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ABSTRACT 

This paper presents an algorithm for comparing large numbers of traces to each 

other and identifying and presenting groups of traces with similar features. It is 

applied to forensic analysis in which groups of similar traces are automatically 

identified and presented so that attribution and other related claims may be 

asserted, and independently confirmed or refuted. The approach of this paper is to 

identify an approximate algorithm that will find a large subset of greatest common 

factor similar groups of arbitrary factors in far less time and space than an exact 

algorithm using examiner-provided selection criteria for factor definition. 
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I. INTRODUCTION AND BACKGROUND 

Locard's Exchange Principle states that whenever two objects come into contact, a 

transfer of material will occur [1], and it follows that the traces of material left on 

each of those objects is evidence of that transfer and the presence of the two 

objects at the same place at the same time. Unlike physical evidence, digital 

forensic evidence (DFE) is not transfer evidence, in that it is not the result of 

contact between physical objects, but it is trace evidence, in that it consists of 

traces (i.e., sequences of bits) left by digital systems as a result of the processes 

that they undertake in their operations. [2] Notionally, similar mechanisms leave 

similar traces under similar inputs, subject to the inherent discontinuity of digital 

space. 

DFE is also latent evidence in that it can only be observed by people through the 

use of tools, [2] and thus it follows that tools are required in order to analyze and 

view that evidence. As the volume of DFE increases, it becomes infeasible to 

examine it by purely human cognitive processes acting on simple representations, 

and thoroughness in the sense of examining traces to definitively determine what 

took place because the number of comparisons grows more than factorially with 

the length of the trace and there are a large number of possible event sequences 

that can lead to any given trace in the number of possible FSM states or 

instructions and data, and time available for trace production.[3] For this reason, 

in almost all cases, examination is limited to identifying consistency and 

inconsistency of traces, in the sense first identified in [4], in particular, identifying 
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internal and external consistency of traces, respectively, to each other, and 

"events". [2][3][5] 

Unlike physical evidence, an exact duplicate of DFE can normally be made for 

examination purposes without altering or destroying original evidence. This is not 

to say that physical evidence such as the original media upon which DFE was first 

found has these properties, but rather, DFE is distinguished from the media upon 

which it exists and was produced within in that it has these and other specific 

properties. [2] These properties limit the interpretations of DFE and aide in 

identifying inconsistencies. Among these properties are that specific 

computational mechanisms produce the same output for the same input and initial 

state. 

1.1 Attribution and similarity assumptions 

The attribution problem has long been considered fundamental to information 

protection in a wide variety of ways, if only because without being able to 

attribute actions to actors, there is no way to induce consequences on the specific 

actor. In the more general sense, this can be thought of as the problem of 

establishing causality. [2] In the digital world, because we know that specific 

finite state machines [FSMs] produce the same output for the same input and 

state, we can drive hypothesized inputs and states to outputs and, with relative 

ease, reproducibly show consistency or inconsistency of hypotheses to the 

available traces (the forward direction), but the reverse direction yields the 

potential for exponential expansion of possible inputs, states, and FSMs (i.e., the 

digital space converges in the forward direction and diverges in the reverse 

direction). [2] Thus there are fundamental limits on attribution inherent in the 

limits of establishing causality. 

As a result, an underlying assumption of similarity analysis for the purposes of 

attribution in general, and the methods herein in particular, is that the mechanisms 

used to produce "similar" traces stem from "similar" or identical mechanisms and 

inputs. We will call this the "same effect, same cause" (E⇒C) assumption, and it 

clearly refutable in the case of forgery. Thus, in the establishment of a causal 

chain from a hypothesized cause to an effect in the form of the available traces, a 

series of cause-effect relationships are hypothesized, and for the DFE portions of 

this chain, tests for consistency and inconsistency with hypothesized event chains 

are devised. If the tests demonstrate inconsistency, then the hypothesis cannot be 

correct, but because of the complexity issues previously identified, an attainable 

number of confirmations are, essentially never, definitive, while a single 

refutation is. While this is closely related to the philosophy of science results of 

Popper, [6] it is not identical, and care should be taken in such characterization. 

Perhaps the most famous quote relating to this is the logical fallacy "cum hoc ergo 

propter hoc" (roughly "with this therefore because of this"), which has been 

largely replaced by "correlation is not causality" with the advent of statistics. For 

more in-depth coverage of this issue, see chapter 7 of [2]. 
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The E⇒C assumption is clearly wrong in certain circumstances. In particular, in 

the presence of intentional forgery, where traces are in the possession and/or 

control of any particular party, that party has the potential to produce fabrications 

that meet consistency requirements for going undetected. Additional care in 

dealing with chain-of-custody, data providence, and scientific methodology issues 

are thus needed, which is the reason that such issues are fundamental to the 

admissibility of evidence and testimony.[7][8][9] 

1.2 Similarity and attribution 

A great deal of research has been done in searching large collections of content 

for strings or other similar expressions, including searches for n-tuples and 

proximity. For example, searching large portions of the Internet for small 

sequences of words is now commonly done by millions of people on a daily basis 

using services like Google and other similar sorts of search engines. These issues 

have been studied throughout the history of computing, and have been the subject 

of well known works. [10][11] These techniques include providing metrics for 

similarity and sorting of search results based on those metrics for the purposes of 

presentation. 

Many digital forensics tools provide search capabilities for looking for regular 

expressions within content, and some of these tools include the capability to index 

content in many forms, formats, and representations. The same is true of search 

engines designed as built-in or add-on operating system mechanisms, such as the 

Apple Spotlight mechanism. 

There are also techniques such as stylometrics,[12] like writing or coding styles, 

and the use of pre-existing code collections from known locations such as Web 

sites, news groups, books, and less widely available sources, graphic design style, 

vocabulary, sentence structure, word usage, etc. Pedersen has been a leader in this 

sort of research, [13] and there are many examples of methods he has applied to 

analyze linguistic patterns for applications ranging from disambiguation of word 

sense in human sentences to detecting plagiarism.  

While these approaches appear to be good ideas, and some of them have been 

significantly explored over the years,[14] from a DFE attribution standpoint, there 

is little definitive information that can be used to associate reliability information 

with them. Some such methods have been admitted in US courts for limited 

purposes,[12] but they have not, as a class, been well tested, or survived 

significant test cases. These methods generally surround the attempt to attribute 

metrics to known samples of individual behaviors and then detect the presence of 

similar values for those metrics within collections of traces associated with 

relatively small (on the order of a few hundred) known individuals to identify 

traces that are potentially attributable to the identified individual. They usually 

rely on N-grams of some sort, where they selection of the symbol set and 

sequencing criteria are defined by a syntax and N-grams within a linguistic syntax 

analysis. This is sometimes couched in a limited form in terms of "near", "next-
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to", "before", "with", and other similar search modifiers. This approach returns to 

the problems of identifying potential causal mechanisms, the E⇒C assumption, 

and the problems of symbol set selection that lead to factorial time and space. [3] 

1.3 The problem of group identification 

Similarity of groups of traces performed so as to identify what groupings of traces 

are present and measure the extent to which they are similar, has not apparently 

been explored in any significant way. While there are some mathematical 

problems related to cliques[15] and a wide range of other similar sorts of things, 

to date, these have failed to address the challenges of digital forensics in terms of 

the need to identify groups of traces with content containing similar 

characteristics and features. In forensics cases, while searches for known or 

suspected content are often used, it is also quite common to have a corpus of 

traces (e.g., files, messages, database entries, or other structured or unstructured 

content) for which identifying similar or related groups of traces becomes a key 

issue in addressing legal issues, particularly the issues related to attribution. 

A typical example is a case in which attribution of "forged" USENET postings to 

real authors, systems, or mechanisms is of import [16] (this matter will be used 

below as a case study). Other examples include, without limit, cases where 

similarity of authorship, sourcing, or delivery mechanisms is probative; cases 

where evolved versions of similar coded content, such evolutionary viruses or 

copyright infringement matters; cases involving alterations, such as image files 

created or edited with the same version of the same software package; cases 

involving metadata where files with similar metadata may be related; cases 

involving log entries where similar sequences of events may be found; and cases 

in which common authorship based on writing "style", word usage, typing errors, 

spelling errors, grammatical constructs, etc. are to be identified. 

Another general area of potential applicability is in intrusion, anomaly, or 

behavioral detection and analysis; where groupings based on identified 

characteristics may be used to associated large numbers of items of interest with 

each other. 

In such cases, algorithmic complexity of |T|2, where T is the set of traces being 

considered and |T| is the number of traces being compared to each other, seems 

almost inevitable, simply because, at least notionally, each trace t∈T must be 

compared to each other trace in some way. While this produces feasible solutions 

for cases with relatively small |T|, as |T| grows, |T|2 grows far faster. In cases 

involving 106 traces,  |T|2=1012, which is near or over the edge of available time 

and space in typical legal matters. Cases in the legal system have already involved 

examination of almost 106 traces, in the form of electronic mail messages, far 

greater volumes are common in network analysis, and a typical file system today 

has millions of files. 
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1.4 Considering similarity in terms of differences 

One approach to understanding the limits of similarity is to understand the limits 

of technology related to differences. While comparing two files is feasible with a 

program like the Unix "diff" and "cmp" utility programs[17], finding optimal (i.e., 

minimal change) differences (arguably the opposite of similarities) between two 

files, also known as the minimum edit distance problem, is at least NP-hard,[18] 

and is a superset of the longest common sequence problem, which is at least 

complexity O(l2), where l is the length of the traces.[19] Thus, even finding 

optimal differences between pairs of traces is far too complex for everyday use. 

Finding "nearly identical" traces can be done far more quickly, depending on the 

definition of "nearly identical". For example, for traces of similar length (i.e., the 

same number of lines), a sort of the traces    O(|T|log(|T|)) and "diff" comparison 

in sequence may be used to identify nearly identical sequences, but for instances 

where the beginnings of the traces are where the differences lie, this will not yield 

useful results. 

Pairwise difference comparison yields a minimum of |T|2 time, and even if a pair 

of traces are found to be related to each other with a measurable degree of 

similarity (e.g., the inverse of the metric used to measure differences) through 

such a method, the factors that cause each to be similar to (different than) others 

may be different from the factors that cause all others to be similar to (different 

than) others. Thus groupings of more than pairs are not produced by this 

approach. 

1.5 Verifiability and presentability of results 

In order to be useful in a legal situation, results of analysis should also be 

meaningfully presented in terms of the specific basis for claims and presentable so 

as to demonstrate those bases. 

Some of the techniques used for similarity analysis, like the support vector 

machine (SVM) approaches, use a learning algorithm to form parameters that 

don't directly relate to typical human meaningful sequences.[14] The resulting 

similarity metrics seem to be meaningful, but to date, they have not been 

demonstrated so from a standpoint of identifying mechanisms for cause and 

effect. In addition, these approaches have only been applied with statistically 

meaningful results in cases where known good sample traces (i.e., no attempts to 

subvert the mechanism or forge anything) of all parties from a small corpus of 

parties (on the order of a few score) are available to test against a suspect trace 

that is also assumes to not be intentionally altered. 

Such mechanisms also do not produce independently verifiable results, in the 

sense that, without access to the mechanism used to derive the results, they cannot 

be tested. Thus we must trust the mechanism to properly perform its function, 

which leads back to the problems of proof of program correctness, specification 

issues, and all of the other challenges of trusted computing. It would be preferable 
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to have mechanisms that allow and independent third party to examine the source 

content and the claimed results with minimal tools (e.g., a viewer of some sort) to 

confirm, on a case-by-case basis, that specific results are as claimed. 

For example, the result of the "diff" program that shows the differences between 

two sequences can be demonstrated by making the changes to one sequence and 

verifying that it produces the other sequence. This can be done manually for small 

numbers of differences (highly similar sequences) or with a minimum of 

automation using a text editor and macro processor for sequence pairs with a 

larger number of differences. In either case, the reproduction and verification of 

results can be done with independent software on a different system and with 

limited effort. 

These two criteria, independent verifiability of results with limited effort, and 

presentation of results in a manner that allows them to be verified and shown to 

independent reviewers with limited technical understanding (i.e., the triers of fact 

in a legal matter) are vital to success in the legal system. 

2. THE GREATEST COMMON FACTOR APPROACH TO GROUP 

IDENTIFICATION AND CHARACTERIZATION 

Prime numbers (primes) are a number theory concept defined as positive integers 

such that no other positive integer divides them to produce an integer. All positive 

integers can then be uniquely represented as the product of primes, and we talk 

about the prime factors of an identified integer as the set of primes that, when 

multiplied, produce that identified integer. The greatest common factor of two 

identified integers is the largest integer such that it divides both identified integers 

to produce integers. The greatest common factor (GCF) of two integers can be 

produced by forming the set of factors common to both integers. Thus, the prime 

factors of 72 are{2, 2, 2, 3, 3}, the prime factors of 48 are {2, 2, 2, 2, 3}, and the 

GCF of 72 and 48 is the product of {2, 2, 2, 3}, or 24. Conceptually, the greatest 

common factor of an identified set of numbers can then be determined by 

factoring all elements of the set and combining their respective sets of factors to 

form the greatest set of factors common to all of the identified set. Thus if we add 

18, whose factors are {2, 3, 3} to the set {72, 48}, the GCF of the resulting set 

{72, 48, 18} is the product of {2, 3}, or 6. 

2.1. Identifying GCF groups of similar integers 

Consider, then the question of identifying "similar" positive integers from a set of 

identified integers. Given that all integers are the products of primes, we could 

identify the prime factors as a basis for similarity, and form groups of integers 

with sets of prime factors as similar to each other. Identical integers have identical 

prime factor sets, while integers that are not similar, even though they may be 

very close in numerical value, have very different factor sets. For example, {72, 

48, 18, 7} has the following similar groups and their respective greatest common 

factors. 
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{72, 48} has GCF {2, 2, 2, 3} 

{48, 18} has GCF {2, 3} 

{72, 18} has GCF {2, 3, 3} 

{72, 48, 18} has GCF {2, 3} 

{7, anything other than 7} has GCF {1} 

We can then group these by GCF sets and identify that there are 4 different 

groups of similar integers in this set. In particular, they are {72, 48}, {72, 18}, 

{72, 48, 18}, and {7}. This similarity result eliminates all of the other subsets 

because they either produced the singleton GCF {1} indicative of no similarity, or 

there was a larger set with the same GCF (in the case of {48, 18}, which was 

subsumed by the larger set {72, 48, 18}). We will call these largest sets GCF-

similar groups of positive integers. 

We note that the selection of number theoretical factors as the basis for defining 

similarity was arbitrary in this example. We could just as well have selected the 

number of even vs. odd digits, the length of the integers, the number of straight 

line segments vs. curved line segments in the depiction of the digits, the number 

of angles contained within the depiction of the integer, the number of symbols 

required to represent the integer in Roman numerals, or any other property we 

wished to define as factors. The GCF approach of this paper to finding similar 

groups of traces is analogous to this number theory approach to finding similar 

positive integers, with the relaxation of the arbitrary decision to use prime factors 

of integers to the more general case. 

In addition, it is noteworthy that the GCF approach shown here (1) provides the 

specific basis for the assertion that a group is and should be identified as a group, 

and the membership of that group; and (2) can be independently confirmed as to 

the results regardless of the means by which the GCF analysis is carried out. 

Thus, regardless of any properties of the algorithm used to generate the results, 

including any limitations it may have or fault modes present in the 

implementation or algorithm, results can be tested for truthfulness. For legal 

purposes, this means that, if properly presented, (e.g., "I used the GCD approach 

and identified the following similarity groups and their common factors") as long 

as the results presented are verified as to the presence of the factors in all of the 

identified members of all of the groups, the statement is strictly true. 

2.2 Identifying GCF groups of similar arbitrary factors 

Revisiting the potentially faulty assumption that E⇒C, and the arbitrary nature of 

the use of prime factors identified in the approach to identifying GCF-similar 

groups of positive integers, we extended this approach to identifying GCF-similar 

groups of arbitrary factors. This is comprised of a generalization and a 

specification; (1) the generalization of prime factors and positive integers to 

arbitrary sequences and traces, and (2) the specification of the E⇒C assumptions 
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used for analysis. 

The generalization from prime numbers to arbitrary sequences; and positive 

integers to arbitrary traces; is quite straight forward. Other than the method of 

factoring used in identifying prime factors for GCF-similar groups of positive 

integers, the approach shown above, in no way relies on properties of numbers. 

We can simply replace the prime factors and integers, respectively, with defined 

sequences and traces of our choice, and assuming we provide a method for 

identifying the sets of sequences present in any given trace as a set, the approach 

for generation of GCF-similar groups is the same. 

Specifying initial E⇒C assumptions is typically done by the use of human 

knowledge of the behaviors of known or assumed computational mechanisms. 

For example, and without limit, we might assume that the mechanism that 

receives electronic mail (email) messages at a mail transfer agent (MTA) 

faithfully records the Internet Protocol (IP) address contained within the 

datagrams used to send that message via the simple mail transfer protocol 

(SMTP) in a "Received:" header that it places at the beginning of the resulting 

traces it produces. Based on this assumption, we may then develop a parser that 

identifies sequences consistent with such headers in traces asserted to be the result 

of email messages sent through MTAs, and call the resulting IP addresses 

"factors" for the purposes of analysis. Each trace can then be identified with a set 

of factors through parsing in whatever form, the sets of factors may be grouped so 

as to form greatest common factor sets, and the groups of traces with those 

common factors identified as  GCF-similar. 

2.3 An Algorithm for Finding All GCF-Similar Groups of Arbitrary 

Factors and its Complexity 

As a starting point, just as we must factor all positive integers involved in order to 

find GCF-similar groups for positive integers, we must somehow parse traces to 

generate factors used in finding GCF-similar groups of arbitrary factors. As a start 

to understanding the complexity of parsing, searching for regular expressions is 

known to be O(n) time, [20] and look ahead left right (LALR) parsing is 

equivalent complexity (although the construction of an LALR(k) parser is 

potentially far more complex, once the parser is completed, execution is in linear 

time). Far more complex challenges meet those working in DFE, including 

without limit, decryption, steganography extraction, parsing of images and other 

complex forms not codified as regular expressions or similar syntactic elements, 

and so forth. 

We assume that a parser that has identified and associated all factors with traces 

(an operation that may take different times depending on the specific parsing 

requirements associated with the defined factors and traces), and assuming that 

each trace and associated factor set and factor and associated trace set is 

accessible in time O(1) and space O(n) where n is the length of the set of parsed 

tokens plus the length of the list of trace identifiers and traces, by using hash 
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functions. This is equivalent to assuming that all prime factors have been 

determined for all positive integers involved in the corresponding number theory 

problem. The algorithm then follows: 

1. For each combination C of more than one trace, find all factors present in 

all traces in C by taking the intersection of the sets of factors present to 

produce a map of the GCF of each set of factors to the n-tuples of traces 

for which it is the GCF. 

2. For each set of traces mapped from each set of GCFs identified in step 1, 

remove sets of traces that are subsets of other sets of traces. 

Unfortunately, the size of C that have to be explored to complete step 1 for a 

set of traces T is: 

∑(|T|!k) for k from |T|-1 to 0 

which means that completing step 1 using this method for a substantial number of 

traces is impractical. 

The problem of finding GCF-similar groups may also be couched in terms of the 

covering problem similar to those commonly found in the design of digital 

circuits. In this formulation, each factor is identified as present or absent (i.e., a 

different binary digit is used for each of the factors identified through parsing), 

and the result is a set of bit arrays, one per trace. The GCF-similar group problem 

is then described as the set of maximum subsets of the bit array (columns) that 

cover more than one set of traces (rows). This can be thought of as an optimal 

covering problem in which a set of equations is being sought to cover all of the 

bits with the minimum set of circuits, but with the added constraint that only 

maximum prime factors are sought. There are many algorithms that apply to those 

sorts of problems, but none were identified for finding all GCF-similar groups. 

While some other algorithm for accomplishing this may be found, it will not be 

found in this paper. 

2.4 An Approximate Algorithm for More Efficiently Finding GCF-similar 

Groups of Arbitrary Factors 

The approach of this paper is to identify an algorithm that will find a subset of the 

GCF-similar groups of arbitrary factors in far less time and space than the exact 

algorithm. For the purpose of parsing and analysis, we will assume that there are a 

set of characteristics associated with traces and a set of features of each of those 

characteristics, such that the number of different characteristics is fixed by the 

parsing approach, but the number of features of those characteristics is limited 

only by the size and quantity of the traces. For example, a characteristic may be a 

field within a database, while the features may include, without limit, all of the 

possible field values, the field type, the ordering of that field within the set of 

fields, and so forth. Both the presence/absence of the characteristic and the 

particular features associated with that characteristic are considered "factors" in 
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our analysis, but the characteristics and the manner in which their values are 

stored dictate the complexity of the parsing process, while the features dictate the 

storage required and cause the potential for a large number of different factors. 

These will be represented as {key, value} pairs, with characteristics treated as 

pairs with values from {true, false} and features treated as pairs with the 

characteristic as the key, and the result of parsing as the value. 

The approximate algorithm is defined as follows: 

1. For each trace (t∈T), parse t to create a mapping of factors and traces 

with each other. (∀t∈T ∀f∈F, txf→M) The mapping is stored in the form 

of hash tables consisting of: (A) pairs of trace identifiers (TIDs) as keys 

and pointers to lists of parsed features or elements of {true, false} as 

values; and (B) pairs of parsed features as keys and pointers to lists of 

TIDs as values. Thus, as each trace is processed, (1) the lists associated 

with previously identified factors is augmented to include the new trace 

and new factors are created as needed; and (2) pointers to the factors 

associated with the new trace are formed into a list that is associated with 

the new trace. In the process, the sizes of the value lists for each trace and 

factor are retained and incremented as appropriate to reflect the total size 

of the list associated with each hash entry as of this step in the process. 

There is also a time space tradeoff for storing all pairs of {trace, factor} 

for later checking. 

2. Produce a list of "matched groups" for each of the factors in the content-

value list with more than one trace identified, by identifying all of the 

factors that are common to all of the traces identified with each of those 

content-value list entries. This is done as follows. For each entry in the 

factor content-value list with a count of traces in excess of 1, (a) identify 

the list of traces associated with that entry; (b) retrieve the list of all 

factors of the first trace identified for that entry from the trace-keyed 

hashtable, forming a set of those values, and; (c) for each other trace in 

that entry, remove all values in that set not present in that trace, leaving 

the set of all common factors of that set of traces, and place the result in a 

hash table associated with that set of traces (i.e., the "matched groups" 

hash table). This is done for each entry in the content-value list for which 

it has not already been done (i.e., for which there is no prior entry in the 

matched groups hash table). Also store the count of factors and traces 

contained in each result. Time is also saved if sets of factors for which all 

of the traces and no others appear are removed from future analysis. 

The result is a set "matched groups" composed of pairs of ({factors},{traces}) 

where, for each pair, each of the set of factors are present in each of the set of 

traces, and no other trace or factor can be added while retaining this property. 
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2.5 The Complexity of the Approximate Algorithm 

Step 1 is O(|T||F|) for an LALR parser. The creation of the hash tables for step 1 

has space and time of O(|T||F|) as well, since constant time is required for 

placement of {key, value} pairs into a hash table, and the maximum size of each 

entry is also |F| for the entries with t∈T as keys and |T| for entries with f∈F as 

keys. For a retrieval time of 1.4 lookups, the size of the hash table is twice the 

number of entries used, or O(|T||F|).[10] Counting things is O(n) time in the 

number of things counted and log(n) space in the storage of those counts. Thus 

step 1 overall is O(|T||F|) in space and time. 

Step 2 is requires stepping through the factors, which is O(|F|), and for each 

associated trace, doing an intersection of the factors associated with that trace. 

Assuming that all traces are present for each factor, this takes O(|T|) for each 

factor, with the intersection operation being O(|F|) in space and time. Thus the 

total maximum time is O(|F|2|T|). 

3. RESULTING GROUPS AND LIMITATIONS 

The "matched groups" set (M) is a subset of the set of all GCF-similar groups of 

arbitrary factors. In particular, since each ({factors},{traces}) pair constitutes a set 

of common factors for a set of traces, and no factor or trace can be added while 

keeping that property, the matched groups set elements identify sets of traces 

(groups) for which no factors can be added without causing some trace to have to 

be removed (greatest common factor). However, it is not necessarily the set of all 

GCF-similar groups of arbitrary factors. 

In particular, because the algorithm identifies all traces (Tx) for a given factor and 

then identifies the common factors of all of those traces, it is possible that a subset 

(Ty⊂Tx) of those traces have more common factors than GCF(Tx) that are not 

included in the overall result ((Ty,GCF(Ty))∉M). However, for (Ty,GCF(Ty)) to 

not be present in M, it must also be true that for each of the other factors in 

GCF(Ty), they also appear in another ((Tz,GCF(Tz))∈M) that has this same 

property. Otherwise, when examining that factor, the group (Ty,GCF(Ty)) would 

have appeared in M. To date we have not identified an algorithm that would allow 

the detection of such cases that is more efficient than the original problem of 

finding all GCF-similar groups, that being ∑(|T|!k) for k from |T|-1 to 0 

3.1 Summary of the resulting groups 

The result of this algorithm is a set of groups of characteristics and features (i.e., 

factors) associated with sets of traces, in which each group has the largest 

collection of traces for which all of those factors present, and the set of all traces 

for which at least one such factor is present. Or, as the title of the paper indicates, 

the "greatest common factors" for each group consisting of more than one trace. 

The resulting set also produces the largest sets of traces for each of the factors 

present in more than one trace, so that for the identified set of factors, no larger set 

of traces contains all of those factors. 



Journal of Digital Forensics, Security and Law, Vol. 7(2) 

100 

3.2 The challenge of identifying factors 

It is noteworthy that there are limitations of this approach, in particular, because 

of the nature of the way in which factors are defined. For example, this approach 

would be extremely inefficient for searching for all values of an integer value in a 

range where that range is not specified in advance of the analysis, or for other 

sorts of operations where the number of factors grows large. This is because the 

space and time grow as the number of traces times the number of factors. The 

total number of factors potentially identifiable with a trace is O(b!) where b is the 

number of bits in the trace [3] and as the number of traces groups, this also grows 

factorially. Notionally, the way to identify factors for analysis is to identify 

characteristic behaviors of known causes. For example, the mechanisms that 

produce traces associated with specific email clients can be identified and 

differentiated and used as the basis for defining factors that will differentiate 

between a set of know mechanisms. This the notion of similarity will be relative 

to the different sorts of known mechanisms and dissimilarity will imply that 

different known causes may have produced the dissimilarity and refute any claims 

that dissimilar known mechanisms caused them. Thus by choosing factors to 

differentiate known causes, the mechanisms M: C⇒mE is partitioned, leading to 

more certainty surrounding the E⇒C assumption. 

3.3 Limits on use as an exploratory tool 

This method performs a single sequence of calculations with a potentially 

significant runtime and produces a set of GCF-similar groups of arbitrary factors. 

While the result can be readily searched for interactive analysis, in a case where 

the runtimes are significant and an exploration of potential factors is desired, the 

approach will take significantly longer than an incremental approach in which a 

new factor is considered and all consistent traces are searched and identified. An 

incremental process may be used to update Step 1, and there may be an 

incremental approach to updating step 2, but none is currently known. 

A simple exploratory approach based only on the use of a database does not 

automatically identify combinations of factors and sets of traces with these 

common factors, and is thus significantly limited. A combined approach, in which 

a database is used for exploration and GCF analysis is used for creating groups to 

be considered can be a useful combination for exploratory analysis efforts. 

3.4 Applicability for unstructured data 

The greatest common factor analysis method is typically applicable for structured 

or semi-structured data, or on the results of an algorithm applied to unstructured 

data to generate relevant factors. For unstructured data, a significant amount of 

time may be required to parse features, such as the presence or absence of a 

"table", "skin tones", areas of certain sizes, etc. Human examination is often far 

more efficient for small collections, and automation for such unstructured data is 

quite limited today. However; anything that can be characterized as features and 
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parsed can be factored and GCF-similar grouped through this approach. 

3.5 Applicability relative to n-tuple analysis and proximity 

Among the more widely applied methods for similarity analysis are the n-tuple 

and proximity approaches identified above for searching. The GCF-similar 

grouping approach is not directly reconcilable with the n-tuple approach because 

of the large number of factors associated with possible groupings and sets of n-

tuples. To get a sense of this, if there is an ordered 5-tuple within a trace, that also 

means that there are either 2 or 5 ordered 4-tuples ({(1,2,3,4), (2,3,4,5)} or 

{(2,3,4,5), ((1,3,4,5), (1,2,4,5), (1,2,3,5), (1,2,3,4)} depending on proximity 

limits), up to 10 2-tuples {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), 

(4,5)}, and 10 3-tuples {(1,2,3), (1,2,4), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,4), 

(2,3,5), (2,4,5), (3,4,5)}. All of these may apply to different sets of traces, and 

thus all must be included in F in order to get an accurate GCF result for each of 

the different n-tuple lengths. If n-tuples and proximity features are calculated as 

part of the parsing process and fed into the GCF-similar grouping approach for 

inclusion in the grouping results, performance problems will likely result, since 

time and space go as |F|2. 

A more effective approach has been identified as the completion of the GCF-

similar grouping, followed by the inclusion of n-tuple and proximity analysis 

results within each of the applicable GCF-similar groups. In this approach, the n-

tuple or proximity analysis is done on each of the groups, and this means that 

these analyses are limited to those groups rather than the entire set of traces. 

While this does not produce the full set of similarities with respect to those 

approaches across the entire set of traces, it does produce these results for each of 

the identified groups. Thus additional similarities can be identified with the GCF-

similar groups, and this both increases the number of similarity factors, and does 

so without altering the GCF nature of those groups. The reason the groups are still 

GCF-similar groups is that the addition of more common factors to such a group 

cannot increase the groups size, which was already maximal, and cannot reduce 

its size, because all of the added factors are true for all traces within the group. 

3.6 A sample result 

Results of analysis, as provided by an implementation in LISP, are demonstrated 

by the following snippet from [16]: 

63 4 "User-Agent" "User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X 

Mach-O; en-US; rv:1.6b) [REDACTED]") ("LOCContent-Type" . "14") 

("From:  [REDACTED]@[REDACTED]") ("LOCFrom" . "6") ("LOCIn-

Reply-To" . "13") ("LOCLines" . "17") ("MIME-Version" . "MIME-Version: 

1.0") ("LOCMIME-Version" . "9")  ("LOCMessage-ID" . "16") 

("LOCNNTP-Posting-Date" . "4") ("NNTP-Posting-Host" . "NNTP-Posting-

Host: [REDACTED]") ("LOCNNTP-Posting-Host" . "18") ("Newsgroups" . 

"Newsgroups: [...]") ("LOCNewsgroups" . "10") ("LOCPath" . "3") 
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("LOCReferences" . "12") ("Subject" . "Subject: Re: [REDACTED]") 

("LOCSubject" . "11") ("LOCUser-Agent" . "7") [...] ("Received-IP" . 

[REDACTED]) ("Traces:" 250607 250565 250506 250489) 

Much of this result is redacted for space and privacy purposes, but these 4 

postings were similar in 63 factors. 

4. SIMILARITY METRICS 

In attempting to provide metrics for similarity, various authors have created 

measures of different sorts, typically for pairs of items being matched one against 

the other, or for matching of a regular expression or similar description against a 

set of items, such as for search engines.  For example, two items that are identical 

in every way could reasonably be called 100% similar, and if a string 

"12374382302398" is found within one of the items being searched, the item 

could be reasonably reported as 100% similar to the criterion that it contains that 

sequence. However, for less trivial situations, similarity metrics may be 

problematic, and similarity metrics for groups have not, as far as we have been 

able to identify, been developed. 

Using the GCF method described herein, some obvious metrics appear. 

Statements such as "Similar in n factors", or "Have x common factors", may be 

applied to the groups created. For example, to e-mails may be identified as having 

18 common factors in their headers. But while this method may turn normal 

metrics (the factors) into interval metrics, our ability to count does not 

meaningfully address the question of counting against what. 

While there may be a temptation to make statements such as this group is similar 

in 18/360 factors, the notion that they are 5% similar is essentially meaningless in 

context. In fact, it is relatively easy to create factors such that we can drive those 

percentages up or down for any given group. For example, we can remove factors 

that are not part of the results we have determined and produce "100%" similarity 

results, once we know what to choose as factors. 

Furthermore, the question of how to weight factors and/or groups of factors 

depends on the particulars of the application. For example, if we are trying to 

attribute telephone calls to callers, and we have groups that had identical calling 

phone numbers, this would seem in most cases, to be more important than the fact 

that we may have large groups of calls of particular durations. Thus, for the 

attribution of calls to callers, phone numbers may be weighted more highly than 

call duration. However, if we are seeking text messaging, then call duration of 

relatively short time scales will almost certainly be a far better indicator than the 

phone number from which the call was made. 

As a result, it is likely the best approach at this time to define metrics such that the 

features of interest to the application are weighted prior to analysis, ratio metrics 

are eschewed in favor of intervals, and to the extent that ordinal metrics may be 

applied to factors, a POset that may be developed to rank results with identical 
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interval values. Without further information about specifics of the situation, the 

use of approaches like weighted sums may be more misleading than helpful. 

5. A PRACTICAL EXAMPLE 

The initial implementation of this approach was applied to identifying groups of 

messages in message archives. The implementation was tested over time with 

different message archives, and eventually applied in a legal matter. [16] 

5.1. The matter at hand 

In the matter at hand, Plaintiff asserted, in essence, that Defendants slandered 

Plaintiff by, without limit, making statements about postings to newsgroups and 

unauthorized accesses to attorney-client privileged electronic mails (emails). 

Because the truth is an absolute defense against claims of slander, Defendant's 

expert sought to apply similarity analysis along with other methods to 

demonstrate that particular postings were attributable to third parties at issue. 

Because the newsgroups at issue contained more than 200,000 postings manual 

analysis was identified as infeasible, and automated methods were applied. 

5.2 The GCF-similarity group approaches and results 

In particular, and without limit, these methods included the analysis of the 

newsgroup postings to identify GCF-similar groups, and the subsequent manual 

review of the results to identify how the groupings produced related to the issues 

in the matter. 

Parties asserted that a particular set of postings to two newsgroups were of import. 

These postings were analyzed to identify GCF-similar groups and found to 

demonstrate particular groupings associated with "posting account", IP addresses, 

software configuration of posting computers as potentially depicted by "user-

agent" or similar fields, and the sequencing of headers within the header area. 

The entirety of the available postings on the applicable newsgroups were 

downloaded from an Internet Service Provider (ISP) who was independent of the 

parties in the case and who regularly gathered and provided these records as part 

of their services for their clients, and depended upon them for normal business 

operations. Thus these records are, presumably, admissible as evidence under the 

normal business records exception to the hearsay prohibition on evidence. 

The newsgroup messages were parsed based on the same criteria as the asserted 

postings and analyzed in the same manner for GCF-similar groups. The resulting 

groups were compared to similar groups identified for the asserted postings and 

then examined by an expert to help attribute the asserted messages to sources. In 

this case, the placement and ordering of headers and n-tuple analysis that can be 

added to augment analysis were not applied because the increased computational 

complexity drove the space and time beyond available resources. Rather, these 

factors were added after the GCF-similar groups were identified and particular 

groups found to be probative to the matter at hand.  
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In the particular matter at hand, the headers with traces indicative of, without 

limit, "posting account", IP addresses, characteristics of the software 

configuration of the computer making the posting as depicted by "user-agent" or 

similar fields, and the sequencing of headers within the header area from the 

entirety of the large newsgroups were compared to those of the asserted messages, 

and groupings found within the newsgroups as a whole that showed similarity in 

the sense of common factors in these areas. 

The similarity analysis showed that there was one posting that was self-asserted to 

be from one of the parties to the case and that that party did not deny posting, and 

that was identical in the relevant areas to asserted postings. Out of about 200,000 

total postings, only 64 contained the particular sets of factors, all but one of those 

were identified as the asserted postings prior to the analysis, and the remaining 

posting was the one self-identifying as the party to the matter. On a different 

forum, an analysis was done that also identified factors of similar sorts, and in that 

forum, postings self-asserting as attributed to the same party also had many of the 

same sets of factors in the GCF-similar groups associated with the same party, 

providing an independent path for attribution. 

The IP addresses of the asserted postings also partitioned those postings into 

GCF-similar groups, and those groups were compared to GCF-similar groups in 

the newsgroups as a whole and GCF-similar groups from the other forum. Again, 

these groups were consistent with the IP addresses of the asserted party and were 

also consistent with the IP addresses used by the spouse of that party, providing 

yet another confirmation of attribution. 

5.3 Addressing the E⇒C assumption fallacy 

As discussed earlier, the E⇒C assumption is a fallacy in that there are clearly 

cases when different causes produce similar effects. As a result, a GCF-similar 

group does not necessarily imply the same causes produced the same effects 

reflected in the set of factors in the traces. In addition, the lack of all factors being 

identical could be considered a refutation if this was inconsistent with the 

hypothesis about common cause. 

In this particular case, some of the IP addresses identified were also determined, 

through warrants and credit card information, to have been assigned to and paid 

for over a period of years, by the spouse of the previously identified individual; 

the user account name, address, and other contact number of the account used to 

make the asserted postings were also those of the same party; and other 

information subsequently discovered confirmed these results. 

5.4 Presentation of the results 

Thus the CGF-similar groups of posting and subsequent investigation showed a 

far stronger attribution of postings to their source and demonstrated results 

consistent with the asserted causal chain. Ordinal metrics were applied in context 

(e.g., 64 out of 200,000), and statements were made using the applicable forms. 
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(e.g., "Traces containing the identified posting accounts were found to be similar 

in 37 factors, contained identical header sequences, and were found present in 

only 64 out of 200,000 messages, one of which appears to be from [party] and the 

rest forgeries identified with the issues in this case") 

While the overall matter had other more complex elements involved in the 

attribution process, the similarity results associated with the GCF approach and 

the metric of count of similar postings within the overall corpus under 

consideration provides a powerful argument in favor of a particular interpretation, 

and in this case, that interpretation is consistent with an attribution at issue in the 

case. 

6. ADDITIONAL MATERIAL AS TO THE PRACATICALITY OF USE 

IN THE CASES CITED 

Per editorial comments on the original submission of this paper, additional 

detailing of the cases identified above were requested. This particular case[10] 

involved downloading of usenet group postings from over the entire period since 

the start of the groups till the time at which the case was initiated. Since there is 

no standard method for doing forensically sound downloads, the postings were 

downloaded using the methods available from the Internet Service Providers 

(ISPs) who, at that time, permitted usenet group downloads from servers 

supported by each participating ISP. 

Ignoring the particulars of the download process, the protocols used provide the 

headers and bodies of the postings. In this case, the headers formed the structured 

content which could then be examined and analyzed for similarity using the 

present methods. In particular, usenet news posting headers included, without 

limit, the following headers in the formats associated with the applicable requests 

for comments (RFCs) to usenet news group postings: 

Path, From, Newsgroup, Subject, Date, Organization, Lines, Message-ID, Mime-

Version, Organization, User-Agent, X-Complaints-To:, and X-HTTP-UserAgent” 

The analytical process to generate greatest common factor sets was run on the 

approximately 200,000 downloaded messages to identify the set of all such 

greatest common factor (GCF) sets. This process took approximately 8 hours of 

real time to complete, including parsing out of headers and header components 

based on investigator-specified criteria (which in this case involved taking 

account of each header, its location, content, relevant IP addresses, and several 

other similar header characteristics).  

In this particular case, a set of identified messages were specified as relating to the 

potential perpetrator, and as a result those GCF sets containing elements of this 

set of previously identified messages were sought from the resulting output using 

the “grep” command, which owing to the fact that the identified messages had 

unique message identifiers and that the output of the particular GCF set 

application used a single line to describe each GCF set it found, allowed the pre-
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existing “grep” program to be applied for that purpose. Furthermore, since this 

takes only linear time with the number of GCF sets, it is time efficient  and does 

not cause an overall increase in the computational complexity of the method in 

use. 

The output of the existing program provides the set of all messages (by providing 

a list of filenames associated with each of those messages) for which the 

identified GCF set (identified by a list of the set of common factors they all have) 

are present, and indicates additional information such as set sizes. In this 

particular case, out of the several hundred thousand postings, the set of identified 

postings were revealed as the largest GCF set involving any of the identified 

postings, and was thus directly usable in further examination. In order to proceed 

with subsequent examination, the identified 64 postings were examined using the 

“diff” command, each identified factor was sought and found in each of the set 

elements and sought and not found as a group in other postings. This independent 

verification of results was done. 

In this particular case, in addition to the many similarities that might reasonably 

be interpreted as coming from a wide range of systems, and the fact that many of 

those factors listed factors were present in other larger sets of postings (such as 

the locations of some of the more common headers), the factors that made this 

particular set more clearly distinguishable based on their lack of presence in other 

postings were fields typically related to specific configuration details of specific 

systems. For example, the fields indicating browser header information contained 

identical operating system, library, and other similar factors that were not present 

in any other postings and were present in all of the postings in the GCF set. 

Thus the opinion of the examiner in this case was that these particular factors 

were consistent with the same system being used in a similar time frame to post 

the many postings identified as at issue in the matter at hand and the one such 

posting that was self-identified as from one of the parties to the case, and which 

that party refused to disassociate himself with or deny he had posted. 

From a practical standpoint, identification of such a correlation between 64 out of 

200,000 or so files by manual means is likely infeasible, and fraught with the 

potential for errors. Attempts to “eyeball” it and identify things to look for would 

potentially be useful, but this would then require that, once such factors were 

found, additional manual efforts or programming would be required to determine 

the base rates, and those methods would only be as efficient as the programmer 

and method used to look for them. The present method automatically generates 

GCF sets that are unique and maximal, thus producing 0 base-rate conditions for 

the presence of all GCF factors together elsewhere in the corpus. 

As a practical matter, running such analysis on messages or similar structured, 

artificially structured, or partially structured content is relatively simple to do and 

can be applied as a standard process which similarity analysis is a feasible method 

for identifying things to examine in more detail or when attribution is at issue. To 
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the extent that it is revealing with regard to similarity or helpful in attribution, the 

examiner can readily apply the results based on their knowledge, experience, 

expertise, skills, and education to make judgments about the materiality of the 

results. 

In this particular case, the GCF analytical process helped to produce such results 

as: 

Postings containing the "X-HTTP-UserAgent: Mozilla/4.0 (compatible; 

MSIE 7.0; AOL 9.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; 

Media Center PC 5.0; .NET CLR 3.0.04506; InfoPath.2),gzip(gfe),gzip(gfe)" 

header are found 64 times in identified messages, this header is consistent 

with a computer using a Mozilla version 4.0 Web browser on a computer 

with a Windows NT 6.0 operating system, using  AOL 9.0, Microsoft Internet 

Explorer version 7.0, and with a variety of other quite specific versions of 

different related software packages present, it was present in only 64 of more 

than 200,000 such postings examined in this case, all also have 12 other 

commonalities in headers, 36 have IP addresses used in other postings by the 

identified party to the matter,  all 64 postings are identified as part of the 

behavior at issue in the case, each of the 4 different “From” addresses 

identified as possible intentional forgeries have "From:" addresses with IP 

addresses used at contemporaneous times by the identified party to the case in 

postings to other sited under his own identity, and the substring "Mozilla/4.0 

(compatible; MSIE 7.0; AOL 9.0; Windows NT 6.0; SLCC1; .NET CLR 

2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506" was also present in 

the records of postings to another site by the same party in the same time 

frame while no other authorship was associated with any postings containing 

the same strings. 

Both for identifying potential sources of similarity and for identifying other 

commonalities once a particular factor of interest was identified, the GCF-similar 

group approach produced a dramatic reduction in time and effort and a far greater 

capacity to rapidly check out working hypotheses and identify specific sets of 

relevant traces than manual or perviously applied automated means. 

7. SUMMARY, CONCLUSIONS, AND FURTHER WORK 

While it is clear that the GCF-similar group approach is still in its infancy and that 

there has been relatively little published work in the creation of such similarity 

groups as opposed to testing for similarity of a specification against a set of items 

or one item against other members of the set, it is also clear that a thorough 

examination of all similarity measures is infeasible. 

As a result, a computational compromise is required in order to find ways to 

identify similarities and provide metrics for those similarities for different 

purposes. The computational compromise of this paper consists of identifying an 

O(|T||F|2) algorithm that fails to identify a specific class of GCF-similar groups of 
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identified factors while producing the remaining groups. 

The basis for the use of factors in similarity analysis under the GCF method 

includes a fundamental assumption that the similarities produced in traces are or 

may be the result of the use of the same or nearly identical mechanisms used to 

produce those traces, the E⇒C assumption, which is known, in general, to be a 

fallacy. This assumption is easily violated in conditions where the traces at issue 

are not under the control and in the possession of an independent third party that 

keeps them with integrity, or in cases where intentional efforts are made by 

knowledgeable and skilled parties to forge traces. However, it is also noteworthy 

that it is not as easy as it may seem to create perfect forgeries, particularly in 

environments in which only a limited portion of the available traces can be 

influenced by the party. Further, the intentional selection of factors that 

differentiate causal mechanisms is useful in eliminating alternative explanations. 

This method also has the fundamental problem, as do all such methods, of 

requiring an initial parsing along with all of the assumptions that go with that 

parsing. Again, this traces back to the E⇒C assumption and the notion that 

mechanisms produce predictable results. For this reason, it appears to be most 

suitable today for analysis of structured headers and meta-data. 

The present algorithm is likely not the most efficient one that can be developed in 

this arena, but rather, it is the first algorithm that has been developed for this 

purpose. The concept of greatest common factor appears to be worthy of further 

pursuit, and in addition to seeking a better implementation, the concept itself, in 

terms of the manner in which factors are developed and applied, and in terms of 

the creation of better or more meaningful metrics, also appears to be worth further 

research. 

Research into the effectiveness of this approach for unstructured data would be 

meaningful, in that while we know that the method will work, we don't know how 

useful it may be in practice. The challenge of identifying factors and the 

implications for parsing complexity remains, as does the issue of improved 

integration with n-tuple, proximity of terms, and other similar approaches. 

Research into low-complexity enhancements to coverage of the full GCF-similar 

group set may prove fruitful, and the production of more efficient algorithms that 

reduce the |F|2 term, would allow the extension of this method to far larger factor 

sets than can be used today, but there may be lower bounds that limit the ultimate 

effectiveness of this approach. 
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