
Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

35 
 

Developing a Process Model for the Forensic 
Extraction of Information from Desktop Search 

Applications 

Timothy Pavlic  
School of Computer and Information Science 

University of South Australia 
 

Jill Slay 
Defence and Systems Institute 
University of South Australia 

Jill.Slay@unisa.edu.au 
 

Benjamin Turnbull 
Defence and Systems Institute 
University of South Australia 

Benjamin.Turnbull@unisa.edu.au 
 

ABSTRACT 
Desktop search applications can contain cached copies of files that were 
deleted from the file system. Forensic investigators see this as a potential 
source of evidence, as documents deleted by suspects may still exist in the 
cache. Whilst there have been attempts at recovering data collected by desktop 
search applications, there is no methodology governing the process, nor 
discussion on the most appropriate means to do so. This article seeks to address 
this issue by developing a process model that can be applied when developing 
an information extraction application for desktop search applications, 
discussing preferred methods and the limitations of each. This work represents 
a more structured approach than other forms of current research.  
Keywords: Desktop search, digital evidence, extraction technique, process 
model. 

 
1. INTRODUCTION AND BACKGROUND 

Consumer electronics, especially computers and computer system components, 
have become more affordable and capabilities have increased, particularly in 
relation to storage. Smith (2004) shows that over four years, from April 2000 
to April 2004, average hard drive capacities increased from 30GB to 250GB. 
This phenomenal increase in storage capacity has enabled users to store all of 
their data instead of deleting it to create space for new information they 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

36 
 

acquire. However, this increase in storage sees added complexity in the 
management of files and user-created documents, and the market has 
responded with increasingly powerful file search utilities to respond to this 
need.   
The first generation of desktop searching utilities operated in real-time, which 
resulted in potentially lengthy search times. The second and current generation 
of desktop search utilities, in the form of Windows Vista search, Google 
Desktop Search, Spotlight and Beagle to name a few, are much like their 
internet search counterparts except they catalogue information on personal 
computers to allow fast searching of the indexed documents (Cole 2005). By 
pre-indexing user-data and storing this information in a database-type file (or 
files), these applications are able to search almost instantly. Information 
indexed by these applications includes file location information, file meta-data, 
and file content. As these devices are designed to store user-data, entire text 
files and image thumbnails may exist independently of their original creation 
area.  
Unlike older desktop search utilities, the entire text of email, office documents, 
text files and PDF documents may be stored, as well as metadata associated 
with music and video files. Depending on which desktop search application is 
used, thumbnails may also be stored. As discovered (Turnbull, Blundell & Slay 
2006), particular search utilities, such as Google Desktop Search, may also not 
purge their databases of a file when that file is deleted and keep a record of all 
files on a machine. Whilst this is not part of any standard and may be altered in 
more recent versions, it does give an insight into the value of forensic 
investigation of these systems as a component of a full analysis.   
Since desktop search engines are still a new area of software development, 
there is little work that discusses these data stores as potential locations for 
digital evidence, but there is the possibility that the cached information stored 
by these applications can be of evidentiary use. 
The extraction of data from desktop search utilities has the potential to be of 
great use to investigators due to the nature of the cache in many of the desktop 
search engines. The search applications continually index data on the machine 
as the user creates and modifies content. This can include emails sent and 
received from email clients, text documents, instant messaging conversations 
and web browser caches. All of this data is stored independently of the original 
electronic transaction, with the mechanisms for addition, updating and deleting 
specific to the application. It is therefore dependent on the application as to 
when such files are added and, as importantly, removed, from these file 
structures.  
The only other research into this area found that it is possible to extract 
information from Google Desktop Search, a particular desktop search engine, 
but only in a work-around fashion, that is manual, cumbersome and inefficient 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

37 
 

(Turnbull, Blundell & Slay 2006). The authors recommended that further work 
be conducted into either examining the databases structure, to allow tools to be 
developed to extract evidence directly, or to develop a plug-in for Google 
Desktop Search that can access the information via the program executables. It 
is important to note that this work was explicit to a specific desktop search 
application, and the access methodology created was not universal or 
generalisable. Each system differs in the paths it stores from, the parameters 
for stored information, the format of storage and the circumstances under 
which it will delete information.  
The main problem found in this work was in the extraction of the information 
from the storage mechanism in a forensically sound manner, and ensuring that 
alteration has not further occurred, either through the application continually 
indexing new information or ensuring that the interface itself did not interpret 
data. In this work, it was discussed that allowing the applications to execute 
could potentially purge cached deleted items from the storage mechanism or 
overwrite older cached items with newer versions, and that this could 
potentially lose timestamp information or data.  
This research endeavours to answer the question: 

• Can information be data-mined from desktop search applications using 
a variety of methods so that the information can be used to locate 
evidence, and  

• Can the process be verified to abide by forensic rules so that the 
evidence is considered admissible in a court of law? 

Specifically, it seeks to determine different potential methods from which a 
desktop search application may be accessed, the appropriate order of 
attempting each of these methods, and the technical implications and 
ramifications that accomplish each process. This outcome is inline with other, 
similar work (Reith, Carr & Gunsch 2002). 
The primary outcome is a process model that determines the most appropriate 
method of extracting data for forensic examiners, classified by search 
applications and versions. The architecture is comprised of a series of 
procedures detailing how to extract information from desktop search engines 
index databases. Each procedure of the architecture is accompanied by 
associated limitations and test plans.  
It is hoped that a robust process model for the extraction of evidence from 
desktop search applications will enable a more simple and consistent approach 
for investigators handling these applications, as they are a new form of 
application and are possibly not currently searched as a potential form of 
evidence. 
The next chapter of this work introduces the proposed process model, and 
discusses each stage in turn. The third and final chapter of this work discusses 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

38 
 

the outcomes, future research challenges and concludes this work. 
2. PROCESS MODEL FOR EXTRACTION APPLICATION 

DEVELOPMENT 

 
Figure 1 - Process model for developing information extraction applications for 

desktop search engines. 

 
It has been established at this point that no process model exists for the 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

39 
 

analysis of data from desktop search applications, but given the proprietary 
nature of these applications and the lack of standardisation, a methodology 
would be appropriate.  
To answer the research questions, a process model defining how to develop 
extraction applications for desktop search engines was developed. The initial 
model, shown in Figure 1, represents the complete process followed to develop 
an extraction application for a given desktop search engine.  
Stage 1 is the key stage of the process, as the method of accessing the 
information stored by the desktop search engine is selected, and all other 
actions performed in other stages are dependent on the method selected. In this 
model, three methods of data extraction from the desktop search application 
were considered: 

• Reverse engineering the storage mechanism to allow for retrieval 
• Interfacing with the search engine via an API 
• Screen-scraping the application 

 
Each of these was considered for forensic soundness and the completeness of 
information extracted. Whilst ease of use was considered, the most complete 
methods are given in order, from most to least desirable.  
Stage 2 of Figure 1 examines the forensic risks of the selected access method 
in stage 1, and defines ways in which the risks can be mitigated or negated. 
This work is of importance as it highlights the strengths and weaknesses of 
each approach, and the limitations that may be in place for different 
investigators.  
Stage 3 covers the exploration of the desktop search engine, documentation of 
the search engine and third party information about the search engine to 
determine the significance of extractable information, where initially the actual 
data values of the information can be ambiguous.  
Stage 4 provides sub-processes that determine what procedures can be used to 
extract information from the search engine’s data store, based on the selected 
access method.  
Stage 5 involves resolving the issue of storing the information that will be data 
mined from the search engine data store, and the subsequent querying of the 
data to locate evidence.  
The final stage, stage 6, is applicable to all access methods, hence the merging 
of the individual flows into this single final sub-process. Stage 6 details how 
the developed extraction application requires testing and validation, to ensure 
that its operation maintains the integrity of data from the search engine data 
store once it has been extracted, and that the extraction process does not 
introduce risks to the forensic process. 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

40 
 

2.1 Stage 1: Access Method 
The first action to consider when developing a software application for the 
retrieval of information from a desktop search engine is the method in which 
the stored information will be accessed. The implementation of this stage of the 
process model will answer the first sub-question of the research: “For each 
desktop search engine, can the parallel storage mechanisms be accessed? If so, 
in what ways?”. The conceived options available for accessing the parallel 
storage mechanism of a desktop search engine are: reverse engineer the search 
engine data store (Process 1A), develop a plug-in for the application to utilise 
the native search abilities (Process 1B) and develop a macro application that 
simulates human user interaction with the application (Process 1C). Not all the 
options are applicable to every desktop search application and furthermore, 
each method does not have the same level of desirability.  

2.1.1 Process 1A: Reverse Engineer the Search Engine Data Store 
Reverse engineering, in a software engineering sense, is the process of deriving 
a base set of requirements for a system from a pre-existing, already deployed 
system by examining source code of the application, and other artefacts such as 
documentation, test results and file systems [1]. The accrued requirements 
from the reverse engineering process are then forward engineered to develop a 
system that essentially performs the same as the reverse engineered system. 
This process is employed to often bring legacy systems from non object 
oriented approaches into modern object orientated based systems, to aid 
continual development of the system. However, in this instance, investigators 
are attempting to determine the format of files associated with the applications 
so as to be able to analyse them directly without running a desktop search 
application. Such direct access could allow access via independent applications 
or as an additional feature of existing forensic examination applications. A 
proposed outline of the proposed processes associated with the reverse 
engineering sub-process are given in Figure 2. 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

41 
 

 
Figure 2 – Process model 1A: Reverse engineering a search engine data store. 

2.1.1.1 Limitations of Reverse Engineering 
The legality of reverse engineering is currently a highly debated topic. In the 
United States, law 17 USC §1201 allows the reverse engineering of 
applications for interoperability, similar to the Australian Copyright Act 1968, 
Part III Division 4A Section 47D (1b) which allows reverse engineering for 
developing interoperable applications. Whilst these rules would seem to allow 
reverse engineering to be pursued when developing an extraction application, 
the term interoperability could be debated in this case, since the extraction 
application does not intend to match the functionality of the search engine, but 
rather use the data for entirely different purposes. However, such legal issues 
are jurisdictional and dependent on the country of use, and therefore their use 
should not be immediately discounted, but approached with caution and 
knowledge of current legislation (Cifuentes & Fitzgerald 2000).  
Analysing assembly code and determining what libraries the application may 
be using for its data storage is a time consuming task. Code analysis is also a 
specialist skill and therefore not all law enforcement agencies will have 
capacity or expertise to perform the task. 
Another major limitation to reverse engineering is the potential encryption of 
the data store of the search engine. Decompilation of the search engine and 
data store may reveal the use of encryption by the search engine to encrypt 
information it caches (Henrard, Englebert, Hick, Roland & Hainaut 1998). The 
complexity of determining the encryption algorithms used from the decompiled 
executables will in most cases be the primary motive to develop an extraction 
application with one of the other access methods. By utilising one of these 
other access methods, the issue of propriety encryption on the data store can be 
eliminated. Since the extraction application will be retrieving information that 
is normally intended for the end user, it will be in human readable form, as 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

42 
 

decryption will have been performed before returning the results of a query. 
One means of mitigating the legal issues associated with the decompilation and 
ensuring the accuracy of the outcome is through the support of the initial 
application developer. Not only will this company understand the exact nature 
of the files, but may be able to provide an application for extracting 
information from them without altering files. To the researcher’s knowledge, 
no company has publicly discussed such work.  

2.1.2 Process 1B: Interfacing with Search Engine 
All search operations bound for the desktop search application are handled by 
the search engine component of the application. For some desktop search 
applications, this search engine may be available for interfacing outside of the 
native user interface of the application. As identified in Figure 3, access may 
be available as an operating system service (such as a Windows service), as a 
standalone component with a standard interfacing method (such as a web 
server running on the local device) or the company may release a software 
development kit (SDK) for developing applications that is able to interface 
with the search application’s executables. If the search engine component is 
designed as a service, then an SDK may be on offer from the application 
vendor or the programming community may have developed a third-party one. 

 
Figure 3 – Process model 1B: Interfacing with the search engine of the 

application. 

 
If an SDK is available, an application can then be implemented utilising the 
SDK to retrieve information from the storage mechanism. If the search engine 
has a standardised interfacing method, then the standard should be discerned 
and an application should be developed following the protocols used to send 
and retrieve information. 

Limitations of Interfacing with the Search Engine 
The major limitation of this approach is the reliance on the original search 
application to extract and interpret data on behalf of the investigator. This 
presupposes two issues; that the search application will continue indexing 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

43 
 

whilst operational, and that, without direct access to the data store, there is the 
possibility that the desktop search application to filter or interpret results before 
presentation. 
Since the executables of the search application are now responsible for 
retrieving requested information from the data store, the application needs to 
be running for the interaction to occur. This poses a potential threat to the 
forensic process, since the information retrieved could be modified by the 
application during retrieval. Extended testing in a controlled system setup 
would be required once the extraction application is developed. With the search 
application running, it also poses the threat that the application is free to 
continue its indexing policies. This could include deletion of cached items that 
no longer exist on the file system, meaning potential evidence could be lost. 
Some metadata could also be updated, such as timestamps, which would then 
loose some evidentiary value. By developing an application with this approach 
the risks would have to be assessed, managed and documented according to the 
rules of evidence, so that any evidence correlated from extracted information is 
admissible. 

2.1.3 Process 1C: Interfacing with User Interface of Application via 
Macros 

Although previously discussed that it is a time consuming task for an 
investigator to manually search for results from the application, the process can 
be partially automated through the use of scripting languages that are capable 
of replicating human interaction with system input devices through the use of 
macros. These scripts, coupled with screen-scraping can be used to simulate 
user input, and will attempt to capture search results returned from the 
application. Screen scraping is the process of capturing the output of a screen 
for use in another application and is traditionally used in computer systems re-
engineering to link new systems into older legacy systems without the need to 
re-develop the old legacy system [2]. A proposed outline of events is given in 
Figure 4. 

 
Figure 4 - Process model 1C: Interfacing with user interface of desktop search 

engine 

 
The developed application would require routines for navigating every screen 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

44 
 

that the target search application generates, and the order in which the routines 
flow, to match the application. This identification of screen flows and 
development of scripts to extract the information is shown in Figure 4. Once 
the navigation aspect is completed, data extraction methods (such as screen 
scraping) need to be developed for text, images and other data types supported 
by the application, also shown in Figure 4. Whilst the scripting languages are 
capable of selecting and copying text from interfaces, images will need to be 
handled via the incorporation of a screen capturing library into the extraction 
application. For other data types that may be returned by the application, 
intercepting and piping the output streams to file is one solution, however, this 
may not be necessary as the purpose of the application in many cases is to 
narrow the search field for manual inspection by an investigator.  

2.1.3.1 Limitations of Interfacing with the User Interface 
As with developing an application to extract information from the search 
engine via the actual executables of the search application, the information 
retrieved could be modified by the application. Again, if an extraction 
application is developed by utilising the user interface, the risks arising from 
this method will have to be managed and documented. 
Developing a tool in this manner also requires a large amount of time, as every 
possible scenario of screen navigation has to be catered for. Information 
extraction will also be complex requiring a parser that is capable of 
determining different result layouts for the multitude of file types that are 
index-able by the application. 
It is also noted that the issues related to running the desktop search application 
in order to interact with it are still present here – the desktop needs to be 
operational but it cannot still be indexing files, as doing so potentially reduces 
the integrity of the output. 

2.2 Stage 2: Mitigate Forensic Risks of the Access Method 
Once the method for accessing the data stored within the storage mechanism of 
the desktop search application has been determined, the forensic soundness of 
the method needs to be investigated. Since the focus of this stage is to mitigate 
forensic risks of the access method, following this process when developing an 
extraction application will partially answers the third sub-question of the 
research: “Are these access and extraction methods forensically sound, or can 
any risks to the forensic process be mitigated sufficiently?”. This stage 
involves the examination of key areas related to the desktop search application 
that can help to decrease the magnitude of any identified threats to the integrity 
of the information retrieved. As Figure 1 shows, each access method leads to a 
separate process for mitigating risks in stage 2. Whilst there are identical 
activities within the sub-processes of this stage there are also special cases that 
are to be considered for each access method and hence individual sub-



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

45 
 

processes were warranted. 
2.2.1 Process 2A: Mitigate Reverse Engineering Risks 

The only step of this process is the determining of legal issues that may be 
applicable to reverse engineering, and the subsequent resolving of these issues. 
As previously mentioned, the legality of using the data store of a desktop 
search engine for evidence is debated, as the usage may not be considered as 
allowing true interoperability between applications, since the function of the 
extraction tool is different from that of the search engine. The advice of a legal 
professional should be sought so that clarity on the matter can be reached, and 
the development of the extraction application can continue, or an alternative 
access method can be selected. If this legal issue is ignored, and the application 
is completed, then evidence obtained from the data store may be considered 
inadmissible since it was obtained through illegal means. 

2.2.2 Process 2B: Mitigate Search Engine Interfacing Risks 
The initial step of this process, as shown in Figure 5, is to discover which files 
and system entities (such as Windows registry entries) are used during the 
standard operation of the desktop search application. This can be achieved by 
using utilities that are part of the operating systems management features, or 
through the use of third party applications such as Filemon1 and Regmon2. 
These utilities will reveal what files the application reads and writes to during 
start-up, whilst idle and when performing searches [3]. 

 
Figure 5 - Process model 2B: Mitigating forensic risks when interfacing with 

search engine. 

 
Since the access method of interfacing with the search require it to be running, 
knowing which files are utilised by the application can help to manage the risk 

                                                 
1 Available at http://www.sysinternals.com/Utilities/Filemon.html 

(October 2006) 
2 Available at http://www.sysinternals.com/Utilities/Regmon.html 

(October 2006) 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

46 
 

to the integrity of the information retrieved. If the files are known, an operating 
system level change to the file permissions can be attempted to prevent any 
writing to occur.  
The second step identified in Figure 6 step is the configuring of the search 
application’s indexing options. Parallel to the reasons for determining which 
files the search application utilises, configuring the application can aid in 
minimising the risk to the integrity of the information retrieved due to the 
requirement of the application executables needed to be running. 
Examination of the application’s configuration menu will assist in determining 
what options could pose a threat to the information contained in the data store 
of the application. Most search applications have configuration options for 
deletion policies, specifying times when cached items are purged from the 
cache. If possible, deletion should be disabled or the time limit should be 
maximised. The indexing process itself should also be disabled, as files that are 
cached but have been modified since being cached could then be updated by 
the search application, overwriting valuable metadata such as timestamps. 
The third step of the process defined in Figure 6 applies when developing an 
extraction application that will utilise an SDK, either supplied by the vendor or 
third-party, to interface with the search application. By thoroughly checking 
supplied SDK documentation and example code utilising the SDK, there may 
exist “read-only flags” for use in function calls to the search application. These 
would be beneficial in ensuring that any interactions between the developed 
extraction application and search application are guaranteed to leave all cached 
information unmodified in the data store.  

2.2.3 Process 2C: Mitigate Risks Interfacing via Macros 
This process, shown in Figure 7, has the same initial steps as process 2B, but 
has the third step of identifying the accuracy of the screen scraping methods 
employed for the access method. If the macro scripting language used for the 
access method does not have the ability to select and copy text from the search 
engine’s user interface then an image capturing library should be in place to 
overcome this.  

 
Figure 6 - Process model 2C: Mitigating risks when interfacing with user 

interface. 
2.3 Stage 3: Determine Significance of Extractable Information 

Once the method of accessing information has been selected and the forensic 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

47 
 

risks have been mitigated and documented, the third stage of this process is to 
determine the significance of the extractable data. Whilst it is known and 
appreciated that investigators must consider what information is to be extracted 
before beginning use of this process model, the particulars of what information 
is extractable is based upon the access method and what information is stored 
in the individual implementation, which is dependent on which application is 
used. What information is sought is therefore reliant on these factors, which 
would not be known before these stages.  
In some circumstances, it may be ambiguous as to what the actual extracted 
information is related to. If the true meaning of the extracted information is not 
known, and its significance is incorrectly identified, then false conclusions in a 
forensic investigation may be drawn. This could lead to the discrediting of an 
investigator’s testimony in court. If the significance is identified properly, this 
risk to the forensic process can be mitigated. In this stage, all three access 
approaches merge together, shown in Figure 7, as determining the meaning of 
ambiguous information draws upon information sources used by all three 
methods.  

 
Figure 7 - Process model 3A: Determining the significance of extractable 

information. 
2.3.1 Process 3A: Discover Significance of Extractable Information  

If it is ascertained that ambiguous data is present and the meaning of the data 
can not be determined, the first action is to develop a controlled test database 
with the desktop search engine, as shown in Figure 7. Creating this test 
database is similar to the approach applied in process 1A (Figure 2) to 
determine the schema of the data store. By gradually indexing selected files of 
specific file types and documenting the search results returned by the desktop 
search engine, conclusions can be drawn about how the desktop search engine 
may alter some metadata of the indexed files such as timestamps. Timestamps 
can be ambiguous if they are not descriptively labelled internally by the search 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

48 
 

engine and the time value they contain could be in reference to the creation of 
the cached file in relation to the file system, or could be referring to the date 
the file was indexed by the application and stored in the cache.  

2.4 Stage 4: Data Extraction 
The fourth stage of the model deals with the actual extraction of data from the 
desktop search engine’s parallel storage mechanism. Following the processes 
of this stage when developing an extraction application answers the second 
sub-question of this research: “Can cached information be data mined from 
parallel storage mechanisms created by desktop search engines?”. By 
developing a method that can successfully extract information from a desktop 
search engine, the extracted information can then be used in stage 5 to search 
for evidence. 

2.4.1 Process 4A: Data Extraction Method for Reverse Engineering 
Approach 

Data extraction from desktop search engines where a reverse engineering 
approach has been selected is the most straightforward approach, consisting of 
only one option, to directly extract data. Since the structure of the data store is 
known due to reverse engineering, the extraction application can be developed 
to read directly from the files containing the cached information. This in effect 
simulates the approach the actual search engine would use to retrieve the 
information for the user. 

2.4.2 Process 4B: Data Extraction Method for Interfacing with Search 
Engine 

 

 
Figure 8 - Process model 4B: Data extraction method for interfacing with 

search engine. 
For an application that has not been reverse engineered, a data mining 
approach to information extraction will need to be selected. Since the 
information can not be extracted directly from the storage mechanism, but via 
the application itself, an automated process that queries the application is 
needed. 

2.4.2.1 Wildcard Search 
A wildcard search is the first option to consider, as seen in Figure 8. This is the 
simplest method of data mining the search application; however, it is not 
applicable to all search applications. By creating a query that utilises a 
wildcard operator, all results stored in the search applications data store will be 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

49 
 

returned. The exact formatting of the wildcard search term will vary between 
search applications, and will have been determined in stage three. Commonly, 
the * character is used as the wildcard operator and in some cases, may be used 
in conjunction with file types (i.e. *.txt). 

2.4.2.2 Brute Force / Dictionary Search 
This method of data mining the search application is more involved than 
wildcard searching but should be applicable to most search applications. Figure 
8 shows this search option as the second option to be considered in process 4B. 
Dictionary search is a similar concept to a dictionary attack, where a dictionary 
of words are used by themselves, or concatenated together, in an attempt to 
gain access to a computer system by an attacker [4, p. 407]. By using a 
dictionary of search terms, brute force is applied to the search application and a 
large magnitude of search requests are made, many returning results previously 
returned. The dictionary is a plain text file, or series of plain text files, read by 
the extraction application. The files contain a list of words in the common 
language of the locale of the law enforcement agency (i.e. English, French, 
Spanish, etc.), a list of common misspellings for words from the locale, a list of 
file types and a list of case related terms such as suspect names and victim 
names. Depending on the scale of the crime and the people involved, multiple 
language files may be needed for searching. The extraction application would 
iterate through the words listed in the dictionary files and format them into 
queries for the search application, where it is processed and a result set is 
returned. The result set returned by each query may contain information on a 
cached file, already returned by a previous query. This is due to multiple search 
terms being present in the same cached file. This problem is dealt with in stage 
five. 

2.4.2.3 Linear Search 
This last devised data mining approach is not applicable to all desktop search 
applications. It is intended for use where as part of the metadata for a cached 
item, there exists a unique identifier. This identifier is usually used by the 
application to retrieve the item from the storage mechanism. The first identifier 
used by the application in most situations will be 0, but depending on the 
implementation and indexing operations that have occurred, it may be greater 
than 0 as the item at 0 may have been purged from the cache and the identifier 
0 is not used again. The last identifier can be determined by checking the 
statistics of the application to acquire the number of items that have been 
cached. However as with the first identifier, this may not provide a true 
indication as to the last identifier due to indexing operations. If this is the case, 
then using an arbitrary large number much greater in magnitude than the 
number of cached items can be substituted. Using the first identifier value and 
last identifier value in an iterative loop, queries can be generated based on the 
identifiers and individual items will be returned. If the initial and final 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

50 
 

identifiers are not accurate due to the aforementioned reasons, returned results 
will have to be checked for empty or null values. 

2.4.2.4 Selecting Search Method 
The last step of process 4B is to select the search method after evaluating all 
the possible options in the previous steps. A combination of search methods 
may be selected in this process if it is decided that a single method will not 
return enough information in the query results. 

2.5 Stage 5: Storing and Querying Extracted Data 
Once the method for data mining has been selected, the fifth stage determines 
the method for storing the extracted information, so that it can be queried by an 
investigator or other forensic software tool to determine if there is any 
information of evidentiary value. This stage of the model attempts to answer 
the last part of the main research question: “Is it possible to extract information 
from desktop search applications parallel storage mechanisms, in a forensically 
sound manner, so that it can be used as evidence?” By developing the ability to 
query extracted information, it can then be analysed for evidence and used 
during a forensic investigation. 

2.5.1 Process 5A: Storing and Querying Data from Reverse Engineering 

 

 
Figure 9 - Process model 5A: Storing and querying data from reverse 

engineering. 

 
The first option to consider when storing and querying retrieved data from a 
reverse engineering approach, is whether or not querying the data in place is 
sufficient. The reverse engineering process will allow the information to be 
read directly from the storage mechanisms of desktop search engines. 
Therefore, the requirement to store extracted data may be redundant if a 
method for querying the data in place is available. If such a querying method 
does not exist, process 5B should be followed to select a storage and query 
method for extracted data. This process is modelled in Figure 9. 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

51 
 

2.5.2 Process 5B: Storing and Querying Extracted Data from Other Access 
Methods 

 

 
Figure 10 - Process model 5B: Storing and querying extracted data from other 

access methods. 
For non-reverse engineering based extraction applications, or when accessing 
the data store in place is insufficient for a reverse engineered approach, there 
are three conceived methods for storing and querying retrieved information as 
shown in Figure 10. The first step for all three is to determine a unique 
identifier for each search result. If the search method utilises a linear search 
through the use of item identifiers supplied by the search application, then this 
is likely to be the best unique identifier. If this is not available, a file’s URL 
which will either be filename and path or URL of the website (if the search 
application caches visited sites), can be used to create the unique identifier, 
since two files with the exact same name and path can not exist. 
There are three alternatives, each with its own advantages and disadvantages; 
Database, a custom file format, and outputting as plain text. The advantage of a 
database is that all data would be in an accessible format optimised for 
searching, but the disadvantage is that many forensic analysis tools may not be 
able to directly interface with a database for searching purposes. The use of a 
custom file format may be preferable for some situations, particularly where 
the file format is interoperable with other custom tools, however, the 
disadvantages are a lack of interoperability with known standards and, as 
information is not stored in a flat format, it might not be directly searchable by 
other applications. Plain text is searchable, but loses the speed and ubiquity of 
a database-stored system. The use of XML to provide structure to such a file 
would mitigate or reduce many of these disadvantages.  
A solution to avoiding the disadvantages of each of these file formats would be 
to save any extracted information in multiple ways. 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

52 
 

2.6 Stage 6: Verifying the Forensic Soundness of the Developed Extraction 
Application 

 

 
Figure 11 - Process model 6A: Verifying the forensic soundness of the 

developed extraction application. 
With the functionality of the developed extraction application completed, the 
final step is to verify that the operations of the extraction application are 
forensically sound. This stage answers the main research question by proving 
that the developed extraction application does not modify the information read 
from the search engine data store. This validation is performed in two parts: 
creating a test environment to see what information is modified by the search 
application upon indexing and comparing generated hash values of the data 
store files from before and after the extraction application operates. 

2.6.1 Controlled Testing Environment 
This first test utilises a ‘garbage in, garbage out’ philosophy to determine if the 
information retrieved by extraction process is modified in any way from the 
original file that was cached [5, p. 13.3]. Creating a test environment will vary 
between search applications, but the main goal is to limit the indexing 
performed by the application to one test file of which the contents and 
metadata are known. With the search application configured and the file 
created, the indexing process should be started by the application. When 
completed, the developed extraction application should be executed to retrieve 
all the information available, which will be the one file. 
Retrieved information then needs to be compared against the original file. Any 
differences in metadata or cached content need to be documented, and 
explanations for the differences need to be concluded. Metadata that differs 
may already have been documented in stage 3 of the process model, when 
determining the significance of the data. These changes should already be 
accounted for in the expected output of the retrieval application. Any 
unexpected modifications may require debugging of the developed application 
to resolve the problem, and if not possible due to utilisation of third-party code, 
the changes and their impacts on the integrity and meaning of possible 
evidence need to be documented. 

2.6.2 Checksum Comparison 
This essential test ensures that the developed extraction application does not 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

53 
 

modify any of the files of the search application’s data store. If the application 
modifies the cache files then it can be claimed that the evidence has been 
tampered with to pervert the course of justice, since incriminating information 
could have been injected into the retrieved data. Since the use of MD5 and 
SHA1 (either individually or in combination) are accepted methods of ensuring 
duplications of seized media are exact copies. Due to the near-impossible 
collision chance when generating unique hash values, they provide an accurate 
test to ensure the retrieval application does not modify the search application’s 
files (Carrier & Spafford 2004). Forensically, taking hashes of all database files 
used by applications before and after analysis may ensure that the act of 
accessing them (using the different methods as described within the process 
model) has not altered or tainted these in any way. The use of hash values is 
especially important in situations as described by [6] where a copy of Google 
Desktop Search was run on the database files from another machine, and 
examiners needed to ensure that the application itself was not updating files 
and indexing new data from the investigator’s machine.  

3. FUTURE WORK AND CONCLUSION 
3.1 Future Research 

The process model developed is the first attempt at providing a series of stages 
to consider when developing an evidence extraction application for desktop 
search engines. As such, it is a high level focus on the major issues faced when 
developing said applications. The scope of the research limited the scope of 
initial model, which allows greater future work into reviewing and extending 
of the model. As new desktop search engines are released by developers, 
extraction applications will need to be developed by applying the model. 
Through the application of this model to new desktop search engines, it may be 
found that other access methods and associated stages can be added to the 
model, to extend the usefulness of the model for future use on desktop search 
engines. By developing new extraction applications with the model, new 
overlooked sub-processes can be added to the model derived from anecdotal 
evidence obtained during development of the extraction applications. These 
further contributions will aid in expedient future development of extraction 
applications when following the process model. 
However, as noted by Turnbull et. al [6], the release of the Windows Vista 
operating systems, with built in comprehensive desktop search functionalities, 
may reduce the need for the model developed in this research. If powerful 
desktop search capabilities are provided by default with the popular operating 
system, the numbers of users of alternative products may be impacted. As it 
currently stands though, there are a variety of desktop search applications 
thriving, and implementing an extraction tool for each one can be beneficial for 
law enforcement agencies to have access to every piece of evidence that is 
possible. 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

54 
 

3.2 Conclusion 
Forensic computing is a reactive field that must keep up to date with the latest 
consumer technologies and software. Criminals find novel ways to use these 
technologies and if left unaddressed, they can conduct illicit business without 
fear of prosecution (Kruse II, Heiser, 2002; Marcella & Greenfield 2002). One 
such category of consumer software is desktop search engines. Functioning 
like Internet search engines, they index files on a hard disk to make locating 
the files easy. However previous research found that there could be forensic 
value in the information indexed by desktop search engines. Desktop search 
engines could contain cached copies of deleted files, which could be of great 
use to forensic investigators if a seized computer has a desktop search 
application installed. The research suggested a method of accessing one brand 
of desktop search engine, Google Desktop Search, but noted that better 
methods should be devised and for a variety of applications. 
This research aimed to devise these better methods for extracting information 
from desktop search applications. The key output of this research is a process 
model that details the stages of development that should be undertaken when 
developing a desktop search evidence extraction application. The devised 
model focused on 6 stages of the development process, which define all 
methods of extracting data from this valuable and largely forgotten source.  

REFERENCES 
Carrier B & Spafford E, 2004, 'An Event-Based Digital Forensic Investigation 
Framework', Digital Forensic Research Workshop, August 11-13, 2004, 
Baltimore, Maryland, USA 
Cifuentes C & Fitzgerald A, 2000, 'The legal status of reverse engineering of 
computer software', Annals of Software Engineering, Vol 9 no 1-4, May 2000, 
Springer Netherlands 
Cole, B 2005, 'Search engines tackle the desktop', Computer, vol. 38, no. 3, pp. 
14-17. 
Comella-Dorda, S, Wallnau, K, Seacord, RC & Robert, J 2000, 'A survey of 
black-box modernization approaches for information systems'. International 
Conference on Software Maintenance, 11-14 Oct 2000, San Jose, California 
USA  
Conklin, WA, White, GB, Cothren, C, Williams, D & Davis, RL 2004, 
Principles of Computer Security, McGraw-Hill, New York. 
Henrard J, Englebert V, Hick J-M, Roland D & Hainaut J-L, 1998, 'Program 
understanding in databases reverse engineering', chapter of 'Database and 
Expert Systems Applications', Springer Berlin 
Jarzabek, S & Woon, I 1997, 'Towards a precise description of reverse 
engineering methods and tools', First Euromicro Conference on Software 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

55 
 

Maintenance and Reengineering, 17-19 Mar 1997, Berlin, Germany 
Kruse II W, Heiser J, 2002, Computer Forensics; incident response essentials, 
Addison-Wesley, Boston, USA 
Marcella A & Greenfield R, 2002, Cyber Forensics; a field guide for 
collecting, examining, and preserving evidence of computer crimes, Auerbach 
Publications, New York, USA 
Microsoft 2006, FileMon for Windows v7.04, Microsoft TechNet, viewed 2 
Nov 2006, 
<http://www.microsoft.com/technet/sysinternals/utilities/Filemon.mspx>. 
Reith M, Carr C & Gunsch, G, 2002, ‘An Examination of Digital Forensic 
Models’, International Journal of Digital Evidence, Vol. 1, no 3, available 
online at www.ijde.org 
Shelly, GB, Cashman, TJ & Vermaat, ME 2001, Discovering Computers 2002: 
Concepts for a Digital World, Thomson Learning, Boston. 
Smith, I 2004, Cost of Hard Drive Space, viewed 22 April 2006, 
<http://www.littletechshoppe.com/ns1625/winchest.html>. 
Turnbull, B, Blundell, B & Slay, J 2006, 'Google Desktop as a Source of 
Digital Evidence', International Journal of Digital Evidence, vol. 5, no. 1. 
 
 
 
 



Journal of Digital Forensics, Security and Law, Vol. 3(1) 
 

56 
 

 


