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ABSTRACT 

This paper analyzes different Android malware detection techniques from 

several research papers, some of these techniques are novel while others bring 

a new perspective to the research work done in the past. The techniques are of 

various kinds ranging from detection using host based frameworks and static 

analysis of executable to feature extraction and behavioral patterns. Each paper 

is reviewed extensively and the core features of each technique are highlighted 

and contrasted with the others. The challenges faced during the development of 

such techniques are also discussed along with the future prospects for Android 

malware detection. The findings of the review have been well documented in 

this paper to aid those making an effort to research in the area of Android 

malware detection by understanding the current scenario and developments 

that have happened in the field thus far. 
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1. INTRODUCTION 

Mobile devices are no longer used merely for facilitating wireless 

communication in the form of phone calls, or sending brief text messages using 

the Short Message Service (SMS), they have come a long way from that and 

now have become much more advanced devices commonly known as smart 

phones. These are devices that can connect to a wide range of networks 
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including the internet via 3G or Wireless Fidelity (Wi-Fi), and have numerous 

applications that are developed to entertain and enhance the experience of the 

user. But because these devices have the ability to browse the internet and can 

exchange information with various devices and networks they become 

susceptible to attacks and threats by malware, and are the primary target these 

days (Daryabar et al., 2012). Previously one would find instances of malware 

only on personal computers, but since people rely on their smart phones ever 

so often for even sensitive interactions like online banking and these devices 

are becoming ubiquitous, the risk posed by malware on smart phones is very 

high. The extent of damage however is varied; a malware might render the 

victim’s phone unusable, steal personal data like the victim’s location or other 

confidential information, or access premium numbers from the victim’s phone 

causing undesired billing (Daryabar et al., 2011; Mohtasebi et al., 2011). 

There are several complexities that arise when it comes to antivirus solutions 

for smart phones, unlike personal computers, mobile devices do not have 

extensive computational resources, running an antivirus would consume a lot 

of RAM and CPU resources which would result in a sluggish operation of the 

phone along with accelerated depletion of the battery charge. For anti-virus 

solutions to be effective, a constantly updated virus signature database is 

needed so that all viruses can be detected with the matching of virus signature 

in the database. Nevertheless, the database itself should be added for new 

signatures regularly in order to detect previously unknown malware. 

Smart Phones are available on several different platforms but Android platform 

has the most impressive growth and global spread. However, Android has 

become the breeding ground for new mobile malware. Although the platform 

itself is developing and releasing newer versions at quite a fast pace, the 

mobile malware is still spreading through the smart phone applications at a 

rapid rate.  

Sahs and Khan (2012) described how the currently existent security features of 

the Android platform are largely insufficient. Besides, they mentioned that 

even applications that are not malicious, they bring coded in such a way that a 

lot of confidential information is collected. There has been a revolution in the 

services that are being offered via mobile applications. There are so many in 

numbers that there exist marketplaces for each mobile OS to centralize the 

distribution of these applications. They have their own mechanisms to prevent 

malicious applications from being distributed through the official channels. 

The problem however does not stop there since there are various other 

unofficial application marketplaces that are capable of similar distribution of 

genuine and malicious applications alike except these have no review process, 

and a developer may publish his Apps directly to these marketplaces. 

In second paper, Zhou et al. (2012) described how most of the common 

malware are Trojan horses that usually camouflage themselves as useful 
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applications like task managers, games, etc. Free applications, on Android 

markets are able to sustain themselves via advertising revenues. In fact, 

malware developers would tend to design and develop their Apps as a desirable 

application which would be downloaded often. As users are more inclined to 

download free versions of Apps instead of paying for them, malware 

developers can get their malicious Apps spread even wider. While these 

applications do provide the features and functionality of the legitimate app, 

they may have some hidden secret features that perform malicious activities 

without the user noticing it in the background. These kinds of applications are 

usually spyware, which track the user’s personal data like GPS location and 

preferences and often sell them to advertisers so that they may generate 

targeted advertisements.  Another benefit for the malware developer lies in his 

ability to make premium phone calls and send premium SMS silently from the 

victims phone, which causes unwanted billing for the victims. 

Google tried to prevent these kinds of security breaches by making applications 

to declare permissions they would require on the phone, and to use only the 

required permissions for the functioning of the application. By right the victim 

approves access to the malware and lets the installation continue even though 

he sees that there are unnecessary permissions being requested in the 

manifesto. Asking users to only install applications does not seem an effective 

approach for deterring the users from downloading malicious applications. The 

users rarely know the extent to which a particular permission affects their 

personal data, and after installing several applications they get accustomed to 

ignoring all such warnings that come prior to installation. A similar 

ineffectiveness can be seen in the case of User Account Control that was 

implemented by Microsoft in Windows 7 to prompt the user to allow or deny 

any changes that was being made by an application on the computer, by fading 

out the screen and only focusing on a dialog box. This approach became 

annoying, and 69% of the users merely disabled the pop up account control 

feature in Windows 7 as stated by Zhou et al. (2012). 

Schmidt et al. (2009) also did a study of third party Android market. It showed 

that there was a common practice of repackaging genuine applications acquired 

Google Play from and uploading them to third party marketplaces. 

Repackaging can have dangerous purpose which is to attach malware to it, 

plant backdoors or hide malicious payloads.  Legitimate application developers 

are also affected by this repackaging since their reputation becomes impaired, 

as the word spreads that their app is malicious, even though it was not their 

intention and they become victims of intellectual property theft, and theft of 

their financial capital generated via the malicious apps. 

This serious situation calls for an effective manner to detect malware on the 

Android platform; this paper will review few of the newer Android malware 

detection techniques that have surfaced. This paper comprises of five sections 
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and will be presented as such: Section 2 describes the Android platform. 

Section 3 identifies the current developments in Android malware detection 

techniques. Section 4 discusses challenges encountered during Android 

malware detection research. Section 5 provides some statistical data. Section 6 

discusses the future prospects for Android malware detection and Section 7 

provides a conclusion for this paper. All the figures in this paper are taken from 

referenced papers to support the explanations. 

2. ANDROID PLATFORM 

Android platform is the first fully featured open source mobile operating 

system that was created to serve the consumer market. The open nature of 

Android and its attractive features led to its global acceptance, and rapid 

growth which has given a huge boost to the market of Android applications. 

There are four layers in the Android stack, the uppermost layer is the Android 

Application layer, and the three layers below it are the application framework, 

Android runtime and the Linux Kernel. The Linux Kernel is what acts as an 

abstraction layer between the software stack of Android and the remaining 

hardware of the device. Since Android is an open source OS, it allows security 

researchers to focus on interactions at the kernel level and obtain useful 

information. Android applications are developed using Java programming 

language along with the tools and API’s provided by the Android Software 

Development Kit (SDK). 

The Android security model relies on its operating system, and is enforced by 

making application developers declare permissions in the “Android 

Manifest.xml” file in their application. The user is asked before installation 

whether he would like to grant the permissions requested by the applications, 

and has no control over micromanaging which permissions can be allowed and 

which cannot since according to the developer all those permissions would be 

required to ensure the proper functionality of the application. But often we see 

permissions which are unnecessary being requested by applications, the users 

must be wary of this, but sadly the only choice the user has is to install the 

applications, or not install it if the permissions seems to infringing to the users 

data and it is against his interest. The developer cannot remotely modify the 

permissions, unless he releases a new version which upon installation would 

prompt the user to once again review and accept the permissions being 

requested by the application. 

3. CURRENT DEVELOPMENTS IN ANDROID MALWARE 

DETECTION TECHNIQUES 

There have been various different approaches towards detecting Android 

Malware and there have been several publications documenting them but not 

particular technique has prevailed over the other, this section will review 
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current developments and contributions in the field of Android malware 

detection. 

Shabtai et al. (2012) proposed a behavioral framework to detect malware on 

the Android platform called “Andromaly”, as shown in Figure 1, the proposed 

framework is able to perform as a malware detection system by continuously 

monitoring the events and features of the mobile device and passing the data 

through anomaly detectors that use Machine Learning, the data that is collected 

can then either be classified as safe or malicious. The framework is 

implemented using small application which once installed samples various 

pieces of system data like CPU usage, the bandwidth of data being used, the 

intensity of packets sent via cellular or Wi-Fi networks, total number of 

processes running, battery consumption etc. and then analyses if the phone is 

functioning normally, or there are some anomalies in the collected data. The 

framework utilizes the idea that malware that have not yet been encountered 

can be detected by analyzing the similarities shown in the fluctuation of above 

mentioned system data with the introduction of already known malware. This 

would help users detect any suspicious activity on their devices.  

 

Figure 1 Andromaly Architecture (Shabtai et al., 2012) 

The framework is modular and can utilize various malware detection 

techniques using rules and algorithms besides its behavioral approach. In order 

to improve the performance of the framework and make it less resource 

intensive they utilize a small number of features for the purpose of detection. 

The framework to be effective however requires a certain amount of training 

over a wide range of malware induced environments and safe environments to 

improve its rate of detection and reduce false positives. This however might 

put the user at a disadvantage should he not have ample malicious samples to 

train the framework to perform in a favorable manner. 

Isohara et al. (2011) however discuss how one of the effective methods of 

detecting hidden threats in applications is by using some means to dynamically 
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analyze them and the technique utilized to detect malware in their system is 

behavior based and their detection system consists of log analysis application 

on a server machine which would be used for analysis and at the Kernel layer 

they have a log collector, as shown in Figure 2, which would record all the 

system calls that were made since most applications have to go through the 

kernel layer, however since the logs generated would be huge and contain data 

from all applications, it would make the detection mechanism less efficient due 

to all the additional data, hence it implements a feature that allows it  to filter 

the events with the perspective of a target application. The log analyzer in turn 

is able to pick up the process tree of the target application’s activity and 

compares the activities with signatures created using regular expressions and is 

able to detect malicious activity if anything out of the ordinary takes place.  

Signatures of information leakage are also automatically generated using the 

data stored on the phone like Google account details and credentials, phone 

number, SIM info and IMEI numbers. And by using this technique they are 

able to identify and successfully detect the malicious behavior of applications 

and malware that have not been identified yet. 

 

Figure 2 F System Architecture for Kernel-based Behavioral Analysis of Android 

Malware (Isohara et al., 2011) 

This technique shows a lot of promises, and it can be greatly improved with a 

more sophisticated set of signatures to detect malicious activity which would 

help reduce error rates of false positive and false negative in the detection 

phase, also the efficiency can be improved by implementing techniques that 

would lessen the clutter in the logs being collected, and using more efficient 

means to reduce the log size. 

Yang et al. (2012) focuses on detecting a particular kind of malicious Android 

application, the kind that attempts to steal money and cause unintended 

purchases from an unsuspecting user by pretending to be a legitimate 

application, but instead dialing premium numbers or sending premium SMS, 

from the victim’s phone. They propose a system called “MoneyGuard”, shown 
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in Figure 3, follows a systematic approach towards detecting these malicious 

Android applications that steal money. Their technique also uses a behavioral 

approach to detect malware. They have identified two main behavioral patterns 

that seem to present in most of the money stealing malicious Android apps. 

The particular application behaviors they mention are the suppression of 

notifications, which allows the app to continue stealing money and charge the 

victim’s by not letting the notifications surface and keeping the victim in the 

dark, and then the second behavior is hardcoded exfiltration, which makes the 

app send messages to hardcoded third party premium numbers or dialing to 

premium numbers in the background. 

 

Figure 3 System Architecture for MoneyGuard (Yang et al., 2012) 

Yang et al. (2012) present a light weight detection approach that will help in 

identifying this behavioral pattern. The system contains three components, the 

Billing Permission Extractor, Billing Behavior Identifier and Notification 

Suppression Detector. The first component extracts the permissions from the 

Android Manifest.xml file of the applications and analyses it for any 

permissions that allows the application to perform actions that are billable, like 

sending and receiving SMS, making phone calls and access the Internet. The 

second component decompiles the APK file of the application, and examines 

the Dalvik byte code for each activity performed by the application along with 

the system calls that are made, additionally it also searches for any hard-coded 

phone numbers that the application might try to communicate with. Lastly the 

third component, is used to detect if the application is utilizing any form of 

notification suppression, and if it already had certain suspicious billing 

behavior detected in the first two components, it is considered a money stealing 

application if in the third component it is found to have notification 

suppression features in it. This technique seems rather useful and relevant to 

mitigate the practical threat of money stealing apps that many Android users 

are a victim to, but are not yet aware of it. This platform can perhaps be 

extended to include other kinds of Android malware in a modular fashion to 

improve the usability of this system, in day to day detection of Android 

Malware in this ever growing market. 
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Schmidt et al. (2009) claims that commercially available techniques to counter 

malware on smartphones are largely inadequate, and that since these 

techniques rely on malware signatures alone, the users relying on these 

malware detection solutions are left exposed to new malware until the new 

signature is developed and the system is updated with the latest malware 

signatures. The extent of damage that can be done till then and the amount of 

other phones the malware can spread to during that time is tremendous. Their 

proposed system contains three main components, analysis on the device itself, 

collaboration module and a client-server feature for remote analysis and this 

system is shown in Figure 4. To communicate between the kernel layer and the 

software stack they wrote a tool called “Interconnect Daemon” which is a 

Linux server daemon that contains modules that perform various functions 

such as monitoring the system, scanning the files and creating hashes for the 

important ones, waiting for specific system signals that trigger certain events, 

one specific module is used to extract all Executable and Linking Format 

(ELF) object files excluding the shared library, and inspected them for a 

number of system commands, they performed similar analysis for malicious 

samples that were acquired from the internet and identified the static list of 

function calls made by them. This finding from the static analysis of system 

commands and malicious applications forms the training set for the system to 

help determine safe and malicious applications. The server component is 

utilized here to analyze the interdependencies between  attributes of executable 

to help in classifying them better, rules are synthesized after this stage and 

pushed to the mobile devices, this helps in reduce false positives. The actual 

performance of the malware intrusion detection of the system on the mobile 

device would be possible after acquiring the rules. When a mobile device 

notices an anomaly if properly implemented, it should be able to utilize the 

other mobile devices around it running the system through collaboration and 

obtain computational resources for faster detection, if the computation cannot 

be performed on the device itself then it is sent to a remote server, and the 

results are obtained. Experimentation using real devices and malware is yet to 

be done using this technique, but it still seems like a viable and interesting 

solution to malware detection. 
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Figure 4 Collaborative Malware Detection Overall System Architecture 

(Schmidt et al., 2009) 

The proposed method by Apvrille and Strazzere (2012) for detecting Android 

malware is by implementing a market wide scanner as shown in Figure 5. 

Their system is devised in such a way that it crawls the entire Google Play 

store using a combination of parameters based on various classifiers such as 

country, genre, language etc., this way their method is able to acquire all 

existing applications on the market and not only those which are displayed as 

available to the particular device that is accessing the market. 
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Figure 5 Risk Evaluation Heuristics Engine (Apvrille et al., 2012) 

Once the application samples are collected from the market, a heuristics engine 

is run in order to pre-process the samples in order to gauge which samples 

possess malicious characteristics and prioritize the analysis on them. The 

heuristics engine used in this method is a kind of static analysis tool that would 

check for 39 different preset properties, which are broadly categorized as the 

permissions requested by the app, peculiar calls to Java classes or methods, 

code size, geodata indicators, executable files, URL's present in code etc. This 

technique was used to minimize the time consumed in doing a large scale scan 

and also appropriate filtering mechanisms were implemented where required to 

ignore legitimate applications, which host a guest application to facilitate in 

app advertising. Each attribute was assigned a particular risk score, and the risk 

would incremented for the application as the scan progresses and give a final 

risk score that would help deduce it's malicious or benign nature if the score is 

beyond a particular limit. The main objective of this technique is to sift out and 

prioritize which samples should be subjected to further analysis give the 

number of samples being scanned. An added benefit to this approach is that it 

serves as a repository of metadata which can be used to compare, any rogue 

apps in the market that are pretending to be popular legitimate applications but 

have their code altered to perform malicious functions.  

Zhou et al. (2012) present another systematic approach to detect malicious 

Android applications on both official and unofficial Android marketplaces, 

shown in Figure 6. Unlike Apvrille and Strazzere (2012) that crawled only the 
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official market, they attempt to detect both known malware variants as well the 

ones that are yet to be detected. They developed a prototype, tool called 

"DroidRanger" in order to implement this detection approach. After the market 

crawler collects the apps from various markets it stores them in repository. 

"DroidRanger" then extracts the basic properties of the app like information 

about the author and the permissions requested, and then it stores this 

information besides the actual application in a database for the purpose of 

efficiency. Two separate malware detection engines are utilized, to use the first 

type of detection engine, a behavioral and permission oriented footprint is 

generated of the known malware samples, this helps in detecting malicious 

applications that have footprints similar to the known malware by seeing which 

permissions are being abused for malicious purposes. The second detection 

engine utilizes a heuristics based filtering mechanism that helps detect zero day 

malware samples. They use two kinds of heuristic approaches the first analyzes 

if any binary code is being loaded dynamically from a remote sure, and the 

second analyzes if there is any native code being loaded dynamically, this is 

usually the case when it comes to kernel level exploits, and this method aims at 

finding malware that try to "root" the device. 

 

Figure 6 DroidRanger System Architecture (Zhou et al., 2012) 

Grace et al. (2012) also take a proactive stance towards detecting zero-day 

Android malware by analyzing a large number of applications from both 

official and unofficial Android marketplaces. Their technique does not rely on 

malware samples and signatures, and categorizes the potential risk an 

application can pose as high, medium and low risks as shown in Figure 7. 

Applications classified as high risk are the ones that exploit platform 

vulnerabilities and get unauthorized access to the devices, those classified as 

medium do not perform any exploits but are capable of causing financial 

damages to the user or steal personal information, those classified as low also 
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steal information but cause less impact, as it is only device specific information 

like IMEI number etc. They developed an automated system called RiskRanker 

to assess and assign this risk classifications. The analysis happens in two fold, 

for the first phase to detect high risk apps that contain attack code, the code of 

the well-known exploits is distilled and signatures are created to compare the 

common characteristics between the exploits and the application being 

analyzed. To detect medium risk apps, certain permissions that can potentially 

harm the user if abused like "android.permission-group.COST_MONEY" 

along with certain system calls which indicate the functioning of the 

application silently without notifying the user are searched for by performing 

static analysis. The first phase would typically work with non-obfuscated 

applications. The second phase was designed malware that might be designed 

to be hidden from the analysis performed in the first phase or might be 

encrypted. The first part of this phase includes capturing certain behavior 

which can be commonly abused but is usually legitimate, like a child 

application inside a host application, utilization of Java encryption APIs to 

encrypt communication, dynamic code being loaded in the background, native 

code execution and hard coded access to internal directories of the device. 

 

Figure 7 RiskRanker System Design (Grace et al., 2012) 

Burguera et al. (2011) chose to use dynamic analysis of an application's 

behavior as the basis of detecting malicious apps in their framework. The 

framework itself is comprised of many components which are able to 

complement one another and provide the mechanism and the resources to 

detect Android Malware. The first component is a client application called 

Crowdroid, which is shown in Figure 8, is an application that can be 

downloaded by Android users from the Google Play store. This application 

allows the system calls made at the kernel level to be monitored. Users can aid 
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in malware detection by providing certain data that is related to the behavior of 

the applications they use regardless of where they acquired their applications 

from, this method of crowdsourcing data does not collect any personal 

information from the users. The output logs of the application behavior which 

are created using a tool called Strace which enables the collection of system 

calls are then forwarded to the remote server which is in charge of parsing the 

data and creating vectors that correspond to various system calls which also 

represent the number of times each system call was used, this helps in 

generating a dataset of benign application behavior. For the success of this 

technique it requires multiple users to use the Crowdroid application which 

will increase the quality of the dataset and help detect anomalies in the 

application behavior to alert all users of a malicious application. The detection 

component works by using K-means clustering algorithm over the system call 

vector dataset to detect any anomalous behavior. 

 

Figure 8 Crowdroid System Architecture (Burguera et al., 2011) 

Wu et al. (2012)  proposes a similar technique of a feature based static analysis 

to detect malicious Android applications; it utilizes the static information like 

API calls, components being deployed and permissions to obtain characteristic 

features of the Android applications. They developed a proof of concept 

framework called DroidMat, which is shown in Figure 9 that extracts this 

information from the application's manifest file, the disassembled code is then 

further analyzed using "apktool", this approach also makes use of vectors for 

each application that indicates whether or not a malicious element is present in 

the application. The application's functional behavior is further classified using 

K-means and EM algorithm using the Singular Value Decomposition method; 

this analyzes the behavior of the application and its functionalities. Finally, K-
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Nearest Neighbor (K-NN) algorithm is utilized to identify the application as 

benign or malicious. 

 

Figure 9 DroidMat System Architecture (Wu et al., 2012) 

4. CHALLENGES ENCOUNTERED DURING ANDROID MALWARE 

DETECTION RESEARCH 

One of the most common challenges when it comes to malware detection 

techniques is the occurrence of false negatives and false positives in the report. 

Which causes malicious applications to be classified as safe and legitimate 

applications that seem to need access to particular features in order to perform 

its function seems similar to a malware and is classified as one. 

Sahs and Khan (2012) identified various challenges that they faced in utilizing 

their technique of anomaly detection, like the fact that the activities that 

malware perform are often very short and do not provide enough data for their 

framework to learn from the behavior or even detect it. Also that there was a 

shortage of a training set of malicious applications that can be used to improve 

the detection framework, and lastly the behavior of malware can be variable 

between each attack and be polymorphic in nature, which causes additional 

challenges to the researcher. 

Isohara et al. (2011) used a dynamic analysis technique and relies heavily on 

the log data and the signature set the system contains, to be comprehensive it 

stores all the communication of applications with the kernel layer via system 

calls but the drawback with using this technique, is the constant monitoring of 

processes generates a large amount of log entries, and one would have to sift 
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through a lot of log data to get to the relevant information , unless an efficient 

means of filtering the logs is used and also an efficient means of collecting the 

logs so that the log size is reduced. 

The quality of the results would also depend on how well the signature set is 

developed to reduce errors in detection. 

Grace et al. (2012) also faces similar challenges whereby their technique relies 

on known exploit signatures, if the exploit is encrypted or obfuscated the 

analysis technique used might give a false negative, the techniques utilized to 

curb the flow of malwares into the markets as well the techniques used to 

identify them might be studied by malware authors and countered, making the 

next generation of malware even harder to detect. 

Techniques like by Apvrille and Strazzere (2012) where markets are crawled to 

download application to add to the repository might be banned from the 

markets for excessive downloading. 

Zhou et al. (2012) states that the current model of the Google Play store where 

users need to rate and alert if a particular application is malicious is not 

effective and does not work, the analysis they performed was done only on free 

applications and they are of the opinion that paid apps might have certain 

obvious differences which might not let their technique work the same way. 

Only five marketplaces were utilized for the experiment, and only two 

behavioral characteristics were utilized for the identification of zero day 

malware using the heuristic search, a much more effective analysis can be 

performed by adding more parameters to the heuristic search like checking for 

a behavior where an SMS is being sent to a premium number. 

For the adoption of the crowd sourced technique proposed by Burguera et al. 

(2011), they face a challenge in convincing Android users to download and 

install the Crowdroid application, and moreover to not feel like it is a loss of 

privacy when they support the researchers with behavioral information of their 

application since this only benefits them by providing updated statistics of 

malwares being detected. 

5. STATISTICALLY RELEVANT DATA 

According to Apvrille and Strazzere (2012), the time taken between the 

detection of new Android malware by an anti-virus company and its actual 

release in the market is approximately 80 days as is seen in Figure 10, the dates 

of detection in the graph above are certain since they are determined by the 

malware detection announcements made by the vendors. However the release 

date of the malware is determined using the date on the signed certificate 

which may contain erroneous data. The reason behind is that developers might 

reuse certificates. Regardless, this only goes to show that the need for a better 
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and faster detection mechanism still exists and is extremely relevant to the 

status quo. 

 

Figure 10 Number of Days Taken Between Release and Detection of Android 

Malware by Anti-virus Vendors 

From the techniques reviewed the trends in their approaches have been 

quantified in the Figure 11 below 

 

Figure 11 Trends Used in Detection Techniques 
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There has been, equal emphasis on detecting android malware using static and 

dynamic analysis techniques, some papers documented using more than one 

technique in a multi-phase framework which seemed to yield good results, 

quite a few papers utilize Machine Learning Algorithms in order to amplify the 

effectiveness of their heuristics engines. A lot of work can still be done in the 

area of collaborative detection as this technique has not been utilized at large 

mostly due to its drawback of needing user participation. Lastly, the idea of 

establishing a repository of known applications via market scanning with the 

support of the market vendors could provide useful in detecting rogue apps 

with modified code holding payloads and prove less cumbersome on the 

researchers. 

6. FUTURE PROSPECTS FOR ANDROID MALWARE DETECTION 

The security model of the Android platform might change steeply, and the 

developers contributing to the Android Operating System probably will start 

taking security seriously making it less easy for malware to reside on their app 

stores, or the mobile devices running the Android OS. Until then however 

malware developers would start developing malware and packing them in such 

a way that they evade the existing techniques of detecting malware. Be it static, 

dynamic or intrusion detection based, Android malware techniques seem to be 

greatly improving upon the work of the predecessors, with more malware 

samples available in the future, it would be easier to conduct research and build 

more efficient detection techniques that would keep Android users safe. With 

well-established techniques, the next step would be to run comparisons 

between them side by side, to see which technique would be best suited for 

today’s generation of Android users, and if a single technique is insufficient, 

then perhaps a combination of more than one techniques would be the way to 

go. In the future, when phones with higher specifications become more readily 

available and more widely used the capability of the malware detection 

techniques can also be greatly increased by leveraging the higher 

computational capacities and memory modules of the future devices. It would 

be in the best interest for Android security if the future frameworks developed 

for malware detection, are open and modular, this way the community can 

contribute as a whole to help make it better, and the ability to crowd source 

statistical data would be much beneficial to the research towards developing 

better malware detection techniques. 

7. CONCLUSIONS 

In this review paper, we analyzed various Android Malware detection 

techniques that have been proposed, and observed the trends in the research 

geared towards finding better detection techniques. We were able analyze and 

understand the various challenges that were faced in building efficient 

techniques and implementing them. Just like the computer counterpart there is 
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not yet an All-in-one solution, that can be a remedy for all malware and detect 

the ones yet to be discovered, but considerable progress has been made. A 

common obstacle when most of the research in this field was conducted was 

the lack of malware samples to experiment with. But today that is not the case 

there are sufficient amount of samples that are available and have been studied 

and well documented and this study of Android malware can greatly aid in the 

development of better Android Malware detection techniques, by knowing how 

the known malware behave and affect Android devices. 
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