
Journal of Digital Forensics, Security and Law, Vol. 7(2)

89

Identifying and Attributing Similar Traces with

Greatest Common Factor Analysis

Fred Cohen

Fred Cohen & Associates

http://all.net/

ABSTRACT

This paper presents an algorithm for comparing large numbers of traces to each

other and identifying and presenting groups of traces with similar features. It is

applied to forensic analysis in which groups of similar traces are automatically

identified and presented so that attribution and other related claims may be

asserted, and independently confirmed or refuted. The approach of this paper is to

identify an approximate algorithm that will find a large subset of greatest common

factor similar groups of arbitrary factors in far less time and space than an exact

algorithm using examiner-provided selection criteria for factor definition.

Keywords: similarity analysis; digital forensics; greatest common factor;

attribution

I. INTRODUCTION AND BACKGROUND

Locard's Exchange Principle states that whenever two objects come into contact, a

transfer of material will occur [1], and it follows that the traces of material left on

each of those objects is evidence of that transfer and the presence of the two

objects at the same place at the same time. Unlike physical evidence, digital

forensic evidence (DFE) is not transfer evidence, in that it is not the result of

contact between physical objects, but it is trace evidence, in that it consists of

traces (i.e., sequences of bits) left by digital systems as a result of the processes

that they undertake in their operations. [2] Notionally, similar mechanisms leave

similar traces under similar inputs, subject to the inherent discontinuity of digital

space.

DFE is also latent evidence in that it can only be observed by people through the

use of tools, [2] and thus it follows that tools are required in order to analyze and

view that evidence. As the volume of DFE increases, it becomes infeasible to

examine it by purely human cognitive processes acting on simple representations,

and thoroughness in the sense of examining traces to definitively determine what

took place because the number of comparisons grows more than factorially with

the length of the trace and there are a large number of possible event sequences

that can lead to any given trace in the number of possible FSM states or

instructions and data, and time available for trace production.[3] For this reason,

in almost all cases, examination is limited to identifying consistency and

inconsistency of traces, in the sense first identified in [4], in particular, identifying

Journal of Digital Forensics, Security and Law, Vol. 7(2)

90

internal and external consistency of traces, respectively, to each other, and

"events". [2][3][5]

Unlike physical evidence, an exact duplicate of DFE can normally be made for

examination purposes without altering or destroying original evidence. This is not

to say that physical evidence such as the original media upon which DFE was first

found has these properties, but rather, DFE is distinguished from the media upon

which it exists and was produced within in that it has these and other specific

properties. [2] These properties limit the interpretations of DFE and aide in

identifying inconsistencies. Among these properties are that specific

computational mechanisms produce the same output for the same input and initial

state.

1.1 Attribution and similarity assumptions

The attribution problem has long been considered fundamental to information

protection in a wide variety of ways, if only because without being able to

attribute actions to actors, there is no way to induce consequences on the specific

actor. In the more general sense, this can be thought of as the problem of

establishing causality. [2] In the digital world, because we know that specific

finite state machines [FSMs] produce the same output for the same input and

state, we can drive hypothesized inputs and states to outputs and, with relative

ease, reproducibly show consistency or inconsistency of hypotheses to the

available traces (the forward direction), but the reverse direction yields the

potential for exponential expansion of possible inputs, states, and FSMs (i.e., the

digital space converges in the forward direction and diverges in the reverse

direction). [2] Thus there are fundamental limits on attribution inherent in the

limits of establishing causality.

As a result, an underlying assumption of similarity analysis for the purposes of

attribution in general, and the methods herein in particular, is that the mechanisms

used to produce "similar" traces stem from "similar" or identical mechanisms and

inputs. We will call this the "same effect, same cause" (E⇒C) assumption, and it

clearly refutable in the case of forgery. Thus, in the establishment of a causal

chain from a hypothesized cause to an effect in the form of the available traces, a

series of cause-effect relationships are hypothesized, and for the DFE portions of

this chain, tests for consistency and inconsistency with hypothesized event chains

are devised. If the tests demonstrate inconsistency, then the hypothesis cannot be

correct, but because of the complexity issues previously identified, an attainable

number of confirmations are, essentially never, definitive, while a single

refutation is. While this is closely related to the philosophy of science results of

Popper, [6] it is not identical, and care should be taken in such characterization.

Perhaps the most famous quote relating to this is the logical fallacy "cum hoc ergo

propter hoc" (roughly "with this therefore because of this"), which has been

largely replaced by "correlation is not causality" with the advent of statistics. For

more in-depth coverage of this issue, see chapter 7 of [2].

Journal of Digital Forensics, Security and Law, Vol. 7(2)

91

The E⇒C assumption is clearly wrong in certain circumstances. In particular, in

the presence of intentional forgery, where traces are in the possession and/or

control of any particular party, that party has the potential to produce fabrications

that meet consistency requirements for going undetected. Additional care in

dealing with chain-of-custody, data providence, and scientific methodology issues

are thus needed, which is the reason that such issues are fundamental to the

admissibility of evidence and testimony.[7][8][9]

1.2 Similarity and attribution

A great deal of research has been done in searching large collections of content

for strings or other similar expressions, including searches for n-tuples and

proximity. For example, searching large portions of the Internet for small

sequences of words is now commonly done by millions of people on a daily basis

using services like Google and other similar sorts of search engines. These issues

have been studied throughout the history of computing, and have been the subject

of well known works. [10][11] These techniques include providing metrics for

similarity and sorting of search results based on those metrics for the purposes of

presentation.

Many digital forensics tools provide search capabilities for looking for regular

expressions within content, and some of these tools include the capability to index

content in many forms, formats, and representations. The same is true of search

engines designed as built-in or add-on operating system mechanisms, such as the

Apple Spotlight mechanism.

There are also techniques such as stylometrics,[12] like writing or coding styles,

and the use of pre-existing code collections from known locations such as Web

sites, news groups, books, and less widely available sources, graphic design style,

vocabulary, sentence structure, word usage, etc. Pedersen has been a leader in this

sort of research, [13] and there are many examples of methods he has applied to

analyze linguistic patterns for applications ranging from disambiguation of word

sense in human sentences to detecting plagiarism.

While these approaches appear to be good ideas, and some of them have been

significantly explored over the years,[14] from a DFE attribution standpoint, there

is little definitive information that can be used to associate reliability information

with them. Some such methods have been admitted in US courts for limited

purposes,[12] but they have not, as a class, been well tested, or survived

significant test cases. These methods generally surround the attempt to attribute

metrics to known samples of individual behaviors and then detect the presence of

similar values for those metrics within collections of traces associated with

relatively small (on the order of a few hundred) known individuals to identify

traces that are potentially attributable to the identified individual. They usually

rely on N-grams of some sort, where they selection of the symbol set and

sequencing criteria are defined by a syntax and N-grams within a linguistic syntax

analysis. This is sometimes couched in a limited form in terms of "near", "next-

Journal of Digital Forensics, Security and Law, Vol. 7(2)

92

to", "before", "with", and other similar search modifiers. This approach returns to

the problems of identifying potential causal mechanisms, the E⇒C assumption,

and the problems of symbol set selection that lead to factorial time and space. [3]

1.3 The problem of group identification

Similarity of groups of traces performed so as to identify what groupings of traces

are present and measure the extent to which they are similar, has not apparently

been explored in any significant way. While there are some mathematical

problems related to cliques[15] and a wide range of other similar sorts of things,

to date, these have failed to address the challenges of digital forensics in terms of

the need to identify groups of traces with content containing similar

characteristics and features. In forensics cases, while searches for known or

suspected content are often used, it is also quite common to have a corpus of

traces (e.g., files, messages, database entries, or other structured or unstructured

content) for which identifying similar or related groups of traces becomes a key

issue in addressing legal issues, particularly the issues related to attribution.

A typical example is a case in which attribution of "forged" USENET postings to

real authors, systems, or mechanisms is of import [16] (this matter will be used

below as a case study). Other examples include, without limit, cases where

similarity of authorship, sourcing, or delivery mechanisms is probative; cases

where evolved versions of similar coded content, such evolutionary viruses or

copyright infringement matters; cases involving alterations, such as image files

created or edited with the same version of the same software package; cases

involving metadata where files with similar metadata may be related; cases

involving log entries where similar sequences of events may be found; and cases

in which common authorship based on writing "style", word usage, typing errors,

spelling errors, grammatical constructs, etc. are to be identified.

Another general area of potential applicability is in intrusion, anomaly, or

behavioral detection and analysis; where groupings based on identified

characteristics may be used to associated large numbers of items of interest with

each other.

In such cases, algorithmic complexity of |T|2, where T is the set of traces being

considered and |T| is the number of traces being compared to each other, seems

almost inevitable, simply because, at least notionally, each trace t∈T must be

compared to each other trace in some way. While this produces feasible solutions

for cases with relatively small |T|, as |T| grows, |T|2 grows far faster. In cases

involving 106 traces, |T|2=1012, which is near or over the edge of available time

and space in typical legal matters. Cases in the legal system have already involved

examination of almost 106 traces, in the form of electronic mail messages, far

greater volumes are common in network analysis, and a typical file system today

has millions of files.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

93

1.4 Considering similarity in terms of differences

One approach to understanding the limits of similarity is to understand the limits

of technology related to differences. While comparing two files is feasible with a

program like the Unix "diff" and "cmp" utility programs[17], finding optimal (i.e.,

minimal change) differences (arguably the opposite of similarities) between two

files, also known as the minimum edit distance problem, is at least NP-hard,[18]

and is a superset of the longest common sequence problem, which is at least

complexity O(l2), where l is the length of the traces.[19] Thus, even finding

optimal differences between pairs of traces is far too complex for everyday use.

Finding "nearly identical" traces can be done far more quickly, depending on the

definition of "nearly identical". For example, for traces of similar length (i.e., the

same number of lines), a sort of the traces O(|T|log(|T|)) and "diff" comparison

in sequence may be used to identify nearly identical sequences, but for instances

where the beginnings of the traces are where the differences lie, this will not yield

useful results.

Pairwise difference comparison yields a minimum of |T|2 time, and even if a pair

of traces are found to be related to each other with a measurable degree of

similarity (e.g., the inverse of the metric used to measure differences) through

such a method, the factors that cause each to be similar to (different than) others

may be different from the factors that cause all others to be similar to (different

than) others. Thus groupings of more than pairs are not produced by this

approach.

1.5 Verifiability and presentability of results

In order to be useful in a legal situation, results of analysis should also be

meaningfully presented in terms of the specific basis for claims and presentable so

as to demonstrate those bases.

Some of the techniques used for similarity analysis, like the support vector

machine (SVM) approaches, use a learning algorithm to form parameters that

don't directly relate to typical human meaningful sequences.[14] The resulting

similarity metrics seem to be meaningful, but to date, they have not been

demonstrated so from a standpoint of identifying mechanisms for cause and

effect. In addition, these approaches have only been applied with statistically

meaningful results in cases where known good sample traces (i.e., no attempts to

subvert the mechanism or forge anything) of all parties from a small corpus of

parties (on the order of a few score) are available to test against a suspect trace

that is also assumes to not be intentionally altered.

Such mechanisms also do not produce independently verifiable results, in the

sense that, without access to the mechanism used to derive the results, they cannot

be tested. Thus we must trust the mechanism to properly perform its function,

which leads back to the problems of proof of program correctness, specification

issues, and all of the other challenges of trusted computing. It would be preferable

Journal of Digital Forensics, Security and Law, Vol. 7(2)

94

to have mechanisms that allow and independent third party to examine the source

content and the claimed results with minimal tools (e.g., a viewer of some sort) to

confirm, on a case-by-case basis, that specific results are as claimed.

For example, the result of the "diff" program that shows the differences between

two sequences can be demonstrated by making the changes to one sequence and

verifying that it produces the other sequence. This can be done manually for small

numbers of differences (highly similar sequences) or with a minimum of

automation using a text editor and macro processor for sequence pairs with a

larger number of differences. In either case, the reproduction and verification of

results can be done with independent software on a different system and with

limited effort.

These two criteria, independent verifiability of results with limited effort, and

presentation of results in a manner that allows them to be verified and shown to

independent reviewers with limited technical understanding (i.e., the triers of fact

in a legal matter) are vital to success in the legal system.

2. THE GREATEST COMMON FACTOR APPROACH TO GROUP

IDENTIFICATION AND CHARACTERIZATION

Prime numbers (primes) are a number theory concept defined as positive integers

such that no other positive integer divides them to produce an integer. All positive

integers can then be uniquely represented as the product of primes, and we talk

about the prime factors of an identified integer as the set of primes that, when

multiplied, produce that identified integer. The greatest common factor of two

identified integers is the largest integer such that it divides both identified integers

to produce integers. The greatest common factor (GCF) of two integers can be

produced by forming the set of factors common to both integers. Thus, the prime

factors of 72 are{2, 2, 2, 3, 3}, the prime factors of 48 are {2, 2, 2, 2, 3}, and the

GCF of 72 and 48 is the product of {2, 2, 2, 3}, or 24. Conceptually, the greatest

common factor of an identified set of numbers can then be determined by

factoring all elements of the set and combining their respective sets of factors to

form the greatest set of factors common to all of the identified set. Thus if we add

18, whose factors are {2, 3, 3} to the set {72, 48}, the GCF of the resulting set

{72, 48, 18} is the product of {2, 3}, or 6.

2.1. Identifying GCF groups of similar integers

Consider, then the question of identifying "similar" positive integers from a set of

identified integers. Given that all integers are the products of primes, we could

identify the prime factors as a basis for similarity, and form groups of integers

with sets of prime factors as similar to each other. Identical integers have identical

prime factor sets, while integers that are not similar, even though they may be

very close in numerical value, have very different factor sets. For example, {72,

48, 18, 7} has the following similar groups and their respective greatest common

factors.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

95

{72, 48} has GCF {2, 2, 2, 3}

{48, 18} has GCF {2, 3}

{72, 18} has GCF {2, 3, 3}

{72, 48, 18} has GCF {2, 3}

{7, anything other than 7} has GCF {1}

We can then group these by GCF sets and identify that there are 4 different

groups of similar integers in this set. In particular, they are {72, 48}, {72, 18},

{72, 48, 18}, and {7}. This similarity result eliminates all of the other subsets

because they either produced the singleton GCF {1} indicative of no similarity, or

there was a larger set with the same GCF (in the case of {48, 18}, which was

subsumed by the larger set {72, 48, 18}). We will call these largest sets GCF-

similar groups of positive integers.

We note that the selection of number theoretical factors as the basis for defining

similarity was arbitrary in this example. We could just as well have selected the

number of even vs. odd digits, the length of the integers, the number of straight

line segments vs. curved line segments in the depiction of the digits, the number

of angles contained within the depiction of the integer, the number of symbols

required to represent the integer in Roman numerals, or any other property we

wished to define as factors. The GCF approach of this paper to finding similar

groups of traces is analogous to this number theory approach to finding similar

positive integers, with the relaxation of the arbitrary decision to use prime factors

of integers to the more general case.

In addition, it is noteworthy that the GCF approach shown here (1) provides the

specific basis for the assertion that a group is and should be identified as a group,

and the membership of that group; and (2) can be independently confirmed as to

the results regardless of the means by which the GCF analysis is carried out.

Thus, regardless of any properties of the algorithm used to generate the results,

including any limitations it may have or fault modes present in the

implementation or algorithm, results can be tested for truthfulness. For legal

purposes, this means that, if properly presented, (e.g., "I used the GCD approach

and identified the following similarity groups and their common factors") as long

as the results presented are verified as to the presence of the factors in all of the

identified members of all of the groups, the statement is strictly true.

2.2 Identifying GCF groups of similar arbitrary factors

Revisiting the potentially faulty assumption that E⇒C, and the arbitrary nature of

the use of prime factors identified in the approach to identifying GCF-similar

groups of positive integers, we extended this approach to identifying GCF-similar

groups of arbitrary factors. This is comprised of a generalization and a

specification; (1) the generalization of prime factors and positive integers to

arbitrary sequences and traces, and (2) the specification of the E⇒C assumptions

Journal of Digital Forensics, Security and Law, Vol. 7(2)

96

used for analysis.

The generalization from prime numbers to arbitrary sequences; and positive

integers to arbitrary traces; is quite straight forward. Other than the method of

factoring used in identifying prime factors for GCF-similar groups of positive

integers, the approach shown above, in no way relies on properties of numbers.

We can simply replace the prime factors and integers, respectively, with defined

sequences and traces of our choice, and assuming we provide a method for

identifying the sets of sequences present in any given trace as a set, the approach

for generation of GCF-similar groups is the same.

Specifying initial E⇒C assumptions is typically done by the use of human

knowledge of the behaviors of known or assumed computational mechanisms.

For example, and without limit, we might assume that the mechanism that

receives electronic mail (email) messages at a mail transfer agent (MTA)

faithfully records the Internet Protocol (IP) address contained within the

datagrams used to send that message via the simple mail transfer protocol

(SMTP) in a "Received:" header that it places at the beginning of the resulting

traces it produces. Based on this assumption, we may then develop a parser that

identifies sequences consistent with such headers in traces asserted to be the result

of email messages sent through MTAs, and call the resulting IP addresses

"factors" for the purposes of analysis. Each trace can then be identified with a set

of factors through parsing in whatever form, the sets of factors may be grouped so

as to form greatest common factor sets, and the groups of traces with those

common factors identified as GCF-similar.

2.3 An Algorithm for Finding All GCF-Similar Groups of Arbitrary

Factors and its Complexity

As a starting point, just as we must factor all positive integers involved in order to

find GCF-similar groups for positive integers, we must somehow parse traces to

generate factors used in finding GCF-similar groups of arbitrary factors. As a start

to understanding the complexity of parsing, searching for regular expressions is

known to be O(n) time, [20] and look ahead left right (LALR) parsing is

equivalent complexity (although the construction of an LALR(k) parser is

potentially far more complex, once the parser is completed, execution is in linear

time). Far more complex challenges meet those working in DFE, including

without limit, decryption, steganography extraction, parsing of images and other

complex forms not codified as regular expressions or similar syntactic elements,

and so forth.

We assume that a parser that has identified and associated all factors with traces

(an operation that may take different times depending on the specific parsing

requirements associated with the defined factors and traces), and assuming that

each trace and associated factor set and factor and associated trace set is

accessible in time O(1) and space O(n) where n is the length of the set of parsed

tokens plus the length of the list of trace identifiers and traces, by using hash

Journal of Digital Forensics, Security and Law, Vol. 7(2)

97

functions. This is equivalent to assuming that all prime factors have been

determined for all positive integers involved in the corresponding number theory

problem. The algorithm then follows:

1. For each combination C of more than one trace, find all factors present in

all traces in C by taking the intersection of the sets of factors present to

produce a map of the GCF of each set of factors to the n-tuples of traces

for which it is the GCF.

2. For each set of traces mapped from each set of GCFs identified in step 1,

remove sets of traces that are subsets of other sets of traces.

Unfortunately, the size of C that have to be explored to complete step 1 for a

set of traces T is:

∑(|T|!k) for k from |T|-1 to 0

which means that completing step 1 using this method for a substantial number of

traces is impractical.

The problem of finding GCF-similar groups may also be couched in terms of the

covering problem similar to those commonly found in the design of digital

circuits. In this formulation, each factor is identified as present or absent (i.e., a

different binary digit is used for each of the factors identified through parsing),

and the result is a set of bit arrays, one per trace. The GCF-similar group problem

is then described as the set of maximum subsets of the bit array (columns) that

cover more than one set of traces (rows). This can be thought of as an optimal

covering problem in which a set of equations is being sought to cover all of the

bits with the minimum set of circuits, but with the added constraint that only

maximum prime factors are sought. There are many algorithms that apply to those

sorts of problems, but none were identified for finding all GCF-similar groups.

While some other algorithm for accomplishing this may be found, it will not be

found in this paper.

2.4 An Approximate Algorithm for More Efficiently Finding GCF-similar

Groups of Arbitrary Factors

The approach of this paper is to identify an algorithm that will find a subset of the

GCF-similar groups of arbitrary factors in far less time and space than the exact

algorithm. For the purpose of parsing and analysis, we will assume that there are a

set of characteristics associated with traces and a set of features of each of those

characteristics, such that the number of different characteristics is fixed by the

parsing approach, but the number of features of those characteristics is limited

only by the size and quantity of the traces. For example, a characteristic may be a

field within a database, while the features may include, without limit, all of the

possible field values, the field type, the ordering of that field within the set of

fields, and so forth. Both the presence/absence of the characteristic and the

particular features associated with that characteristic are considered "factors" in

Journal of Digital Forensics, Security and Law, Vol. 7(2)

98

our analysis, but the characteristics and the manner in which their values are

stored dictate the complexity of the parsing process, while the features dictate the

storage required and cause the potential for a large number of different factors.

These will be represented as {key, value} pairs, with characteristics treated as

pairs with values from {true, false} and features treated as pairs with the

characteristic as the key, and the result of parsing as the value.

The approximate algorithm is defined as follows:

1. For each trace (t∈T), parse t to create a mapping of factors and traces

with each other. (∀t∈T ∀f∈F, txf→M) The mapping is stored in the form

of hash tables consisting of: (A) pairs of trace identifiers (TIDs) as keys

and pointers to lists of parsed features or elements of {true, false} as

values; and (B) pairs of parsed features as keys and pointers to lists of

TIDs as values. Thus, as each trace is processed, (1) the lists associated

with previously identified factors is augmented to include the new trace

and new factors are created as needed; and (2) pointers to the factors

associated with the new trace are formed into a list that is associated with

the new trace. In the process, the sizes of the value lists for each trace and

factor are retained and incremented as appropriate to reflect the total size

of the list associated with each hash entry as of this step in the process.

There is also a time space tradeoff for storing all pairs of {trace, factor}

for later checking.

2. Produce a list of "matched groups" for each of the factors in the content-

value list with more than one trace identified, by identifying all of the

factors that are common to all of the traces identified with each of those

content-value list entries. This is done as follows. For each entry in the

factor content-value list with a count of traces in excess of 1, (a) identify

the list of traces associated with that entry; (b) retrieve the list of all

factors of the first trace identified for that entry from the trace-keyed

hashtable, forming a set of those values, and; (c) for each other trace in

that entry, remove all values in that set not present in that trace, leaving

the set of all common factors of that set of traces, and place the result in a

hash table associated with that set of traces (i.e., the "matched groups"

hash table). This is done for each entry in the content-value list for which

it has not already been done (i.e., for which there is no prior entry in the

matched groups hash table). Also store the count of factors and traces

contained in each result. Time is also saved if sets of factors for which all

of the traces and no others appear are removed from future analysis.

The result is a set "matched groups" composed of pairs of ({factors},{traces})

where, for each pair, each of the set of factors are present in each of the set of

traces, and no other trace or factor can be added while retaining this property.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

99

2.5 The Complexity of the Approximate Algorithm

Step 1 is O(|T||F|) for an LALR parser. The creation of the hash tables for step 1

has space and time of O(|T||F|) as well, since constant time is required for

placement of {key, value} pairs into a hash table, and the maximum size of each

entry is also |F| for the entries with t∈T as keys and |T| for entries with f∈F as

keys. For a retrieval time of 1.4 lookups, the size of the hash table is twice the

number of entries used, or O(|T||F|).[10] Counting things is O(n) time in the

number of things counted and log(n) space in the storage of those counts. Thus

step 1 overall is O(|T||F|) in space and time.

Step 2 is requires stepping through the factors, which is O(|F|), and for each

associated trace, doing an intersection of the factors associated with that trace.

Assuming that all traces are present for each factor, this takes O(|T|) for each

factor, with the intersection operation being O(|F|) in space and time. Thus the

total maximum time is O(|F|2|T|).

3. RESULTING GROUPS AND LIMITATIONS

The "matched groups" set (M) is a subset of the set of all GCF-similar groups of

arbitrary factors. In particular, since each ({factors},{traces}) pair constitutes a set

of common factors for a set of traces, and no factor or trace can be added while

keeping that property, the matched groups set elements identify sets of traces

(groups) for which no factors can be added without causing some trace to have to

be removed (greatest common factor). However, it is not necessarily the set of all

GCF-similar groups of arbitrary factors.

In particular, because the algorithm identifies all traces (Tx) for a given factor and

then identifies the common factors of all of those traces, it is possible that a subset

(Ty⊂Tx) of those traces have more common factors than GCF(Tx) that are not

included in the overall result ((Ty,GCF(Ty))∉M). However, for (Ty,GCF(Ty)) to

not be present in M, it must also be true that for each of the other factors in

GCF(Ty), they also appear in another ((Tz,GCF(Tz))∈M) that has this same

property. Otherwise, when examining that factor, the group (Ty,GCF(Ty)) would

have appeared in M. To date we have not identified an algorithm that would allow

the detection of such cases that is more efficient than the original problem of

finding all GCF-similar groups, that being ∑(|T|!k) for k from |T|-1 to 0

3.1 Summary of the resulting groups

The result of this algorithm is a set of groups of characteristics and features (i.e.,

factors) associated with sets of traces, in which each group has the largest

collection of traces for which all of those factors present, and the set of all traces

for which at least one such factor is present. Or, as the title of the paper indicates,

the "greatest common factors" for each group consisting of more than one trace.

The resulting set also produces the largest sets of traces for each of the factors

present in more than one trace, so that for the identified set of factors, no larger set

of traces contains all of those factors.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

100

3.2 The challenge of identifying factors

It is noteworthy that there are limitations of this approach, in particular, because

of the nature of the way in which factors are defined. For example, this approach

would be extremely inefficient for searching for all values of an integer value in a

range where that range is not specified in advance of the analysis, or for other

sorts of operations where the number of factors grows large. This is because the

space and time grow as the number of traces times the number of factors. The

total number of factors potentially identifiable with a trace is O(b!) where b is the

number of bits in the trace [3] and as the number of traces groups, this also grows

factorially. Notionally, the way to identify factors for analysis is to identify

characteristic behaviors of known causes. For example, the mechanisms that

produce traces associated with specific email clients can be identified and

differentiated and used as the basis for defining factors that will differentiate

between a set of know mechanisms. This the notion of similarity will be relative

to the different sorts of known mechanisms and dissimilarity will imply that

different known causes may have produced the dissimilarity and refute any claims

that dissimilar known mechanisms caused them. Thus by choosing factors to

differentiate known causes, the mechanisms M: C⇒mE is partitioned, leading to

more certainty surrounding the E⇒C assumption.

3.3 Limits on use as an exploratory tool

This method performs a single sequence of calculations with a potentially

significant runtime and produces a set of GCF-similar groups of arbitrary factors.

While the result can be readily searched for interactive analysis, in a case where

the runtimes are significant and an exploration of potential factors is desired, the

approach will take significantly longer than an incremental approach in which a

new factor is considered and all consistent traces are searched and identified. An

incremental process may be used to update Step 1, and there may be an

incremental approach to updating step 2, but none is currently known.

A simple exploratory approach based only on the use of a database does not

automatically identify combinations of factors and sets of traces with these

common factors, and is thus significantly limited. A combined approach, in which

a database is used for exploration and GCF analysis is used for creating groups to

be considered can be a useful combination for exploratory analysis efforts.

3.4 Applicability for unstructured data

The greatest common factor analysis method is typically applicable for structured

or semi-structured data, or on the results of an algorithm applied to unstructured

data to generate relevant factors. For unstructured data, a significant amount of

time may be required to parse features, such as the presence or absence of a

"table", "skin tones", areas of certain sizes, etc. Human examination is often far

more efficient for small collections, and automation for such unstructured data is

quite limited today. However; anything that can be characterized as features and

Journal of Digital Forensics, Security and Law, Vol. 7(2)

101

parsed can be factored and GCF-similar grouped through this approach.

3.5 Applicability relative to n-tuple analysis and proximity

Among the more widely applied methods for similarity analysis are the n-tuple

and proximity approaches identified above for searching. The GCF-similar

grouping approach is not directly reconcilable with the n-tuple approach because

of the large number of factors associated with possible groupings and sets of n-

tuples. To get a sense of this, if there is an ordered 5-tuple within a trace, that also

means that there are either 2 or 5 ordered 4-tuples ({(1,2,3,4), (2,3,4,5)} or

{(2,3,4,5), ((1,3,4,5), (1,2,4,5), (1,2,3,5), (1,2,3,4)} depending on proximity

limits), up to 10 2-tuples {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5),

(4,5)}, and 10 3-tuples {(1,2,3), (1,2,4), (1,2,5), (1,3,4), (1,3,5), (1,4,5), (2,3,4),

(2,3,5), (2,4,5), (3,4,5)}. All of these may apply to different sets of traces, and

thus all must be included in F in order to get an accurate GCF result for each of

the different n-tuple lengths. If n-tuples and proximity features are calculated as

part of the parsing process and fed into the GCF-similar grouping approach for

inclusion in the grouping results, performance problems will likely result, since

time and space go as |F|2.

A more effective approach has been identified as the completion of the GCF-

similar grouping, followed by the inclusion of n-tuple and proximity analysis

results within each of the applicable GCF-similar groups. In this approach, the n-

tuple or proximity analysis is done on each of the groups, and this means that

these analyses are limited to those groups rather than the entire set of traces.

While this does not produce the full set of similarities with respect to those

approaches across the entire set of traces, it does produce these results for each of

the identified groups. Thus additional similarities can be identified with the GCF-

similar groups, and this both increases the number of similarity factors, and does

so without altering the GCF nature of those groups. The reason the groups are still

GCF-similar groups is that the addition of more common factors to such a group

cannot increase the groups size, which was already maximal, and cannot reduce

its size, because all of the added factors are true for all traces within the group.

3.6 A sample result

Results of analysis, as provided by an implementation in LISP, are demonstrated

by the following snippet from [16]:

63 4 "User-Agent" "User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X

Mach-O; en-US; rv:1.6b) [REDACTED]") ("LOCContent-Type" . "14")

("From: [REDACTED]@[REDACTED]") ("LOCFrom" . "6") ("LOCIn-

Reply-To" . "13") ("LOCLines" . "17") ("MIME-Version" . "MIME-Version:

1.0") ("LOCMIME-Version" . "9") ("LOCMessage-ID" . "16")

("LOCNNTP-Posting-Date" . "4") ("NNTP-Posting-Host" . "NNTP-Posting-

Host: [REDACTED]") ("LOCNNTP-Posting-Host" . "18") ("Newsgroups" .

"Newsgroups: [...]") ("LOCNewsgroups" . "10") ("LOCPath" . "3")

Journal of Digital Forensics, Security and Law, Vol. 7(2)

102

("LOCReferences" . "12") ("Subject" . "Subject: Re: [REDACTED]")

("LOCSubject" . "11") ("LOCUser-Agent" . "7") [...] ("Received-IP" .

[REDACTED]) ("Traces:" 250607 250565 250506 250489)

Much of this result is redacted for space and privacy purposes, but these 4

postings were similar in 63 factors.

4. SIMILARITY METRICS

In attempting to provide metrics for similarity, various authors have created

measures of different sorts, typically for pairs of items being matched one against

the other, or for matching of a regular expression or similar description against a

set of items, such as for search engines. For example, two items that are identical

in every way could reasonably be called 100% similar, and if a string

"12374382302398" is found within one of the items being searched, the item

could be reasonably reported as 100% similar to the criterion that it contains that

sequence. However, for less trivial situations, similarity metrics may be

problematic, and similarity metrics for groups have not, as far as we have been

able to identify, been developed.

Using the GCF method described herein, some obvious metrics appear.

Statements such as "Similar in n factors", or "Have x common factors", may be

applied to the groups created. For example, to e-mails may be identified as having

18 common factors in their headers. But while this method may turn normal

metrics (the factors) into interval metrics, our ability to count does not

meaningfully address the question of counting against what.

While there may be a temptation to make statements such as this group is similar

in 18/360 factors, the notion that they are 5% similar is essentially meaningless in

context. In fact, it is relatively easy to create factors such that we can drive those

percentages up or down for any given group. For example, we can remove factors

that are not part of the results we have determined and produce "100%" similarity

results, once we know what to choose as factors.

Furthermore, the question of how to weight factors and/or groups of factors

depends on the particulars of the application. For example, if we are trying to

attribute telephone calls to callers, and we have groups that had identical calling

phone numbers, this would seem in most cases, to be more important than the fact

that we may have large groups of calls of particular durations. Thus, for the

attribution of calls to callers, phone numbers may be weighted more highly than

call duration. However, if we are seeking text messaging, then call duration of

relatively short time scales will almost certainly be a far better indicator than the

phone number from which the call was made.

As a result, it is likely the best approach at this time to define metrics such that the

features of interest to the application are weighted prior to analysis, ratio metrics

are eschewed in favor of intervals, and to the extent that ordinal metrics may be

applied to factors, a POset that may be developed to rank results with identical

Journal of Digital Forensics, Security and Law, Vol. 7(2)

103

interval values. Without further information about specifics of the situation, the

use of approaches like weighted sums may be more misleading than helpful.

5. A PRACTICAL EXAMPLE

The initial implementation of this approach was applied to identifying groups of

messages in message archives. The implementation was tested over time with

different message archives, and eventually applied in a legal matter. [16]

5.1. The matter at hand

In the matter at hand, Plaintiff asserted, in essence, that Defendants slandered

Plaintiff by, without limit, making statements about postings to newsgroups and

unauthorized accesses to attorney-client privileged electronic mails (emails).

Because the truth is an absolute defense against claims of slander, Defendant's

expert sought to apply similarity analysis along with other methods to

demonstrate that particular postings were attributable to third parties at issue.

Because the newsgroups at issue contained more than 200,000 postings manual

analysis was identified as infeasible, and automated methods were applied.

5.2 The GCF-similarity group approaches and results

In particular, and without limit, these methods included the analysis of the

newsgroup postings to identify GCF-similar groups, and the subsequent manual

review of the results to identify how the groupings produced related to the issues

in the matter.

Parties asserted that a particular set of postings to two newsgroups were of import.

These postings were analyzed to identify GCF-similar groups and found to

demonstrate particular groupings associated with "posting account", IP addresses,

software configuration of posting computers as potentially depicted by "user-

agent" or similar fields, and the sequencing of headers within the header area.

The entirety of the available postings on the applicable newsgroups were

downloaded from an Internet Service Provider (ISP) who was independent of the

parties in the case and who regularly gathered and provided these records as part

of their services for their clients, and depended upon them for normal business

operations. Thus these records are, presumably, admissible as evidence under the

normal business records exception to the hearsay prohibition on evidence.

The newsgroup messages were parsed based on the same criteria as the asserted

postings and analyzed in the same manner for GCF-similar groups. The resulting

groups were compared to similar groups identified for the asserted postings and

then examined by an expert to help attribute the asserted messages to sources. In

this case, the placement and ordering of headers and n-tuple analysis that can be

added to augment analysis were not applied because the increased computational

complexity drove the space and time beyond available resources. Rather, these

factors were added after the GCF-similar groups were identified and particular

groups found to be probative to the matter at hand.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

104

In the particular matter at hand, the headers with traces indicative of, without

limit, "posting account", IP addresses, characteristics of the software

configuration of the computer making the posting as depicted by "user-agent" or

similar fields, and the sequencing of headers within the header area from the

entirety of the large newsgroups were compared to those of the asserted messages,

and groupings found within the newsgroups as a whole that showed similarity in

the sense of common factors in these areas.

The similarity analysis showed that there was one posting that was self-asserted to

be from one of the parties to the case and that that party did not deny posting, and

that was identical in the relevant areas to asserted postings. Out of about 200,000

total postings, only 64 contained the particular sets of factors, all but one of those

were identified as the asserted postings prior to the analysis, and the remaining

posting was the one self-identifying as the party to the matter. On a different

forum, an analysis was done that also identified factors of similar sorts, and in that

forum, postings self-asserting as attributed to the same party also had many of the

same sets of factors in the GCF-similar groups associated with the same party,

providing an independent path for attribution.

The IP addresses of the asserted postings also partitioned those postings into

GCF-similar groups, and those groups were compared to GCF-similar groups in

the newsgroups as a whole and GCF-similar groups from the other forum. Again,

these groups were consistent with the IP addresses of the asserted party and were

also consistent with the IP addresses used by the spouse of that party, providing

yet another confirmation of attribution.

5.3 Addressing the E⇒C assumption fallacy

As discussed earlier, the E⇒C assumption is a fallacy in that there are clearly

cases when different causes produce similar effects. As a result, a GCF-similar

group does not necessarily imply the same causes produced the same effects

reflected in the set of factors in the traces. In addition, the lack of all factors being

identical could be considered a refutation if this was inconsistent with the

hypothesis about common cause.

In this particular case, some of the IP addresses identified were also determined,

through warrants and credit card information, to have been assigned to and paid

for over a period of years, by the spouse of the previously identified individual;

the user account name, address, and other contact number of the account used to

make the asserted postings were also those of the same party; and other

information subsequently discovered confirmed these results.

5.4 Presentation of the results

Thus the CGF-similar groups of posting and subsequent investigation showed a

far stronger attribution of postings to their source and demonstrated results

consistent with the asserted causal chain. Ordinal metrics were applied in context

(e.g., 64 out of 200,000), and statements were made using the applicable forms.

Journal of Digital Forensics, Security and Law, Vol. 7(2)

105

(e.g., "Traces containing the identified posting accounts were found to be similar

in 37 factors, contained identical header sequences, and were found present in

only 64 out of 200,000 messages, one of which appears to be from [party] and the

rest forgeries identified with the issues in this case")

While the overall matter had other more complex elements involved in the

attribution process, the similarity results associated with the GCF approach and

the metric of count of similar postings within the overall corpus under

consideration provides a powerful argument in favor of a particular interpretation,

and in this case, that interpretation is consistent with an attribution at issue in the

case.

6. ADDITIONAL MATERIAL AS TO THE PRACATICALITY OF USE

IN THE CASES CITED

Per editorial comments on the original submission of this paper, additional

detailing of the cases identified above were requested. This particular case[10]

involved downloading of usenet group postings from over the entire period since

the start of the groups till the time at which the case was initiated. Since there is

no standard method for doing forensically sound downloads, the postings were

downloaded using the methods available from the Internet Service Providers

(ISPs) who, at that time, permitted usenet group downloads from servers

supported by each participating ISP.

Ignoring the particulars of the download process, the protocols used provide the

headers and bodies of the postings. In this case, the headers formed the structured

content which could then be examined and analyzed for similarity using the

present methods. In particular, usenet news posting headers included, without

limit, the following headers in the formats associated with the applicable requests

for comments (RFCs) to usenet news group postings:

Path, From, Newsgroup, Subject, Date, Organization, Lines, Message-ID, Mime-

Version, Organization, User-Agent, X-Complaints-To:, and X-HTTP-UserAgent”

The analytical process to generate greatest common factor sets was run on the

approximately 200,000 downloaded messages to identify the set of all such

greatest common factor (GCF) sets. This process took approximately 8 hours of

real time to complete, including parsing out of headers and header components

based on investigator-specified criteria (which in this case involved taking

account of each header, its location, content, relevant IP addresses, and several

other similar header characteristics).

In this particular case, a set of identified messages were specified as relating to the

potential perpetrator, and as a result those GCF sets containing elements of this

set of previously identified messages were sought from the resulting output using

the “grep” command, which owing to the fact that the identified messages had

unique message identifiers and that the output of the particular GCF set

application used a single line to describe each GCF set it found, allowed the pre-

Journal of Digital Forensics, Security and Law, Vol. 7(2)

106

existing “grep” program to be applied for that purpose. Furthermore, since this

takes only linear time with the number of GCF sets, it is time efficient and does

not cause an overall increase in the computational complexity of the method in

use.

The output of the existing program provides the set of all messages (by providing

a list of filenames associated with each of those messages) for which the

identified GCF set (identified by a list of the set of common factors they all have)

are present, and indicates additional information such as set sizes. In this

particular case, out of the several hundred thousand postings, the set of identified

postings were revealed as the largest GCF set involving any of the identified

postings, and was thus directly usable in further examination. In order to proceed

with subsequent examination, the identified 64 postings were examined using the

“diff” command, each identified factor was sought and found in each of the set

elements and sought and not found as a group in other postings. This independent

verification of results was done.

In this particular case, in addition to the many similarities that might reasonably

be interpreted as coming from a wide range of systems, and the fact that many of

those factors listed factors were present in other larger sets of postings (such as

the locations of some of the more common headers), the factors that made this

particular set more clearly distinguishable based on their lack of presence in other

postings were fields typically related to specific configuration details of specific

systems. For example, the fields indicating browser header information contained

identical operating system, library, and other similar factors that were not present

in any other postings and were present in all of the postings in the GCF set.

Thus the opinion of the examiner in this case was that these particular factors

were consistent with the same system being used in a similar time frame to post

the many postings identified as at issue in the matter at hand and the one such

posting that was self-identified as from one of the parties to the case, and which

that party refused to disassociate himself with or deny he had posted.

From a practical standpoint, identification of such a correlation between 64 out of

200,000 or so files by manual means is likely infeasible, and fraught with the

potential for errors. Attempts to “eyeball” it and identify things to look for would

potentially be useful, but this would then require that, once such factors were

found, additional manual efforts or programming would be required to determine

the base rates, and those methods would only be as efficient as the programmer

and method used to look for them. The present method automatically generates

GCF sets that are unique and maximal, thus producing 0 base-rate conditions for

the presence of all GCF factors together elsewhere in the corpus.

As a practical matter, running such analysis on messages or similar structured,

artificially structured, or partially structured content is relatively simple to do and

can be applied as a standard process which similarity analysis is a feasible method

for identifying things to examine in more detail or when attribution is at issue. To

Journal of Digital Forensics, Security and Law, Vol. 7(2)

107

the extent that it is revealing with regard to similarity or helpful in attribution, the

examiner can readily apply the results based on their knowledge, experience,

expertise, skills, and education to make judgments about the materiality of the

results.

In this particular case, the GCF analytical process helped to produce such results

as:

Postings containing the "X-HTTP-UserAgent: Mozilla/4.0 (compatible;

MSIE 7.0; AOL 9.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727;

Media Center PC 5.0; .NET CLR 3.0.04506; InfoPath.2),gzip(gfe),gzip(gfe)"

header are found 64 times in identified messages, this header is consistent

with a computer using a Mozilla version 4.0 Web browser on a computer

with a Windows NT 6.0 operating system, using AOL 9.0, Microsoft Internet

Explorer version 7.0, and with a variety of other quite specific versions of

different related software packages present, it was present in only 64 of more

than 200,000 such postings examined in this case, all also have 12 other

commonalities in headers, 36 have IP addresses used in other postings by the

identified party to the matter, all 64 postings are identified as part of the

behavior at issue in the case, each of the 4 different “From” addresses

identified as possible intentional forgeries have "From:" addresses with IP

addresses used at contemporaneous times by the identified party to the case in

postings to other sited under his own identity, and the substring "Mozilla/4.0

(compatible; MSIE 7.0; AOL 9.0; Windows NT 6.0; SLCC1; .NET CLR

2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506" was also present in

the records of postings to another site by the same party in the same time

frame while no other authorship was associated with any postings containing

the same strings.

Both for identifying potential sources of similarity and for identifying other

commonalities once a particular factor of interest was identified, the GCF-similar

group approach produced a dramatic reduction in time and effort and a far greater

capacity to rapidly check out working hypotheses and identify specific sets of

relevant traces than manual or perviously applied automated means.

7. SUMMARY, CONCLUSIONS, AND FURTHER WORK

While it is clear that the GCF-similar group approach is still in its infancy and that

there has been relatively little published work in the creation of such similarity

groups as opposed to testing for similarity of a specification against a set of items

or one item against other members of the set, it is also clear that a thorough

examination of all similarity measures is infeasible.

As a result, a computational compromise is required in order to find ways to

identify similarities and provide metrics for those similarities for different

purposes. The computational compromise of this paper consists of identifying an

O(|T||F|2) algorithm that fails to identify a specific class of GCF-similar groups of

Journal of Digital Forensics, Security and Law, Vol. 7(2)

108

identified factors while producing the remaining groups.

The basis for the use of factors in similarity analysis under the GCF method

includes a fundamental assumption that the similarities produced in traces are or

may be the result of the use of the same or nearly identical mechanisms used to

produce those traces, the E⇒C assumption, which is known, in general, to be a

fallacy. This assumption is easily violated in conditions where the traces at issue

are not under the control and in the possession of an independent third party that

keeps them with integrity, or in cases where intentional efforts are made by

knowledgeable and skilled parties to forge traces. However, it is also noteworthy

that it is not as easy as it may seem to create perfect forgeries, particularly in

environments in which only a limited portion of the available traces can be

influenced by the party. Further, the intentional selection of factors that

differentiate causal mechanisms is useful in eliminating alternative explanations.

This method also has the fundamental problem, as do all such methods, of

requiring an initial parsing along with all of the assumptions that go with that

parsing. Again, this traces back to the E⇒C assumption and the notion that

mechanisms produce predictable results. For this reason, it appears to be most

suitable today for analysis of structured headers and meta-data.

The present algorithm is likely not the most efficient one that can be developed in

this arena, but rather, it is the first algorithm that has been developed for this

purpose. The concept of greatest common factor appears to be worthy of further

pursuit, and in addition to seeking a better implementation, the concept itself, in

terms of the manner in which factors are developed and applied, and in terms of

the creation of better or more meaningful metrics, also appears to be worth further

research.

Research into the effectiveness of this approach for unstructured data would be

meaningful, in that while we know that the method will work, we don't know how

useful it may be in practice. The challenge of identifying factors and the

implications for parsing complexity remains, as does the issue of improved

integration with n-tuple, proximity of terms, and other similar approaches.

Research into low-complexity enhancements to coverage of the full GCF-similar

group set may prove fruitful, and the production of more efficient algorithms that

reduce the |F|2 term, would allow the extension of this method to far larger factor

sets than can be used today, but there may be lower bounds that limit the ultimate

effectiveness of this approach.

REFERENCES

[1] E. Locard, "The Analysis of Dust Traces", The American Journal of

Police Science, (1930), V1:276-298. [This is one of the most referenced

papers in forensics, and is considered the defining paper in this area by

many subsequent authors.]

Journal of Digital Forensics, Security and Law, Vol. 7(2)

109

[2] F. Cohen, "Digital Forensic Evidence Examination", 2009, ASP Press.

[This book introduces a physics of digital systems and explores issues in

examination of digital forensic evidence for legal purposes, including

analysis, interpretation, attribution, reconstruction, and presentation. It

also includes a substantial review of the literature in related areas.]

[3] F. Cohen, "Analysis of redundant traces for consistency", IEEE

International Workshop on Computer Forensics in Software Engineering

(CFSE 09), Seattle, Washington, USA, July 20-24, 2009. [This paper

provides complexity results for analysis of traces and extends the use of

redundancy for trace analysis for the identification of consistency and

inconsistency of traces and events.]

[4] T. Stallard and K. Levitt, "Automated Analysis for Digital Forensic

Science: Semantic Integrity Checking", ACSAC-2003. [This paper

identifies the use of redundancy for testing hypotheses with regard to

digital forensic evidence.]

[5] F. Cohen, "Two models of digital forensics examination",

IEEE/SADFE-2009, Fourth International IEEE Workshop on Systematic

Approaches to Digital Forensic Engineering, Oakland Conference,

Oakland, CA, USA, May 21, 2009. [This paper identifies a model for

performing analysis of issues related to the examination of digital

forensic evidence.]

[6] K. Popper, The Logic of Scientific Discovery (1959), Hutchins and

Company, London. ISBN10: 0415278449.. [This book is considered a

defining standard for philosophy of science in terms of identifying the

principles and properties of confirmation and refutation in the scientific

arena.

[7] Federal Rules of Evidence Rules 701-706. [These are the rules used by

the US Federal and many state court systems to determine admissibility

of evidence and expert witness credentials and testimony.]

[8] Daubert v. Merrell Dow Pharmaceuticals, Inc. 509 US 579, 125 L. Ed.

2d 469, 113 S. Ct. 2786 (1993). [This is one of the key cases that defines

the standard for admissibility of evidence based on Supreme Court

precedent.]

[9] Committee on Identifying the Needs of the Forensic Sciences

Community, "Strengthening Forensic Science in the United States: A

Path Forward", ISBN: 978-0-309-13130-8, 254 pages, (2009).;

Journal of Digital Forensics, Security and Law, Vol. 7(2)

110

Committee on Applied and Theoretical Statistics, National Research

Council. [This report outlines the current limits of scientific evidence in

the US legal system and identifies a need for increased scientific rigor in

many aareas.]

[10] D. Knuth, "The Art of Computer Programming, Volume 3: Sorting and

Searching", ISBN 0-201-03803-X, Addison Wesley, 1973. [This book

summarizes a wide array of research in computer science, and is the third

in a series of books by this author that are highly regarded in clarifying

the nature of results in computer science.]

[11] S. Brin and L. Page, "The anatomy of a large-scale hypertextual Web

search engine", Computer Networks and ISDN Systems, Volume 30,

Issues 1-7, April 1998, Pages 107-117. (see also an extended version at

http://infolab.stanford.edu/~backrub/google.html) [This paper defines the

architecture used to provide for the initial Google search engine and

identifies many of the properties and features of many search engines

since that time.]

[12] C. Chaski, "Who’s At The Keyboard? Authorship Attribution in

DigiEvidence Investigations", International Journal of Digital Evidence,

V4#1, 2005. [This paper summarizes results in attribution relating

individuals to actions based on behavioral characteristics and identifies

the extent to which the US legal system to date has accepted such results

in court cases.]

[13] T. Pedersen, "Computational Approaches to Measuring the Similarity of

Short Contexts: A Review of Applications and Methods", Journal of

Intelligent Systems (Special Issue : Recent Advances in Knowledge-

Based Systems and Their Applications), 17(1-3), 37-50, 2008.

http://www.d.umn.edu/~tpederse/ [This paper summarizes results in

examining n-tuples and proximity measurements for natural language

processing to determine similarity and attribute word sequences to

authorship.]

[14] M. Corney, "Analysing E-mail Text Authorship for Forensic Purposes",

Masters Thesis, Queensland University of Technology, March, 2003

[This thesis examines using a variety of classifiers with output fed into a

Support Vector Machine (SVM). The approach is to compare a specific

email to an SVM model built from a corpus of emails with known

provenance e.g. given 20 emails from each of A, B and C, compare a

Journal of Digital Forensics, Security and Law, Vol. 7(2)

111

new email to those models to see which author it is appears to belong to.]

[15] Bomze, M. Budinich, P. Pardalos, and M. Pelillo, "The Maximum Clique

Problem", The Handbook of Combinatorial Optimization

(http://reference.kfupm.edu.sa/content/m/a/the_maximum_clique_proble

m__265525.pdf). [This book chapter summarizes mathematical results

related to the identification of cliques, a problem loosely related to the

GCF group problem addressed by this paper.]

[16] Susan Polgar vs. United States of America Chess Federation et. al. Case

5-08CV0169-C. [This is a current legal matter in which the results of

analysis have been publicly released. It was still pending at the time of

the original submission of this paper, is related to several other pending

cases, including a Federal felony case against a related party but this

particular matter has now been settled. It applies the analytical

techniques identified in this paper in support of attribution.]

[17] J. Hunt and M. McIlroy, "An Algorithm for Differential File

Comparison". Computing Science Technical Report, Bell Laboratories

41. (see http://www.cs.dartmouth.edu/~doug/diff.ps) June 1976. [This

paper defined the algorithms used in the Unix "diff" program and

introduces the problems associated with identifying maximum matching

sequences.]

[18] D. Maier (1978). "The Complexity of Some Problems on Subsequences

and Supersequences". J. ACM (ACM Press) 25 (2): 322–336. [This

paper summarizes results in matching and related problems for pairs of

sequence, including complexity results associated with a wide range of

related problems and details of algorithms and their limitations.]

[19] L. Bergroth and H. Hakonen and T. Raita (2000). "A Survey of Longest

Common Subsequence Algorithms". SPIRE (IEEE Computer Society)

00: 39–48. [This paper summarizes results in the particular specialty of

identifying longest common sequences, and is the evolution of the work

on identifying differences (and similarities) related to the "diff" and

similar sorts of programs.]

[20] P. Weiner, "Linear pattern matching algorithm". 14th Annual IEEE

Symposium on Switching and Automata Theory: 1-11. (1973). [This

paper demonstrates an approach to doing linear time matching of regular

expressions to strings based on the creation of a finite state machine that

optimally implements a matching device. The device can then be

Journal of Digital Forensics, Security and Law, Vol. 7(2)

112

implemented in software with linear time detection of these expressions.

The same method can be applied to LALR parsing and a wide range of

other similar problems that are equivalent in relevant ways to regular

expression parsing.]

