
Journal of Digital Forensics, Security and Law, Vol. 7(2)

149

Technology Corner

Automated Data Extraction Using Facebook

Nick V. Flor
Marketing, Information & Decision Sciences

Anderson School of Management

University of New Mexico

nickflor@unm.edu

ABSTRACT

Because of Facebook’s popularity, law enforcement agents often use it as a key

source of evidence. But like many user digital trails, there can be a large amount

of data to extract for analysis. In this paper, we explore the basics of extracting

data programmatically from a user’s Facebook via a Web app. A data extraction

app requests data using the Facebook Graph API, and Facebook returns a JSON

object containing the data. Before an app can access a user’s Facebook data, the

user must log into Facebook and give permission. Thus, this approach is limited

to situations where users give consent to the data extraction.

AUTOMATED DATA EXTRACTION USING FACEBOOK

Facebook is the world’s most popular social networking site. The site allows

users to post text, pictures, and videos, as well as to view other users’ content—

subject to friend and privacy settings. On a given day, Facebook reports an

average of 526 million active users on their site, with over 80% of its monthly

active users outside the United States and Canada (Facebook, 2012). In the

United States alone slightly over 50% of the population has a Facebook account.

Because of its popularity, many individuals under criminal investigation are likely

to have Facebook accounts, and it is common for law enforcement agents to

subpoena a suspect’s Facebook records as governed by the United States Code,

Title 18, Chapter 121, Sections 2701-2712—“Stored wire and electronic

communications and transactional records access” (Facebook, 2012b).

When investigators receive a user’s Facebook records via subpoena they get an

archive similar to what Facebook calls the user’s “Expanded Archive”, which the

site allows users to download on demand (Facebook, 2012a). This archive

includes a user’s: profile information, postings, friends postings, photos and

videos uploaded, friend list, notes, event RSVPs, sent & received private

messages, IP addresses, login info, log out info, pending friend requests, account

status changes, poke info, events info, mobile phone numbers, currently listed city

& hometown, family member names, relationship info, list of languages, and

history of changes made to the account name.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

150

The problem is that this archive is merely a data dump and it can be difficult to

filter and analyze — see Carioli (2012) for an example of Facebook data received

by police investigators. However, if one has a user’s consent, such as an

investigator for a defense team or if a suspect gives law enforcement consent to

access his or her Facebook account, more automated techniques can be used. In

this paper, I describe the basics of automating the extraction of data from a user’s

Facebook account. The key technology one uses to extract data is Facebook’s

Graph API.

FACEBOOK GRAPH API

The Facebook Graph API (Facebook, 2012c) is an application programming

interface that allows application developers to access data programmatically from

a user’s Facebook account. In addition to accessing data, the API can also be

used to automate the posting of content to a user’s Facebook account. The API is

based on a Representational State Transfer (“REST”) web service design

(Fielding & Taylor, 2002). While at a theoretical level, the REST design

architecture is independent of any specific networking technology, from a

practical standpoint a REST web service allows a developer to read and write

information from a service provider using standard HTTP methods such as GET

and POST.

An Example of Retrieving Data Manually from the Facebook Graph API

If you have a Facebook account, you can experiment with retrieving your public

information via Facebook’s Graph API by entering

https://graph.facebook.com/USERNAME into your browser’s address (URL) box.

For example, my Facebook username is ProfessorF, so to access my publically

available information I can enter https://graph.facebook.com/ProfessorF into my

browser’s address box (refer to Figure 1).

Journal of Digital Forensics, Security and Law, Vol. 7(2)

151

Figure 1. An example of using the Facebook Graph API to retrieve my

publically available Facebook information. In response to a data request of the

form https://graph.facebook.com/USERNAME, Facebook returns a JSON file

(see orange pop-up) instead of a web pate.

Instead of Facebook returning a webpage that is displayed in the browser,

Facebook returns a javascript (.js) file containing my publically available

information, which my browser gives me the option of saving or opening. When

I save the file with a .txt extension and then open it, I discover that it contains the

following data (see Figure 2).

{

"id": "100000417681039",

"name": "Nick Flor",

"first_name": "Nick",

"last_name": "Flor",

"username": "ProfessorF",

"gender": "male",

"locale": "en_US"

}

Figure 2. The content of the professorf.js file returned by Facebook after I

entered https://graph.facebook.com/ProfessorF into my browser’s address box.

The data is formatted in JSON.

This data is essentially what a Facebook user sees if he or she is not on my “friend

list” and tries to view my Facebook page, but the data in this case is formatted in

JavaScript Object Notation.

Java Script Object Notation (JSON)

JavaScript Object Notation (or “JSON” for short) “is a text format for the

serialization of structured data… derived from the object literals of JavaScript”,

(Crockford, 2006). JSON has four primitive value types: strings, numbers,

booleans, and null; along with two structured types: objects and arrays. An object

is a collection of “name : value” pairs enclosed within curly braces “{…}”, and an

array is a collection of values enclosed within square brackets “[…]”. For

example, the content of the file in Figure 2 is a JSON object with seven name :

value pairs, e.g., “username” : “ProfessorF”.

The Facebook Graph API and the Data ID

To summarize, one can extract information from a user’s Facebook account in a

computer-readable form via the Facebook Graph API. Extraction requires

specifying a URL in the format https://graph.facebook.com/ID. A key point is

that every piece of data stored in Facebook’s database has a unique ID associated

with it, which is usually a label or a number. For example, instead of

https://graph.facebook.com/ProfessorF, I could have retrieved the same

Journal of Digital Forensics, Security and Law, Vol. 7(2)

152

information with the URL https://graph.facebook.com/100000417681039, which

is the ID associated with my public information (see the value of the “ID” key in

Figure 2). To access non-public information requires both specifying an ID in the

URL and passing an authorization code in the URL.

EXTRACTING NON-PUBLIC USER DATA PROGRAMMATICALLY

VIA THE FACEBOOK GRAPH API: A TUTORIAL

While one can experiment with the Facebook Graph API using a browser, the

potential of the API for forensics, business, or other kinds of analyses is realized

when the API is accessed programmatically. However, there are certain

technology requirements that must first be met.

Step 0. Meet Technology Requirements

To extract data from a user’s Facebook account programmatically you will need:

(1) your own Facebook account; and (2) your own website—both domain name

and hosting space. The first is necessary because Facebook requires that you

register your app under your Facebook username, and the second is needed for

you to store your web apps and for Facebook to ensure that the proper level of

security exists between the user and your website. Note that instead of a web app,

one can also access the Facebook Graph API by writing an iPhone/iPad app or an

Android app, but web apps are generally easier to develop. The following

example uses my website is professorf.com.

Step 1. Register Your Website / Provide Preliminary App Details

Given a website to host your data-extraction app, the next step is to register your

website with Facebook and to enter preliminary details about the app. Direct your

browser to:

https://developers.facebook.com/apps

This will bring up a page similar to the following (see Figure 3):

Journal of Digital Forensics, Security and Law, Vol. 7(2)

153

Figure 3. The App Information Page for Facebook Developers. Developers use

this page to enter the website that will host their Facebook apps and to add

details about apps.

Click on the button labeled “+ Create New App” near the upper-right corner of

the page, which will display the “Create New App” dialog box (see Figure 4).

Enter a unique App Name and a unique label for the App Namespace, but leave

the Web Hosting box unchecked. Facebook will enforce the uniqueness of both

the App Name and App Namespace, and you will not be allowed to continue until

you provide unique values. Note that the Namespace is for more advanced

programming and is optional, but since it is common to modify and extend a data-

extraction app you should specify this now. In the example, I entered “Data

Miner” for the App Name and “data-miner-app” for the App Namespace.

Figure 4. Dialog Box: Create New App. Developers enter a unique App Name

and a unique label for the App Namespace — Facebook will enforce

uniqueness.

Click on the “Continue” button, which will bring you to a CAPTCHA security

page (not shown). After entering the CAPTCHA letters, your browser will

display the Basic information page for your app (see Figure 5).

Journal of Digital Forensics, Security and Law, Vol. 7(2)

154

Figure 5. App Basic Information Page. This page is pre-filled with your e-

mail, the App Name, and the App Namespace (see Figure 4). Enter values for

the input boxes labeled App Domains, e.g., professorf.com; Category, e.g.,

Other, and Site URL, e.g., http://www.professorf.com.

Facebook automatically pre-fills most of the input boxes on this page including

Contact E-mail, Display Name, and Namespace. You must enter values for the

input boxes labeled App Domains and Category. You must also check the label

Website with Facebook Login and enter a Site URL. For App Domain, and for

Site URL enter the location of your website, e.g., professor.com &

http://www.professorf.com. When finished, scroll to the bottom of the page and

click the “Save Changes” button (not shown). The web page will display the

message: “Changes saved. Note that your changes may take several minutes to

propagate to all servers.”

At this point you are ready to develop your data extraction app. Before doing so,

write down the AppID, which is displayed underneath the App Name near the top

of the page. This is a unique number that Facebook assigns to your app, which

you will embed in your code. Facebook uses this ID along with your site’s

domain for authentication and authorization. In this example, the AppID is

133538570117160 (see Figure 5). If you misplace your AppID, you can always

revisit:

https://developers.facebook.com/apps

Step 2. Create a “Skeleton” HTML File

Create a “skeleton” HTML file using your favorite code editor. I recommend

using Microsoft’s free Visual Web Developer if you are using a PC. However, a

simple program like Notepad will work just as well. A “skeleton” HTML file is a

file containing empty <html>, <head>, <title>, and <body> tags. While it is

Journal of Digital Forensics, Security and Law, Vol. 7(2)

155

beyond the scope of this paper to discuss HTML, there are many good tutorials

online. Figure 6 depicts a skeleton html file.

<html>

<head>

 <title>Sample: Very Basic Facebook-Friend Data Mining

Script</title>

 <script>

 </script>

</head>

<body>

</body>

</html>

Figure 6. Skeleton HTML File. See text for explanation.

Step 3. Add the Javascript SDK Access Code in the <body> Tag

To facilitate app development, Facebook provides developers access to their

“Javascript SDK”. The Javascript SDK shields developers from many of the low-

level coding details needed to access the Facebook Graph API, and from the

details of authentication and authorization needed by your app to in order to

retrieve a user’s non-public information. Thus, a developer does not have to write

code to send an HTTP URL and then write code to parse the JSON object

returned (as in Figure 1 and Figure 2). Instead the developer calls functions that

map to HTTP requests and that return JSON objects. To use the Javascript SDK,

a developer adds the code in Figure 7 just after the <body> tag in the skeleton

html file. Note that the code is the same for all web apps, except you substitute

the appId attribute from step 2.

 <div id="fb-root"></div>

 <script>

 window.fbAsyncInit = function () {

 FB.init({

 appId: '133538570117160', // App ID

 status: true, // check login status

 cookie: true, // enable cookies for session access

 xfbml: true // parse XFBML

 });

 };

 // Load the SDK Asynchronously

 (function (d) {

 var js, id = 'facebook-jssdk', ref =

d.getElementsByTagName('script')[0];

 if (d.getElementById(id)) { return; }

 js = d.createElement('script'); js.id = id; js.async =

true;

 js.src = "//connect.facebook.net/en_US/all.js";

Journal of Digital Forensics, Security and Law, Vol. 7(2)

156

 ref.parentNode.insertBefore(js, ref);

 } (document));

 </script>

Figure 7. Facebook Javascript SDK Access Code. This code goes immediately

after the <body> tag. See text for an explanation of the code’s function.

Step 4. Add a Facebook Login Button and Set the Scope Attribute

In order for your code to access a user’s non-public information

programmatically, the user must login to Facebook. Facebook uses OAuth 2.0 for

authorization (Recordon & Hardt, 2012). Briefly, before your app can access a

user’s information, the user must log onto Facebook (authentication) and then

explicitly give permission to your app (authorization) to access non-public

information. Facebook then returns an access token that your app can use when

it calls the Facebook Graph API. It should be noted, however, that the Javascript

SDK hides the access token from the developer. If one chooses not to use the

SDK, the Graph API documentation shows how the access token is used

(Facebook, 2012c)—it is a key-value attribute appended to the URL sent to the

Graph API.

To allow the user to authenticate with Facebook and authorize your app to access

the user’s information, you add the following code after the Javascript SDK

access code (see Figure 8), which will display a Facebook Login Button in your

web app. This code will be the same in all your web apps, except for the scope

attribute. The value of the scope attribute specifies the type of non-public user

information that your app will retrieve. If you do not specify a value for this

attribute, your app can only access a user’s basic information (id, name, picture,

gender, and locale) or basic objects like the user’s list of friends. The example

scope attribute in Figure 8 lists: email, user_checkins, and read_stream. This

gives an app the ability to also access a user’s email, the locations that a user

checks into, and to read postings on the user’s wall.

 <div class="fb-login-button"

scope="email,user_checkins,read_stream">

 Login with Facebook

 </div>

Figure 8. The Facebook Login Button. This code goes immediately after the

Javascript SDK Code. See text for an explanation of the code’s function.

The list of possible values for the scope attribute can be found at the Facebook

Developer’s Permissions Reference page:

https://developers.facebook.com/docs/authentication/permissions/

Step 5. Determine How to Request Data and the Format of the Return

Object

Journal of Digital Forensics, Security and Law, Vol. 7(2)

157

While the Facebook developer’s documentation is copious, it is incomplete with

regard to the format of the JSON objects returned by the Graph API. Thus, before

writing code, you will have to experiment by (1) making calls to the Graph API

manually—using a browser, and (2) inspecting the results returned visually, as in

Figure 1 and Figure 2, respectively. The first will determine how to request the

data and the second determines the structure of object returned.

For example, suppose you wanted to retrieve posts from a user’s Facebook page

(Wall). The Graph API documentation indicates that to do this manually, the

URL is:

https://graph.facebook.com/me/feed?access_token=ACCESS_TOKEN

Entering that into a browser returns a JSON object with a structure similar to

Figure 9.

{

 "data": [

 {

 "id": "value omitted",

 "from": {object omitted},

 "message": "value omitted",

 "actions": [array of objects omitted],

 "privacy": {object omitted},

 "type": "value omitted",

 "created_time": "value omitted",

 "updated_time": "value omitted",

 "comments": {

 "data": [array of objects omitted]

 "count": value omitted

 }

 },

…

Figure 9. Fragment of the JSON Object Returned From the Graph API for a

User’s Wall Postings Request

Analyzing the JSON object returned shows that it consists of a single “data” field

whose value is an array of objects. Each object has at least the fields: id, from,

message, actions, privacy, type, created_time, updated_time, and comments.

Moreover, the values of these fields can be objects or arrays of objects. Knowing

the request format and the structure of the return object gives you the information

necessary to write the data-extraction code.

Step 6. Write Code

Given that you know how to request the data manually and the structure of the

returned object, you can write both the code to request the data programmatically,

Journal of Digital Forensics, Security and Law, Vol. 7(2)

158

and the code to extract the values in the JSON return object. To request the data

programmatically, you use the Javascript SDK function “FB.api”, passing two

parameters. The first parameter is the ID of the data object that you are

requesting. Generally, this id is everything between “https://graph.facebook.com”

and the “?access_token=xxx”. In our example, the id would be “/me/feed”. The

second parameter is a callback function, which is invoked when the call

completes. The callback function is passed the JSON return object. Figure 10

depicts javascript code that calls the FB.api function with our example ID and that

provides a callback function to extract specific data.

…

 <script>

 function DataMineWall() {

 FB.api('/me/feed', function (response) {

 var data = response.data;

 dvResult.innerHTML = "Total Messages: " +

data.length + "
";

 for (var i = 0; i < data.length; i++) {

 dvResult.innerHTML += data[i].message + '
';

 }

 });

 }

 </script>

…

 <input type="button" value="Data Mine Wall"

onclick="DataMineWall()" />

 Result: <div id="dvResult"></div>

…

Figure 10. Call to FB.api, Button to Call the Code, and <div> to Hold the

Results. See Text For Explanation.

The JSON return object is passed as “response”. The code works as follows.

First, the “data” for the response is placed into a variable named data. Recall

from the previous step that this particular data object is an array of objects. So to

extract the values in the array of objects, a loop is needed. In the sample code, I

next loop through the array of objects extracting just the “message” and

appending it to a <div> container (dvResult) on the webpage.

The call to FB.api is contained in the function DataMineWall() and the function is

invoked via a button on the web page with the caption “Data Mine Wall”. The

entire code for extracting the messages for a Facebook user is depicted in

Appendix A. I have also given the code for extracting a user’s entire list of

friends and displaying this list on a web page in Appendix B.

Step 7. Upload and Test the Code

Journal of Digital Forensics, Security and Law, Vol. 7(2)

159

With the code written, the final step is to upload it to your website and to test the

code. I uploaded the file to professor.com as datamine_wall.html. If you want to

test this code, enter the following URL into a browser

http://professorf.com/datamine_wall.html

This will bring up the following simple web page (see Figure 11).

Figure 11. The Data Extraction Web App.

Click on the “Login with Facebook” button. The browser will direct you to a

login page on the Facebook site for authentication (see Figure 12).

Figure 12. Facebook Login Page

If you already have a Facebook account, login to Facebook by entering your

Email and Password, then click the “Log In” Button. Otherwise click on the

Journal of Digital Forensics, Security and Law, Vol. 7(2)

160

“Sign up for Facebook” link and then log in. Facebook will display a page with

information about the DataMiner app, and with a description of the basic

information that the DataMiner app will access (see Figure 13).

.

Figure 13. Facebook Authorization Page for the DataMiner App to Access

Basic Info.

Click on the “Log In with Facebook” button to give the DataMiner app

authorization to access your basic information and your e-mail address. Because

the DataMiner app also accesses non-public information—specifically, postings

on your Facebook wall—Facebook will display another page that gives you the

option of authorizing access to this non-public information (see Figure 14).

Figure 14. Another Authorization Page that Gives a User the Option of

Authorizing the DataMiner App to Access Non-Public Information on the

User’s News Feed (Wall).

You can now click on the “Data Mine Wall” button and the script will display the

total number of messages on your wall and the messages themselves (see Figure

15).

Journal of Digital Forensics, Security and Law, Vol. 7(2)

161

Figure 15. A List of Messages from the User’s Wall

SUMMARY

This paper describes the basics of extracting data from a user’s Facebook account

using a web app. The main preparatory steps included registering your app on

Facebook, determining the ID for the data request, and discovering the format of

the object returned. Knowing the data ID and the structure of the JSON return

object allows one to write an app that requests data via the Facebook Graph API

and that extracts the information inside the object. The paper presented an

example of extracting the messages from a user’s Facebook wall, which can serve

as the foundation for more complex data extraction. The entire code for this

example is in Appendix A. Another example of extracting a user’s friend list is

given in Appendix B.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

162

REFERENCES

Carioli, C. (2012, April 6). When the Cops Subpoena your Facebook

Information, Here's what Facebook Sends the Cops. Retrieved June 30, 2012,

from The Boston Phoenix:

http://blog.thephoenix.com/blogs/phlog/archive/2012/04/06/when-police-

subpoena-your-facebook-information-heres-what-facebook-sends-cops.aspx

Crockford, D. (2006, July). The Application/JSON Media Type for JavaScript

Object Notation (JSON). Retrieved June 30, 2012, from The Internet

Engineering Task Force (IETF): http://www.ietf.org/rfc/rfc4627.txt

Facebook. (2012, March). Key Stats. Retrieved June 30, 2012, from Facebook:

http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

Facebook. (2012a). Download Your Information. Retrieved June 30, 2012,

from Facebook: https://www.facebook.com/help/?page=116481065103985

Facebook. (2012b). Information for Law Enforcement Authorities. Retrieved

June 30, 2012, from Facebook:

https://www.facebook.com/safety/groups/law/guidelines/

Facebook. (2012c). Graph API. Retrieved June 2012, 30, from Facebook:

https://developers.facebook.com/docs/reference/api/

Fielding, R. T., & Taylor, R. N. (2002). Principled Design of the Modern Web

Architecture. ACM Transactions on Internet Technology, 2, 115-150.

Recordon, D., & Hardt, D. (2012, June 8). The OAuth 2.0 Authorization

Framework. Retrieved June 30, 2012, from The Internet Engineering Task

Force (IETF): http://tools.ietf.org/html/draft-ietf-oauth-v2-28

Journal of Digital Forensics, Security and Law, Vol. 7(2)

163

APPENDIX A: SCRIPT FOR EXTRACTING MESSAGES FROM A

USER’S FACEBOOK WALL

You can test this script at: http://www.professorf.com/datamine_wall.html

<html>

<head>

 <title>Sample: Very Basic Facebook-Wall Data Mining Script</title>

 <script>

 function DataMineWall() {

 FB.api('/me/feed', function (response) {

 var data = response.data;

 dvResult.innerHTML = "Total Messages: " + data.length + "
";

 for (var i = 0; i < data.length; i++) {

 dvResult.innerHTML += data[i].message + '
';

 }

 });

 }

 </script>

</head>

<body>

 <div id="fb-root"></div>

 <script>

 window.fbAsyncInit = function () {

 FB.init({

 appId: '133538570117160', // App ID

 status: true, // check login status

 cookie: true, // enable cookies for session access

 xfbml: true // parse XFBML

 });

 };

 // Load the SDK Asynchronously

 (function (d) {

 var js, id = 'facebook-jssdk',

 ref = d.getElementsByTagName('script')[0];

 if (d.getElementById(id)) { return; }

 js = d.createElement('script'); js.id = id; js.async = true;

 js.src = "//connect.facebook.net/en_US/all.js";

 ref.parentNode.insertBefore(js, ref);

 } (document));

 </script>

 <div class="fb-login-button"

scope="email,user_checkins,read_stream">

 Login with Facebook

 </div>

 <input type="button" value="Data Mine Wall"

onclick="DataMineWall()" />

 Result: <div id="dvResult"></div>

</body>

</html>

http://www.professorf.com/datamine_wall.html

Journal of Digital Forensics, Security and Law, Vol. 7(2)

164

APPENDIX B: SCRIPT FOR EXTRACTING A FACEBOOK USER’S

FRIEND LIST

You can test this script at: ttp://www.professorf.com/datamine_friends.html

<html>

<head>

 <title>Sample: Very Basic Facebook-Friend Data Mining

Script</title>

 <script>

 function DataMineFriends() {

 FB.api('/me/friends',

 function (response) {

 var data= response.data;

 dvResult.innerHTML = "Total Friends: " + data.length +

"
";

 for (var i = 0; i < data.length; i++) {

 dvResult.innerHTML += data[i].name + '
';

 }

 }

);

 }

 </script>

</head>

<body>

 <div id="fb-root"></div>

 <script>

 window.fbAsyncInit = function () {

 FB.init({

 appId: '133538570117160', // App ID

 status: true, // check login status

 cookie: true, // enable cookies for session access

 xfbml: true // parse XFBML

 });

 };

 // Load the SDK Asynchronously

 (function (d) {

 var js, id = 'facebook-jssdk', ref =

d.getElementsByTagName('script')[0];

 if (d.getElementById(id)) { return; }

 js = d.createElement('script'); js.id = id; js.async = true;

 js.src = "//connect.facebook.net/en_US/all.js";

 ref.parentNode.insertBefore(js, ref);

 } (document));

 </script>

 <div class="fb-login-button" scope="email,user_checkins">

 Login with Facebook

 </div>

 <input type="button" value="Data Mine Friends"

 onclick="DataMineFriends()" />

 Result: <div id="dvResult"></div>

</body>

</html>

