. (2012) states that the current model of the Google Play store where

users need to rate and alert if a particular application is malicious is not

effective and does not work, the analysis they performed was done only on free

applications and they are of the opinion that paid apps might have certain

obvious differences which might not let their technique work the same way.

Only five marketplaces were utilized for the experiment, and only two

behavioral characteristics were utilized for the identification of zero day

malware using the heuristic search, a much more effective analysis can be

performed by adding more parameters to the heuristic search like checking for

a behavior where an SMS is being sent to a premium number.

For the adoption of the crowd sourced technique proposed by Burguera et al.

(2011), they face a challenge in convincing Android users to download and

install the Crowdroid application, and moreover to not feel like it is a loss of

privacy when they support the researchers with behavioral information of their

application since this only benefits them by providing updated statistics of

malwares being detected.

5. STATISTICALLY RELEVANT DATA

According to Apvrille and Strazzere (2012), the time taken between the

detection of new Android malware by an anti-virus company and its actual

release in the market is approximately 80 days as is seen in Figure 10, the dates

of detection in the graph above are certain since they are determined by the

malware detection announcements made by the vendors. However the release

date of the malware is determined using the date on the signed certificate

which may contain erroneous data. The reason behind is that developers might

reuse certificates. Regardless, this only goes to show that the need for a better

Journal of Digital Forensics, Security and Law, Vol. 8(3)

36

and faster detection mechanism still exists and is extremely relevant to the

status quo.

Figure 10 Number of Days Taken Between Release and Detection of Android

Malware by Anti-virus Vendors

From the techniques reviewed the trends in their approaches have been

quantified in the Figure 11 below

Figure 11 Trends Used in Detection Techniques

Journal of Digital Forensics, Security and Law, Vol. 8(3)

37

There has been, equal emphasis on detecting android malware using static and

dynamic analysis techniques, some papers documented using more than one

technique in a multi-phase framework which seemed to yield good results,

quite a few papers utilize Machine Learning Algorithms in order to amplify the

effectiveness of their heuristics engines. A lot of work can still be done in the

area of collaborative detection as this technique has not been utilized at large

mostly due to its drawback of needing user participation. Lastly, the idea of

establishing a repository of known applications via market scanning with the

support of the market vendors could provide useful in detecting rogue apps

with modified code holding payloads and prove less cumbersome on the

researchers.

6. FUTURE PROSPECTS FOR ANDROID MALWARE DETECTION

The security model of the Android platform might change steeply, and the

developers contributing to the Android Operating System probably will start

taking security seriously making it less easy for malware to reside on their app

stores, or the mobile devices running the Android OS. Until then however

malware developers would start developing malware and packing them in such

a way that they evade the existing techniques of detecting malware. Be it static,

dynamic or intrusion detection based, Android malware techniques seem to be

greatly improving upon the work of the predecessors, with more malware

samples available in the future, it would be easier to conduct research and build

more efficient detection techniques that would keep Android users safe. With

well-established techniques, the next step would be to run comparisons

between them side by side, to see which technique would be best suited for

today’s generation of Android users, and if a single technique is insufficient,

then perhaps a combination of more than one techniques would be the way to

go. In the future, when phones with higher specifications become more readily

available and more widely used the capability of the malware detection

techniques can also be greatly increased by leveraging the higher

computational capacities and memory modules of the future devices. It would

be in the best interest for Android security if the future frameworks developed

for malware detection, are open and modular, this way the community can

contribute as a whole to help make it better, and the ability to crowd source

statistical data would be much beneficial to the research towards developing

better malware detection techniques.

7. CONCLUSIONS

In this review paper, we analyzed various Android Malware detection

techniques that have been proposed, and observed the trends in the research

geared towards finding better detection techniques. We were able analyze and

understand the various challenges that were faced in building efficient

techniques and implementing them. Just like the computer counterpart there is

Journal of Digital Forensics, Security and Law, Vol. 8(3)

38

not yet an All-in-one solution, that can be a remedy for all malware and detect

the ones yet to be discovered, but considerable progress has been made. A

common obstacle when most of the research in this field was conducted was

the lack of malware samples to experiment with. But today that is not the case

there are sufficient amount of samples that are available and have been studied

and well documented and this study of Android malware can greatly aid in the

development of better Android Malware detection techniques, by knowing how

the known malware behave and affect Android devices.

ACKNOWLEDGMENTS

This work has been supported by the MOSTI-Science Fund project 01-01-04-

SF1677. The views and opinions expressed in this article are those of authors

alone and not the organizations with whom authors are or have been

associated/supported.

REFERENCES

Apvrille, A., & Strazzere, T. (2012). Reducing the window of opportunity for

Android malware gotta catch ’em all. Journal in Computer Virology, 8(1-2):

61-71.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: Behavior-

based malware detection system for Android. 2011 ACM CCS Workshops on

Security and Privacy in Smartphones and Mobile Devices (SPSM’11), 17-21

October 2011, Chicago, Illinois, USA.

Daryabar, F., Dehghantanha, A., & Broujerdi, H. G. (2012). Investigation of

malware defense and detection techniques. International Journal of Digital

Information and Wireless Communications (IJDIWC), 1(3): 645-650.

Daryabar, F., Dehghantanha, A., & Udzir, N. (2011). Investigation of

bypassing malware defenses and malware detections. 7th International

Conference on Information Assurance and Security (IAS), 5-8 December 2011,

Malacca, Malaysia.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). RiskRanker:

scalable and accurate zero-day Android malware detection. The 10th

International Conference on Mobile Systems, Applications, and Services

(MobiSys’12), Low Wood Bay, Lake District, United Kingdom.

Isohara, T., Takemori, K., & Kubota, A. (2011). Kernel-based behavior

analysis for Android malware detection. 2011 Seventh International

Conference on Computational Intelligence and Security, 3-4 December 2011,

Sanya, Hainan Province, China.

Journal of Digital Forensics, Security and Law, Vol. 8(3)

39

Mohtasebi, S. H., & Dehghantanha, A. (2011). A mitigation approach to the

privacy and malware threats of social network services. Digital Information

Processing and Communications, Springer Berlin Heidelberg.

Sahs, J., & Khan, L. (2012). A machine learning approach to Android malware

detection. 2012 European Intelligence and Security Informatics Conference,

22-24 August 2012, Odense, Denmark.

Schmidt, A., Bye, R., Schmidt, H., Clausen, J., Kiraz, O., Yuksel, K., …

Albayrak, S. (2009). Static analysis of executables for collaborative malware

detection on Android. IEEE International Conference on Communications

Workshops (IEEE ICC 2009), 14-18 June 2009, Dresden, Germany.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, G., & Weiss, Y. (2012),

“Andromaly”: A behavioral malware detection framework for Android

devices. Journal of Intelligent Information Systems, 38(1): 161-190.

Wu, D., Mao, C., Wei, T., Lee, H., & Wu, K. (2012). DroidMat: Android

malware detection through manifest and API calls tracing. 2012 Seventh Asia

Joint Conference on Information Security, 9-10 August 2012, Tokyo, Japan.

Yang, C., Yegneswaran, V., Porras, P., & Gu, G. (2012). POSTER: Detecting

money-stealing apps in alternative Android markets. CCS '12 Proceedings of

the 2012 ACM Conference on Computer and Communications Security, 16-18

October 2012, Raleigh, North Carolina, USA.

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, you, get off of my

market: Detecting malicious apps in official and alternative Android markets.

Proceedings of the 19th Annual Network and Distributed System Security

Symposium, 5-8 February 2012, San Diego, California, USA.

ABOUT THE AUTHORS

Kaveh Shaerpour is a master by research student at the faculty of Computer

Science and Information Technology, University Putra Malaysia. He received

his BSc in Computing from Staffordshire University. His research interest

includes digital forensics, computer security and cyber physical systems

forensics, and malware analysis. He can be contacted at

kavehshaerpour@aol.com.

Ali Dehghantanha obtained his PhD in Computer Science with a

specialization in Security in Computing from University Putra Malaysia

(UPM) and serves as a senior lecturer at the same school. His research

interests include digital forensics, penetration testing, and game-theory

applications in security, malware analysis, and cyber physical systems

forensics. He can be contacted at AliD@upm.edu.my.

mailto:kavehshaerpour@aol.com
mailto:AliD@upm.edu.my

Journal of Digital Forensics, Security and Law, Vol. 8(3)

40

Ramlan Mahmod is a professor at the faculty of Computer Science and

Information Technology, University Putra Malaysia. He received his BSc in

Computer Science from Western Michigan University, USA, MSc from

Central Michigan University, USA, and his PhD in Artificial Intelligence from

Bradford University, UK. His research interest includes artificial intelligence,

cryptography, trusted computing, and computer vision. He can be contacted at

ramlan@fsktm.upm.edu.my.

mailto:ramlan@fsktm.upm.edu.my

